Higher homotopy associativity of power maps on p-regular H-spaces

> Yusuke Kawamoto (National Defense Academy of Japan)

Algebraic and Geometric Models for Spaces and Related Topics 2014
September 18, 2014, Shinshu University

All spaces are assumed to be pointed, arcwise connected and of the homotopy type of $C W$-complexes.

Let (X, μ) be a homotopy associative H-space. From the above assumption, (X, μ) is a group-like space. The power maps $\left\{\Phi_{\lambda}^{X}: X \rightarrow X\right\}_{\lambda \in \mathbb{Z}}$ are defined as follows:

- $\Phi_{0}^{X}(x)=x_{0}$
- $\Phi_{\lambda}^{X}(x)=\mu\left(\Phi_{\lambda-1}^{X}(x), x\right) \quad$ for $\lambda>0$
- $\Phi_{\lambda}^{X}(x)=\iota\left(\Phi_{-\lambda}^{X}(x)\right) \quad$ for $\lambda<0$,
where $x_{0} \in X$ and $\iota: X \rightarrow X$ denote the homotopy unit and the homotopy inverse on (X, μ), respectively.
- (X, μ) is homotopy commutative $\stackrel{\text { iff }}{\Longleftrightarrow}\left\{\Phi_{\lambda}^{X}\right\}_{\lambda \in \mathbb{Z}}$ are H-maps
- If X is a double loop space, then $\left\{\Phi_{\lambda}^{X}\right\}_{\lambda \in \mathbb{Z}}$ are loop maps

Theorem. [Sullivan 1974]
Let p be an odd prime and $t \geq 1$. Then $S_{(p)}^{2 t-1}$ is a loop space $\stackrel{\text { iff }}{\Longleftrightarrow} t \mid(p-1)$.

We denote the loop space $S_{(p)}^{2 t-1}$ by W_{t}.

Theorem 1. [Arkowitz-Ewing-Schiffman 1975]

Let p be an odd prime. The power map $\Phi_{\lambda}^{W_{p-1}}$ on W_{p-1} is an H-map $\stackrel{\text { iff }}{\Longleftrightarrow} \lambda(\lambda-1) \equiv 0 \bmod p$.

Remark.

- When $t \neq p-1$, all the power maps $\left\{\Phi_{\lambda}^{W_{t}}\right\}_{\lambda \in \mathbb{Z}}$ on W_{t} are H-maps since the multiplication on W_{t} is homotopy commutative.
- Theorem 1 is generalized to the case of several p-localized finite loop spaces by [McGibbon 1980] and [Theriault 2013].

Theorem 2. [Lin 2012]

Let p be an odd prime and $t \geq 1$ with $t \mid(p-1)$. The power map $\Phi_{\lambda}^{W_{t}}$ on W_{t} is a loop map $\stackrel{\text { iff }}{\Longleftrightarrow} \lambda=\alpha^{t}$ for some p-adic integer $\alpha \in \mathbb{Z}_{p}^{\wedge}$.

Remark 3.

- When $\lambda \not \equiv 0 \bmod p$, Theorem 2 is proved by [Rector 1971] and [Arkowitz-Ewing-Schiffman 1975].
- Theorem 2 can also be derived from [Adams-Wojtkowiak 1989] and [Wojtkowiak 1990].

Corollary 4.
Let p and t be as in Theorem 2. Put $m=(p-1) / t$. Assume $\lambda \neq 0$ and write $\lambda=p^{a} b$ with $a \geq 0$ and $b \not \equiv 0 \bmod p$. The power map $\Phi_{\lambda}^{W_{t}}$ on W_{t} is a loop map $\stackrel{\text { iff }}{\Longleftrightarrow} t \mid a$ and $b^{m} \equiv 1 \bmod p$.

Definition. [Sugawara 1957], [Stasheff 1963]

A space X is an A_{n}-space $\stackrel{\text { def }}{\Longleftrightarrow}$

$$
{ }^{\exists}\left\{\mu_{i}: K_{i} \times X^{i} \rightarrow X\right\}_{1 \leq i \leq n}
$$

with some relations, where $\left\{K_{i}\right\}_{i \geq 1}$ denote the associahedra constructed by [Stasheff 1963].
K_{3}

$$
(x y) z \stackrel{\mu_{3}(t, x, y, z)}{ } x(y z)
$$

K_{4}

$$
\begin{aligned}
& x(y(z w)) \\
& \mu_{3}(t, x, y,(z w)) \quad x \mu_{3}(t, y, z, w)
\end{aligned}
$$

- X is an A_{2}-space $\stackrel{\text { iff }}{\Longleftrightarrow} X$ is an H-space
- X is an A_{3}-space $\stackrel{\text { iff }}{\Longleftrightarrow} X$ is a homotopy associative H-space
- X is an A_{∞}-space $\stackrel{\text { iff }}{\Longleftrightarrow} X \simeq \Omega(B X)$ for some space $B X$ by [Sugawara 1957] and [Stasheff 1963]

Definition. [Sugawara 1960], [Stasheff 1970], [Iwase-Mimura 1989]
Let X, Y be A_{n}-spaces. A map $f: X \rightarrow Y$ is an A_{n}-map $\stackrel{\text { def }}{\Longleftrightarrow}$

$$
{ }^{\exists}\left\{\eta_{i}: J_{i} \times X^{i} \rightarrow Y\right\}_{1 \leq i \leq n}
$$

with some relations, where $\left\{J_{i}\right\}_{i \geq 1}$ denote the multiplihedra constructed by [Iwase-Mimura 1989].
J_{2}

$$
\begin{aligned}
& f(x) f(y) \\
& \eta_{2}(t, x, y) \\
& \eta_{1}(x y)
\end{aligned}
$$

J_{3}

$$
\begin{gathered}
\mu_{3}^{Y}(t, f(x), f(y), f(z)) \\
(f(x) f(y)) f(z) \\
\eta_{2}(t, x, y) f(z) \\
f(x y) f(z) \\
\eta_{2}(t,(x y), z) \\
f((x y) z) \\
f\left(\mu_{3}^{X}(t, x, y, z)\right)
\end{gathered} \stackrel{f(x)(f(y) f(z))}{f(x) \eta_{2}(t, y, z)} \begin{aligned}
& f(x) f(y z) \\
& \eta_{2}(t, x,(y z)) \\
& f(y z))
\end{aligned}
$$

- $f: X \rightarrow Y$ is an A_{2}-map $\stackrel{\text { iff }}{\Longleftrightarrow} f$ is an H-map
- $f: X \rightarrow Y$ is an A_{3}-map $\stackrel{\text { iff }}{\Longleftrightarrow} f$ is an H-map preserving homotopy associativity homotopically
- $f: X \rightarrow Y$ is an A_{∞}-map $\stackrel{\text { iff }}{\Longleftrightarrow} f \simeq \Omega(B f)$ for some map $B f: B X \rightarrow$ $B Y$ by [Sugawara 1960], [Stasheff 1970] and [Iwase-Mimura 1989]

In this talk, we study the condition for the power map on an A_{n}-space to be an A_{n}-map. The higher homotopy associativity of the power maps $\left\{\Phi_{\lambda}^{X}\right\}_{\lambda \in \mathbb{Z}}$ measures a lack of higher homotopy commutativity of (X, μ).

Theorem A.

Let p be an odd prime and $t \geq 1$ with $t \mid(p-1)$. Put $m=(p-1) / t$.
The power maps $\left\{\Phi_{\lambda}^{W_{t}}\right\}_{\lambda \in \mathbb{Z}}$ on W_{t} satisfy the following:
(1) $\Phi_{\lambda}^{W_{t}}$ is an A_{m}-map for any $\lambda \in \mathbb{Z}$.
(2) $\Phi_{\lambda}^{W_{t}}$ is an A_{m+1}-map $\stackrel{\text { iff }}{\Longleftrightarrow} \lambda\left(\lambda^{m}-1\right) \equiv 0 \bmod p$.

Remark 5.

- If $t=p-1$, then Theorem $\mathrm{A}(2)$ is the same as Theorem 1 .
- When $t=(p-1) / 2$, Theorem A (2) is proved by [McGibbon 1982].
- When $\lambda \not \equiv 0 \bmod p, \Phi_{\lambda}^{W_{t}}$ is an A_{m+1}-map $\stackrel{\text { iff }}{\Longleftrightarrow} \Phi_{\lambda}^{W_{t}}$ is a loop map by Theorem A (2) and Corollary 4.

Theorem B.

Let p, t and m be as in Theorem A. Assume that $\lambda \equiv 0 \bmod p$ and $2 \leq j \leq t$. The power maps $\left\{\Phi_{\lambda}^{W_{t}}\right\}_{\lambda \in \mathbb{Z}}$ on W_{t} satisfy the following:

(2) $\Phi_{\lambda}^{W_{t}}$ is an $A_{j m+1}$-map $\stackrel{\text { iff }}{\Longleftrightarrow} \lambda \equiv 0 \bmod p^{j}$.

From Theorems A (2) and B (2) and Corollary 4, we have the following corollary:

Corollary 6.

Let p, t and m be as in Theorem A. The power map $\Phi_{\lambda}^{W_{t}}$ on W_{t} is an A_{p}-map $\stackrel{\text { iff }}{\Longleftrightarrow} \lambda \equiv 0 \bmod p^{t}$ or $\lambda^{m} \equiv 1 \bmod p$.

Definition.

- A space X is \mathbb{F}_{p}-finite $\stackrel{\text { def }}{\Longleftrightarrow} H^{*}\left(X ; \mathbb{F}_{p}\right)$ is finite-dimensional as a vector space over \mathbb{F}_{p}.
- A space X is \mathbb{F}_{p}-acyclic $\stackrel{\text { def }}{\Longleftrightarrow} \widetilde{H}^{*}\left(X ; \mathbb{F}_{p}\right)=0$.

Theorem C.

Let p be an odd prime. Assume that X is a simply connected \mathbb{F}_{p}-finite A_{p}-space and λ is a primitive $(p-1)$-st root of unity $\bmod p$. If the reduced power operations $\left\{\mathscr{P}^{i}\right\}_{i \geq 1}$ act trivially on the indecomposable module $Q H^{*}\left(X ; \mathbb{F}_{p}\right)$ and the power map Φ_{λ}^{X} on X is an A_{n}-map with $n>(p-1) / 2$, then X is \mathbb{F}_{p}-acyclic.

Remark 7.

- The condition for λ cannot be removed. In fact:
(1) If $\lambda \equiv 0 \bmod p$, then the power $\operatorname{map} \Phi_{\lambda}^{W_{2}}$ on W_{2} is an $A_{(p+1) / 2^{-} \text {-map }}$ by Theorem A (2)
(2) Assume that $\lambda^{k} \equiv 1 \bmod p$ for some k with $1 \leq k<p-1$ and $k \mid(p-1)$. Put $t=(p-1) / k>1$. Then the power map $\Phi_{\lambda}^{W_{t}}$ on W_{t} is a loop map by Corollary 4.
- Since the power maps $\left\{\Phi_{\lambda}^{W_{2}}\right\}_{\lambda \in \mathbb{Z}}$ on W_{2} are $A_{(p-1) / 2}$-maps by Theorem A (1), the assumption " $n>(p-1) / 2$ " cannot be relaxed in Theorem C.

Definition.

An H-space is p-regular $\stackrel{\text { def }}{\Longleftrightarrow}$

$$
\begin{equation*}
X_{(p)} \simeq S_{(p)}^{2 t_{1}-1} \times \cdots \times S_{(p)}^{2 t_{\ell}-1} \quad\left(1 \leq t_{1} \leq \cdots \leq t_{\ell}\right) \tag{*}
\end{equation*}
$$

Theorem. [Hubbuck-Mimura 1987], [lwase 1989]
 then $t_{\ell} \leq p$.

Theorem D.

Let p and λ be as in Theorem C. Assume that X is a simply connected p-regular A_{p}-space with $(*)$. If the power map Φ_{λ}^{X} on X is an A_{n}-map with $n>\left[p / t_{\ell}\right]$, then X is \mathbb{F}_{p}-acyclic.

Remark 8.

Since the power maps $\left\{\Phi_{\lambda}^{W_{t}}\right\}_{\lambda \in \mathbb{Z}}$ on W_{t} are A_{m}-maps by Theorem A (1) and $[p / t]=m$, the assumption " $n>\left[p / t_{\ell}\right]$ " cannot be relaxed in Theorem D.

Proof of Theorem A (1).

By induction on i, we construct an A_{m}-form $\left\{\eta_{i}\right\}_{1 \leq i \leq m}$ on $\Phi_{\lambda}^{W_{t}}$. Put $\eta_{1}=\Phi_{\lambda}^{W_{t}}$. Assume inductively that $\left\{\eta_{j}\right\}_{1 \leq j<i}$ is constructed for some $i \leq m$. Let $\Gamma_{i}\left(W_{t}\right)=\partial J_{i} \times\left(W_{t}\right)^{i} \cup J_{i} \times\left(W_{t}\right)^{[i]}$, where $X^{[i]}$ denotes the i-fold fat wedge of a space X defined as

$$
X^{[i]}=\left\{\left(x_{1}, \ldots, x_{i}\right) \in X^{i} \mid x_{j}=* \text { for some } j \text { with } 1 \leq j \leq i\right\} .
$$

Then $\left(J_{i} \times\left(W_{t}\right)^{i}\right) / \Gamma_{i}\left(W_{t}\right) \simeq S_{(p)}^{2 t i-1}$.

We define $\widetilde{\eta}_{i}: \Gamma_{i}\left(W_{t}\right) \rightarrow W_{t}$ using $\left\{\eta_{j}\right\}_{1 \leq j<i}$. The obstructions to obtain $\eta_{i}: J_{i} \times\left(W_{t}\right)^{i} \rightarrow W_{t}$ with $\left.\eta_{i}\right|_{\Gamma_{i}\left(W_{t}\right)}=\widetilde{\eta}_{i}$ appear in the cohomology groups

$$
H^{k+1}\left(J_{i} \times\left(W_{t}\right)^{i}, \Gamma_{i}\left(W_{t}\right) ; \pi_{k}\left(W_{t}\right)\right) \cong \widetilde{H}^{k}\left(S_{(p)}^{2 t i-2} ; \pi_{k}\left(W_{t}\right)\right) \quad \text { for } k \geq 1
$$

The above is non-trivial only if k is an even integer with $k<2 p-2$ since $t i \leq t m=p-1$. On the other hand, $\pi_{k}\left(W_{t}\right)=0$ for any even integer k with $k<2 p-2$ by [Toda 1962]. Then we have a map η_{i}. This completes the induction, and we have an A_{m}-form $\left\{\eta_{i}\right\}_{1 \leq i \leq m}$ on $\Phi_{\lambda}^{W_{t}}$.

Let X be an A_{n}-space. According to [Stasheff 1963], we have the projective spaces $\left\{P_{i}(X)\right\}_{0 \leq i \leq n}$ with the following properties:

- There is a fibration

$$
X \rightarrow \Sigma^{i-1} X^{\wedge i} \xrightarrow{\gamma_{i-1}} P_{i-1}(X) \text { for } 1 \leq i \leq n
$$

- There is a long cofibration sequence:

$$
\Sigma^{i-1} X^{\wedge i} \xrightarrow{\gamma_{i-1}} P_{i-1}(X) \xrightarrow{\iota_{i-1}} P_{i}(X) \xrightarrow{\rho_{i}} \Sigma^{i} X^{\wedge i} \xrightarrow{\Sigma \gamma_{i-1}} \cdots
$$

where $X^{\wedge i}$ denotes the i-fold smash product of X.

- $P_{0}(X)=\{*\}$ and $P_{1}(X)=\Sigma X$.
- When X is an A_{∞}-space, $P_{\infty}(X)=B X$.

Theorem. [Stasheff 1970], [lwase-Mimura 1989], [Hemmi 2007]
Let X, Y be A_{n}-spaces.
(1) If $f: X \rightarrow Y$ is an A_{n}-map, then

$$
{ }^{\exists}\left\{P_{i}(f): P_{i}(X) \rightarrow P_{i}(Y)\right\}_{1 \leq i \leq n}
$$

with $P_{1}(f)=\Sigma f$ and $P_{i}(f) \iota_{i-1}=P_{i-1}(f) \iota_{i-1}$ for $2 \leq i \leq n$.
(2) If Y is an A_{n+1}-space, then the converse of (1) also holds.

Put $\varepsilon_{i-1}=\iota_{i-1} \cdots \iota_{1}: \Sigma X=P_{1}(X) \rightarrow P_{i}(X)$ for $i \geq 2$.

Proof of the " only if" part of Theorem A (2).
It is known that

$$
H^{*}\left(P_{m+1}\left(W_{t}\right) ; \mathbb{F}_{p}\right) \cong \mathbb{F}_{p}[\boldsymbol{u}] /\left(\boldsymbol{u}^{m+2}\right) \quad \text { with } \operatorname{deg} \boldsymbol{u}=2 t
$$

and

$$
\mathscr{P}^{1}(\boldsymbol{u})=\xi \boldsymbol{u}^{m+1} \quad \text { with } \xi \not \equiv 0 \bmod p .
$$

If $\Phi_{\lambda}^{W_{t}}$ is an A_{m+1}-map, then

$$
{ }^{\exists} P_{m+1}\left(\Phi_{\lambda}^{W_{t}}\right): P_{m+1}\left(W_{t}\right) \rightarrow P_{m+1}\left(W_{t}\right)
$$

with $P_{m+1}\left(\Phi_{\lambda}^{W_{t}}\right) \varepsilon_{m} \simeq \varepsilon_{m}\left(\Sigma \Phi_{\lambda}^{W_{t}}\right)$. This implies

$$
P_{m+1}\left(\Phi_{\lambda}^{W_{t}}\right)^{*}(\boldsymbol{u})=\lambda \boldsymbol{u}
$$

Since

$$
\mathscr{P}^{1} P_{m+1}\left(\Phi_{\lambda}^{W_{t}}\right)^{*}(\boldsymbol{u})=\xi \lambda \boldsymbol{u}^{m+1}
$$

and

$$
P_{m+1}\left(\Phi_{\lambda}^{W_{t}}\right)^{*} \mathscr{P}^{1}(\boldsymbol{u})=\xi \lambda^{m+1} \boldsymbol{u}^{m+1}
$$

we have $\lambda\left(\lambda^{m}-1\right) \equiv 0 \bmod p$.
Proof of the " if " part of Theorem A (2).
According to [Toda 1962], we have

$$
\pi_{2 t+2(p-1)-2}\left(W_{t}\right) \cong \mathbb{Z} / p\{\alpha\}
$$

Let $C(\varphi)$ be the cofiber of $\varphi=\Sigma \alpha: S_{(p)}^{2 t+2(p-1)-1} \rightarrow \Sigma W_{t}$. Then

$$
\begin{aligned}
& H^{*}\left(C(\varphi) ; \mathbb{F}_{p}\right)=\mathbb{F}_{p}\{\boldsymbol{z}, \boldsymbol{w}\} \quad \text { as an } \mathbb{F}_{p} \text {-algebra } \\
& \text { with } \operatorname{deg} \boldsymbol{z}=2 t \text { and } \operatorname{deg} \boldsymbol{w}=2 t+2(p-1)
\end{aligned}
$$

and

$$
\mathscr{P}^{1}(\boldsymbol{z})=\zeta \boldsymbol{w} \quad \text { with } \zeta \not \equiv 0 \bmod p
$$

Since $\varphi=\Sigma \alpha$ is a suspension map, we have a map $\Lambda: C(\varphi) \rightarrow C(\varphi)$ with the following commutative diagram:

$$
\begin{array}{cccc}
S_{(p)}^{2 t+2(p-1)-1} & \stackrel{\varphi}{\rightarrow} & S_{(p)}^{2 t} & \rightarrow C(\varphi) \\
{[\lambda] \mid} & & \downarrow[\lambda] & \\
S_{(p)}^{2 t+2(p-1)-1} & & \downarrow \\
& & S_{(p)}^{2 t} & \rightarrow C(\varphi),
\end{array}
$$

where $[\lambda]$ denote the self-maps of degree λ.

Since $\Phi_{\lambda}^{W_{t}}$ is an A_{m}-map,

$$
{ }^{\exists} P_{m}\left(\Phi_{\lambda}^{W_{t}}\right): P_{m}\left(W_{t}\right) \rightarrow P_{m}\left(W_{t}\right)
$$

with $P_{m}\left(\Phi_{\lambda}^{W_{t}}\right) \varepsilon_{m-1} \simeq \varepsilon_{m-1}\left(\Sigma \Phi_{\lambda}^{W_{t}}\right)$.
Let $\widetilde{\varphi}=\varepsilon_{m-1} \varphi: S_{(p)}^{2 t+2(p-1)-1} \rightarrow P_{m}\left(W_{t}\right)$. Since there is a fibration

$$
W_{t} \rightarrow S_{(p)}^{2 t+2(p-1)-1} \xrightarrow{\gamma_{m}} P_{m}\left(W_{t}\right),
$$

we have

$$
\pi_{2 t+2(p-1)-1}\left(P_{m}\left(W_{t}\right)\right) \cong \mathbb{Z}_{(p)}\left\{\gamma_{m}\right\} \oplus \mathbb{Z} / p\{\widetilde{\varphi}\}
$$

Put $X=C(\widehat{\varphi})$, where $\widehat{\varphi}=\iota_{m} \widetilde{\varphi}=\varepsilon_{m} \varphi: S_{(p)}^{2 t+2(p-1)-1} \rightarrow P_{m+1}\left(W_{t}\right)$.
Then $C(\varphi) \subset X$ and $\pi_{2 t+2(p-1)-1}(X)=0$.

Since $P_{m+1}\left(W_{t}\right)=C\left(\gamma_{m}\right)$, we have a map $\widetilde{\Psi}: P_{m+1}\left(W_{t}\right) \rightarrow X$ with the following commutative diagram:

$$
\begin{array}{ccc}
S_{(p)}^{2 t}=\Sigma W_{t} & \xrightarrow{\varepsilon_{m-1}} P_{m}\left(W_{t}\right) \xrightarrow{\iota_{m}} & P_{m+1}\left(W_{t}\right) \\
{\left.[\lambda]\right|_{(p)}=\Sigma \Phi_{\lambda}^{W_{t}} \downarrow} & & \downarrow P_{m}\left(\Phi_{\lambda}^{W_{t}}\right) \\
S_{t}^{2 t} & \downarrow \widetilde{\Psi} \\
\varepsilon_{m-1} & P_{m}\left(W_{t}\right) \xrightarrow[\widetilde{\tau_{m}}]{ } & X,
\end{array}
$$

where $\widetilde{\iota}_{m}$ denotes the composition of ι_{m} and the inclusion $P_{m+1}\left(W_{t}\right) \subset X$. Define a self-map $\Psi: X \rightarrow X$ by $\left.\Psi\right|_{P_{m+1}\left(W_{t}\right)}=\widetilde{\Psi}$ and $\left.\Psi\right|_{C(\varphi)}=\Lambda$.

$$
\begin{aligned}
& S_{(p)}^{2 t}=\Sigma W_{t} \xrightarrow{\varepsilon_{m-1}} P_{m}\left(W_{t}\right) \xrightarrow{\iota_{m}} P_{m+1}\left(W_{t}\right) \xrightarrow{C} X \rightleftarrows C(\varphi) \\
& {[\lambda] \quad \Sigma \Phi_{\lambda}^{W_{t}} \downarrow \quad \downarrow P_{m}\left(\Phi_{\lambda}^{W_{t}}\right) \quad \downarrow \Psi \quad \downarrow \Lambda} \\
& S_{(p)}^{2 t}=\Sigma W_{t} \xrightarrow[\varepsilon_{m-1}]{\longrightarrow} P_{m}\left(W_{t}\right) \underset{\iota_{m}}{\longrightarrow} P_{m+1}\left(W_{t}\right) \underset{\subset}{\longrightarrow} C(\varphi),
\end{aligned}
$$

From the definition,

$$
\begin{aligned}
H^{*}\left(X ; \mathbb{Z}_{(p)}\right)=\mathbb{Z}_{(p)}[x] /\left(x^{m+2}\right) \oplus \mathbb{Z}_{(p)}\{y\} \quad \text { as a } \mathbb{Z}_{(p) \text {-algebra }} \\
\quad \text { with } \operatorname{deg} x=2 t \text { and } \operatorname{deg} y=2 t+2(p-1) .
\end{aligned}
$$

Since $\left.\Psi\right|_{C(\varphi)}=\Lambda$, the induced homomorphism

$$
\Psi^{*}: H^{*}\left(X ; \mathbb{Z}_{(p)}\right) \rightarrow H^{*}\left(X ; \mathbb{Z}_{(p)}\right)
$$

is given by $\Psi^{*}(x)=\lambda x$ and $\Psi^{*}(y)=\lambda y+\eta x^{m+1}$ for some $\eta \in \mathbb{Z}_{(p)}$.
Lemma.
If $\lambda\left(\lambda^{m}-1\right) \equiv 0 \bmod p$, then $\eta \equiv 0 \bmod p$.

Proof.

$$
H^{*}\left(P_{m+1}\left(W_{t}\right) ; \mathbb{F}_{p}\right) \leftarrow H^{*}\left(X ; \mathbb{F}_{p}\right) \rightarrow H^{*}\left(C(\varphi) ; \mathbb{F}_{p}\right)
$$

Write $\mathscr{P}^{1}(\boldsymbol{x})=\xi \boldsymbol{x}^{m+1}+\zeta \boldsymbol{y}$ with $\xi, \zeta \not \equiv 0 \bmod p$. Since

$$
\mathscr{P}^{1} \Psi^{*}(x)=\lambda \xi \boldsymbol{x}^{m+1}+\lambda \zeta \boldsymbol{y}
$$

and

$$
\Psi^{*} \mathscr{P}^{1}(x)=\lambda^{m+1} \xi \boldsymbol{x}^{m+1}+\lambda \zeta \boldsymbol{y}+\eta \zeta \boldsymbol{x}^{m+1}
$$

we have $\xi \lambda\left(\lambda^{m}-1\right)+\eta \zeta \equiv 0 \bmod p$. Then $\eta \equiv 0 \bmod p$.
Let $\boldsymbol{a}, \boldsymbol{b} \in H_{2 t+2(p-1)}\left(X ; \mathbb{Z}_{(p)}\right)$ denote the Kronecker duals of $x^{m+1}, y \in$ $H^{2 t+2(p-1)}\left(X ; \mathbb{Z}_{(p)}\right)$, respectively. Using the duality, we can show that

$$
\Psi_{*}(\boldsymbol{a})=\lambda^{m+1} \boldsymbol{a}+\eta \boldsymbol{b}
$$

and

$$
\Psi_{*}(\boldsymbol{b})=\lambda \boldsymbol{b}
$$

Consider the homomorphism

$$
\mathscr{E}: H_{2 t+2(p-1)}\left(X ; \mathbb{Z}_{(p)}\right) \rightarrow \pi_{2 t+2(p-1)-1}\left(P_{m}\left(W_{t}\right)\right)
$$

defined by the following composition:

$$
\begin{aligned}
H_{2 t+2(p-1)}\left(X ; \mathbb{Z}_{(p)}\right) \rightarrow H_{2 t+2(p-1)}\left(X, P_{m}\left(W_{t}\right) ; \mathbb{Z}_{(p)}\right) \\
\quad \xrightarrow{\cong} \pi_{2 t+2(p-1)}\left(X, P_{m}\left(W_{t}\right)\right) \xrightarrow{\partial} \pi_{2 t+2(p-1)-1}\left(P_{m}\left(W_{t}\right)\right),
\end{aligned}
$$

where \mathscr{H} denotes the Hurewicz isomorphism. Then $P_{m}\left(\Phi_{\lambda}^{W_{t}}\right)_{\#} \mathscr{E}=\mathscr{E} \Psi_{*}$.

Since $\mathscr{E}(\boldsymbol{a})=\gamma_{m}$ and $\mathscr{E}(\boldsymbol{b})=\widetilde{\varphi}$, we have that

$$
P_{m}\left(\Phi_{\lambda}^{W_{t}}\right) \#\left(\gamma_{m}\right)=\lambda^{m+1} \gamma_{m}+\eta \widetilde{\varphi}=\lambda^{m+1} \gamma_{m} \quad \text { by Lemma. }
$$

This implies that $\iota_{m} P_{m}\left(\Phi_{\lambda}^{W_{t}}\right) \gamma_{m}$ is null-homotopic, and so there is a self$\operatorname{map} \psi: P_{m+1}\left(W_{t}\right) \rightarrow P_{m+1}\left(W_{t}\right)$ with $\psi \iota_{m} \simeq \iota_{m} P_{m}\left(\Phi_{\lambda}^{W_{t}}\right)$. Then $\Phi_{\lambda}^{W_{t}}$ is an A_{m+1}-map.

Remark.
Theorem B is proved in a similar way to the proof of Theorem A. In the proof, we use the Brown-Peterson cohomology instead of the $\bmod p$ cohomology.

