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All spaces are assumed to be pointed, arcwise connected and of the ho-
motopy type of C'W-complexes.

Let (X, 1) be a homotopy associative H-space. From the above assump-
tion, (X, 1) is a group-like space. The power maps {@i(: X — Xherz
are defined as follows:

. @8((513) = 7
° @i((:zz) = ﬂ(@i(_l(az), xr) forA>0
o Q_bi((l“) = L(QP)_()\(:E)) for A <0,

where g € X and t: X — X denote the homotopy unit and the homotopy
inverse on (X, i), respectively.



e (X, 1) is homotopy commutative LN {@i(}AEZ are H-maps

e If X is a double loop space, then {@i(})\ez are loop maps

Theorem. [Sullivan 1974]

Let p be an odd prime and ¢ > 1. Then Séﬁ;l Is a loop space

Al t|(p—1).

We denote the loop space S?;;l by W4.



Theorem 1. [Arkowitz-Ewing-Schiffman 1975]

: W,_ :
Let p be an odd prime. The power map @, ” ! on Wp—1 is an H-map

<i:ﬁ>)\()\—1)50modp.

Remark.

e When ¢ # p — 1, all the power maps {@y/t})\ez on W3 are H-maps
since the multiplication on W} is homotopy commutative.

e Theorem 1 is generalized to the case of several p-localized finite loop
spaces by [McGibbon 1980] and [Theriault 2013].



Theorem 2. [Lin 2012]

Let p be an odd prime and ¢t > 1 with ¢|(p — 1). The power map @Kvt on

: iff .
W+ is a loop map <= )\ = a! for some p-adic integer o € Z{?\.

Remark 3.

e When A # 0 mod p, Theorem 2 is proved by [Rector 1971] and [Arkowitz-
Ewing-Schiffman 1975].

e Theorem 2 can also be derived from [Adams-Wojtkowiak 1989] and [Wo-
jtkowiak 1990].



Corollary 4.

Let p and  be as in Theorem 2. Put m = (p — 1)/t. Assume X\ # 0 and

write A = p“b with a > 0 and b Z 0 mod p. The power map @K[/t on W4

is a loop map LN tla and b = 1 mod p.



Definition. [Sugawara 1957], [Stasheff 1963]

: def
A space X is an A,-space <=

i K x X' = X}i<i<n

with some relations, where {K;};>1 denote the associahedra constructed

by [Stasheff 1963|.

Ky /Lg(t,ilf,y,Z)
(zy)z . » (yz)




/LS(tv (ajy>727w) Mg(t,CE, (yz>7w>

((zy)z)w (z(yz))w
p3(t, z,y, z)w

: iff :
e X is an Ay-space <~ X is an H-space

e X is an Ajz-space <£> X is a homotopy associative H-space
e X is an Ayc-space LIRSV (2(BX) for some space BX by [Sugawara
1957] and [Stasheff 1963]



Definition. [Sugawara 1960], [Stasheff 1970], [Iwase-Mimura 1989]

Let X.Y be A,-spaces. Amap f: X — Y isan A,-map g

it Ji x XU Y H<i<n

with some relations, where {J;};>1 denote the multiplihedra constructed
by [lwase-Mimura 1989].

J f (x)"f (y)




(

m(t, z,y)f(2) f(x)m(t,y, 2)
flay)f(2) { B@OTY2) N f(a)f(yz)
m(t, (zy), 2) m(t, z, (yz))

f((zy)z) f(z(yz))

o {: X — Y isan Ao>-map <i> f is an H-map

e f: X — Y is an A3-map <i> f is an H-map preserving homotopy

associativity homotopically



°/: X%YisanAoo—mapéf:Q(Bf)forsomemapr: BX —

BY by [Sugawara 1960], [Stasheff 1970] and [Iwase-Mimura 1989]

In this talk, we study the condition for the power map on an A,-space
to be an A,-map. The higher homotopy associativity of the power maps
{(pi(}AeZ measures a lack of higher homotopy commutativity of (X, ).



Theorem A.

Let p be an odd prime and ¢ > 1 with ¢|(p — 1). Put m = (p — 1)/t.
The power maps {@?ft})\ez on W4 satisfy the following:
(1) @Kvt is an A,,-map for any \ € Z.

(2) @?Q is an A, 1 1-map LN AN — 1) = 0 mod p.

Remark 5.

o Ift =p — 1, then Theorem A (2) is the same as Theorem 1.

e When t = (p — 1)/2, Theorem A (2) is proved by [McGibbon 1982].

e When )\ £ 0 mod p, @T/’f is an A, 1-map <|:ﬁ> @T/’f Is a loop map by

Theorem A (2) and Corollary 4.



Theorem B.

Let p,t and m be as in Theorem A. Assume that A = 0 mod p and
2 < 7 <t. The power maps {@?/t})\ez on W} satisfy the following:

(1) If @Kvt is an A(j_1);,+1-map, then it is also an A,-map.
(2) @, " isan Ajp1-map <= A =0 mod p/.

From Theorems A (2) and B (2) and Corollary 4, we have the following
corollary:

Corollary 6.

Let p,t and m be as in Theorem A. The power map @?/t on Wi is an
Ap-map <|:ﬁ> A= 0mod p' or N = 1 mod p.



Definition.

. .. def C o : :
e A space X is [f)-finite — H*(X; IF),) is finite-dimensional as a vector

space over I,

o A space X is [Fj-acyclic PN H*(X; Fy,) = 0.

Theorem C.

Let p be an odd prime. Assume that X is a simply connected IF)-finite
Ap-space and A is a primitive'(p — 1)-st root of unity mod p. If the
reduced power operations {Z?'};>1 act trivially on the indecomposable
module QH*(X;F,) and the power map @i( on X is an A;,-map with
n > (p—1)/2, then X is Fj-acyclic.



Remark 7.

e [ he condition for \ cannot be removed. In fact:

(1) If A = 0 mod p, then the power map @K/Q on Wo is an A<p+1>/2—map
by Theorem A (2)

(2) Assume that \* = 1 mod p for some k with 1 < k < p — 1 and
kl(p—1). Putt=(p—1)/k > 1. Then the power map @?GL on Wy is
a loop map by Corollary 4.

e Since the power maps {Q-DT/Q})\eZ on Wy are A,_1)/o-maps by Theorem
A (1), the assumption “n > (p — 1)/2” cannot be relaxed in Theorem
C.



Definition.

: def
An H-space is p-regular =

N 2t1—1 o 2tp—1
X<p) ~ S<p> X X S

Theorem. [Hubbuck-Mimura 1987], [lwase 1989]

Let p be an odd prime. If X is a connected p-regular Aj)-space with (x),
then ¢y < p.



Theorem D.

Let p and A be as in Theorem C. Assume that X is a simply connected
p-regular Aj-space with (x). If the power map @i( on X is an Ay,-map
with 7 > |p/ty], then X is Fj-acyclic.

Remark 8.

Since the power maps {45?/’5})\62 on Wy are Ay,-maps by Theorem A (1)

and [p/t] = m, the assumption “n > [p/ty|” cannot be relaxed in Theorem
D.



Proof of Theorem A (1).

By induction on %, we construct an Ap,-form {n;}1<;<y, on (P?/t. Put
n = @K/t. Assume inductively that {7;}1<j<; is constructed for some
i < m. Let T}(Wy) = 8J; x (W)U J; x (W), where X17 denotes the
1-fold fat wedge of a space X defined as

Xl ={(z1,...,7;) EXi]xj:*forsomejwith 1 <5<}

Then (J; x (Wy))) ) Ti(Wy) ~ S@g—l.



We define n;: I;(W:) — Wi using {n;}1<j<;- The obstructions to
obtain n;: J; x (W) — Wi with ni‘Fz(Wt) = 7); appear in the cohomology
groups

HY Ly (W', (W) my (Wa)) =2 HE(ST 2 mp(Wa)) - for k> 1.

The above is non-trivial only if k£ is an even integer with £ < 2p — 2 since
ti < tm = p — 1. On the other hand, 7. (W) = 0 for any even integer k
with k& < 2p — 2 by [Toda 1962]. Then we have a map n;. This completes

: : 4%
the induction, and we have an Ap,-form {n;}1<j<p, on @, ".



Let X be an A;-space. According to [Stasheff 1963|, we have the pro-
jective spaces { P;(X)}p<j<pn With the following properties:

e [here is a fibration

Vi—1

X — YlxN 5 P (X)) forl<i<n

e There is a long cofibration sequence:

. oy . Z. VD »
yi-lxni 12opox) 2L px) & pixst 5L
for 1 <1 <mn,

where X"\ denotes the i-fold smash product of X
e Py(X)={x}and P|(X)=X1X.
e When X is an Axo-space, Px(X) = BX.



Theorem. [Stasheff 1970], [Iwase-Mimura 1989], [Hemmi 2007]
Let X,Y be Aj-spaces.
(1) If f: X — Y isan Aj,-map, then
HPBi(f): PX) = P(Y) h<i<n
with Pi(f) = X'f and P;(f)e;—1 = Pi_1(f)tj—1 for 2 <i <.

(2) If Y is an A, {-space, then the converse of (1) also holds.

Pute;_1=1tj_1--11: XX = P(X) — B(X) for i > 2.



Proof of the “ only if " part of Theorem A (2).

It is known that
H* (P 1(Wy); Fp) = Fplu] /(™) with degu = 2t

and
PHu) = ™ with € # 0 mod p.

If @?Q is an A,,,L1-map, then
4%
P 1 (@) 1) Pyt (W) — Pyt (W)
with Pm+1(§_bKVt)5m ~ 5m(2§bKVt). This implies

Pt (@31 () = Mu.



Since
P! Pt (@) 1) () = ™!
and
Pt (@) 1) 2 () = Xl
we have A(A"* — 1) = 0 mod p.

Proof of the " if " part of Theorem A (2).

According to [Toda 1962], we have
Toryo(p—1)—2(Wt) = Z/p{at.

Let C'(¢) be the cofiber of ¢ = Y : 5(2;;2@_1)_1 — YW4. Then



H*(C(p);Fp) = Fp{z,w} as an F-algebra
with deg z = 2t and degw = 2t + 2(p — 1)
and
PHz) = Cw with ¢ 0 mod p.

Since o = Y« is a suspension map, we have a map A: C(p) — C(p)
with the following commutative diagram:

2t+2(p—1)—1 90 2t
%(p) o) O
Al | jw 4
SQt—I—Q(p—l) Szt N C’(gp

(p) (p)
where [A| denote the self-maps of degree \.



Since @?G is an A;,-map,
with Pm(ngt)em_l ~ e 1(2¢Wf).

Let ¢ =g 19: S(Qt;r%p D=1 — Py (W4). Since there is a fibration

we have
Tot+2(p—1)=1(Em(Wt)) = Zp{vm} & Z/p{ e}
Put X = C(p), where = 1,0 = g S?t;rQ(p b=t Pr1(Wy).

Then C(QO) C X and 7T2t—|—2( ) 1<X) — (.

p—1



Since P, 41(W;) = C(vm), we have a map ¥: P, (W;) — X with
the following commutative diagram:

S(% B 5\ /AN Po(Wy) = Pryy1(We)
ml mwtl lPM@KVt) l@
S2t — Wy —— Py (W) — X,

where 7, denotes the composition of 1, and the inclusion P, 1(17;) C X.
Define a self-map ¥: X — X by ¥[p () =¥ and ¥|,) = A.



Sty — EWi == Bu(Wi) = Pna(W) = X & C(p)

[A]l gngth le(gb?/t) w A
2t

S<p> S EWt m Pm<Wt) ? Pm+1<Wt> ? X ? C(@)?

From the definition,
H* (X Zy,) = Zy,) 2]/ (=) @ Zy{y} asa Z-algebra
with degx = 2t and degy = 2t + 2(p — 1).
Since LD\C@) = A, the induced homomorphism



is given by ¥*(z) = Az and ¥*(y) = \y + nz™ ! for some n € Lp)-

Lemma.

If A(A"" — 1) = 0 mod p, then n = 0 mod p.

Proof.
H* (P 1(Wh); Fp) < H*(X:;Fp) — H*(Clp);Fp)
Write 21 () = ™t + Cy with €, ¢ % 0 mod p. Since
PN (z) = Aex™ T + Ay

and
w*@l(aj) _ )\m+1§wm+1 4 )\Cy _|_77Cwm+1’



we have EA(A"" — 1) + n¢ = 0 mod p. Then n = 0 mod p.

Leta,b H2t+2<p_1>(X; Z(p>) denote the Kronecker duals of ™1y €
H2t+2<p—1>(X; Z<p>), respectively. Using the duality, we can show that
7, (a) = N la +nb

and

. (b) = \b.



Consider the homomorphism

& Hop o 1)(X5 Zyp)) = Topio(p—1)—1(Pm(Wi))
defined by the following composition:

HQt—i—Q(p—l)(X; Z(p)) — HQt—i—Q(p—l)(X? Prn(Wh); Z(p))

1
% Tot42(p—1)(Xs Pn(Wt)) Lt Tot42(p—1)—1(Lm (W),

where 77 denotes the Hurewicz isomorphism. Then Pm@ﬁ/t)#@@ = EV.



Since &(a) = v, and &(b) = ¢, we have that
Pm(éyq#(’Ym) = )‘erl”Ym + 1Ny = )‘m+17m by Lemma.

This implies that Lum(QBYt)’ym is null-homotopic, and so there is a self-

map ¢ : Ppi1(Wi) = Popo1(We) with iy, ~ Lum(@K/t). Then @?ft is
an A,,11-map.

Remark.

Theorem B is proved in a similar way to the proof of Theorem A. In
the proof, we use the Brown-Peterson cohomology instead of the mod p
cohomology.



