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Spaces and maps will be pointed.

Part 1. Free loop spaces

1. Motivation

Aim : Give an explicit description of H∗(LX).

The most popular way to compute H∗(LX) is the Eilenberg-Moore spectral sequence of a

homotopy pullback

LX //

²²

X

∆
²²

X
∆

// X × X.

Good points are that things are purely algebraic and ∃helpful tools. Bad points are that

the extensions are too hard and results are less geometric.

Our policy : Don’t use spectral sequences.

2. Free cohomology suspension

The coefficient of the cohomology will be a ring R. Let X be a simply connected space.

Observation on ΩX : The cohomology suspension σ(x) of x ∈ H
n
(X), equivalently x : X →

K(R, n), is

Ωx : ΩX → ΩK(R, n) = K(R, n − 1).

∃commutative diagram

ΣΩX
ω̄

//

ΣΩx
²²

X
x

// K(R, n)

ΣΩK(R, n)
ω̄

// K(R, n),
1
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where ω̄(t, `) = `(t) is the evaluation map. Then

ω̄∗(x) = s ⊗ σ(x)

for the dual s ∈ H1(S1) of the Hurewicz image of [1S1 ] ∈ π1(S
1).

Let ω̂ : S1 × LX → X be the evaluation ω̂(t, `) = `(t).

Definition . The free cohomology suspension

σ̂ : H
∗
(X) → H∗−1(LX)

is defined as

ω̂∗(x) = s ⊗ σ̂(x) + 1 ⊗ x,

where we regard H∗(X) ⊂ H∗(LX) by the evaluation LX → X at the basepoint of S1.

Remark . Kuribayashi called σ̂ a module derivation and used it to solve the extension of the

above Eilenberg-Moore spectral sequence.

Proposition . (1) For f : X → Y ,

Lf∗ ◦ σ̂ = σ̂ ◦ f∗.

(2) For the inclusion i : ΩX → LX,

i∗ ◦ σ̂ = σ.

(3) σ̂ is a derivation.

(4) σ̂ commutes with Steenrod operations.

Proof. (1) follows from naturality of ω̂. We get (2) by the above observation on ΩX. For

x, y ∈ H
∗
(X),

ω̂(xy) = s ⊗ σ̂(xy) + 1 ⊗ xy

= ω̂∗(x)ω̂∗(y) = (s ⊗ σ̂(x) + 1 ⊗ x)(s ⊗ σ̂(y) + 1 ⊗ y)

= s ⊗ (σ̂(x)y + (−1)|x|xσ̂(y)) + 1 ⊗ xy,

implying (3). For any Steenrod operation α, we have α(s) = 0, and then for a Steenrod

operation α, we have

α(ω̂∗(x)) = s ⊗ α(σ̂(x)) + 1 ⊗ α(x)

= ω̂∗(α(x)) = s ⊗ σ̂(α(x)) + 1 ⊗ α(x),

implying (4). ¤

Theorem . If H∗(X) = R[X1, . . . , xn], then

H∗(LX) = R[x1, . . . , xn] ⊗ ∆(σ̂(x1), . . . , σ̂(xn)).
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Proof. By the Borel transgression theorem, we have

H∗(ΩX) = ∆(σ(x1), . . . , σ(xn)).

Then since σ̂ restricts to σ, the result follows from the Leray-Hirsch theorem applied to a fiber

sequence ΩX → LX → X. ¤

3. Example calculation

Let us calculate H∗(LBG2; Z/2).

Data : H∗(BG2) = Z/2[x4, x6, x7], |xi| = i.

x4 x6 x7

Sq1 0 x7 0

Sq2 x6 0 0

Sq4 x2
4 x4x6 x4x7

Theorem . For x̂i = σ̂(xi),

H∗(LBG2) = Z/2[x4, x6, x7, x̂3, x̂5]/(x̂
2
5 + x̂3x7 + x4x̂

2
3, x̂

4
3 + x̂5x7 + x6x̂

2
3).

Proof. By the above theorem,

H∗(LBG2) = Z/2[x4, x6, x7] ⊗ ∆(x̂3, x̂5, x̂6).

Then our task is to compute x̂2
i . By the Adem relation,

Sq3 = Sq1Sq2, Sq5 = Sq4Sq1 + Sq2Sq1Sq1, Sq6 = Sq5Sq1 + Sq2Sq4,

and thus

x̂2
3 = Sq3x̂3 = σ̂(Sq3x4) = σ̂(x7) = x̂6,

x̂2
5 = Sq5x̂5 = σ̂(Sq5x6) = σ̂(x4x7) = x̂3x7 + x4x̂6,

x̂2
6 = Sq6x̂6 = σ̂(Sq6x7) = σ̂(x6x7) = x̂5x7 + x6x̂6.

¤

4. Invariant theory

There is a close relationship between the polynomial invariants of reflection groups and the

cohomology of Lie groups as follows. Let V be a vector space over a field k of dimension n. If

V = 〈x1, . . . , xn〉, we put

k[V ] = k[x1, . . . , xn]

which is independent of a choice of x1, . . . , xn. Note that a group action on V extends canoni-

cally to k[V ].
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Theorem ((a small part of) Shephard-Todd). If W is a finite group generated by reflections

on V and char k - |W |, then

k[V ]W = k[q1, . . . , qn]

for some q1, . . . , qn ∈ k[V ].

Let G be a compact, connected Lie group with the Weyl group W (G). Then W (G) is

generated by reflections on H2(BT ; k). Then if char k - |W (G)|, there is a natural isomorphism

H∗(BG; k)
∼=−→ H∗(BT ; k)W (G).

In fact, the above holds if H∗(G; Z) has no p-torsion, where p = char k.

The Shephard-Todd theorem is generalized to polynomial tensor exterior algebras as follow.

Fix an isomorphism f : V
∼=−→ V̂ . Then a group action on V is translated to V̂ through f and

extended to the group action on k[V ] ⊗ Λ(V̂ ). We also have a derivation

f̄ : k[V ] → k[V ] ⊗ Λ(V̂ )

extending f .

Theorem (Solomon). If W is a finite group generated by reflections on V and char k - |W |,
then

(k[V ] ⊗ Λ(V̂ ))W = k[q1, . . . , qn] ⊗ Λ(f̄(q1), . . . , f̄(qn)),

where k[V ]W = k[q1, . . . , qn].

This generalization of the Shephard-Todd theorem applies to free loop spaces of the classifying

spaces of Lie groups.

Theorem . Let G be a compact, connected Lie group. If char k - |W (G)|, there is a natural

isomorphism

H∗(LBG; k)
∼=−→ H∗(LBT ; k)W (G).

Proof. In Solomon’s theorem, we put V = H2(BT ) and f = σ̂. Then the result follows. ¤

Remark . We don’t have the above isomorphism if char k | |W (G)| but H∗(G; Z) is torsion

free. For example, put G = Sp(1). Then H2(BT ) = 〈t〉 and W (Sp(1)) is generated by a

reflection τ with τ(t) = −t. Then we have H∗(BSp(1); Z/2) = Z/2[q] such that q pulls back to

t2 in H∗(BT ; Z/2). Thus since σ̂(t2) = 0, H∗(LBSp(1); Z/2) → H∗(LBT ; Z/2)W (Sp(1)) is not

injective.
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Part 2. Homotopy fixed points

5. Review of the free cohomology suspension

Let X be a simply connected space, and let ω̂ : S1×LX → X be the evaluation ω̂(t, `) = `(t).

Er have defined the free cohomology suspension σ̂ : H
∗
(X) → H∗−1(LX) as

ω̂∗(x) = s ⊗ σ̂(x) + 1 ⊗ x,

where s is the dual of the Hurewicz image of [1S1 ] ∈ π1(S
1), and we have seen the following

properties.

(1) For the inclusion i : ΩX → LX,

i∗ ◦ σ̂ = σ.

(2) σ̂ is a derivation.

(3) σ̂ commutes with Steenrod operations.

6. Homotopy fixed points

The homotopy fixed points of a self-map φ : X → X is defined as the homotopy pullback

Xhφ //

²²

X

1×Φ
²²

X
∆

// X × X.

Namely,

Xhφ = {` : [0, 1] → X | `(1) = φ(`(0))}.

Aim : Describe H∗(Xhφ) without spectral sequences.

To this end, we would like to generalize the free cohomology suspension. But Xhφ includes

non-closed paths, we don’t have the evaluation S1 × Xhφ → X. So we force to close elements

of Xhφ.

7. Mapping torus

Definition . The mapping torus of φ : X → X is defined as

Mφ = [0, 1] × X/(0, x) ∼ (1, φ(x)).

Since φ is pointed, we may regard S1 = {(t, x0) ∈ Mφ} ⊂ Mφ for the basepoint x0 of X. Let

ι : X → Mφ be the inclusion ι(x) = (1, x).

Proposition . for a self-map ψ : Y → Y and a map f : X → Y satisfying ψ ◦ f ' f ◦ φ, there

is a natural map M(f) : Mφ → Mψ.
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Consider the Mayer-Vietoris exact sequence for the covering

Mφ = {(t, x) ∈ Mφ | 0 ≤ t ≤ 1
4

or 3
4
≤ t ≤ 1} ∪ {(t, x) ∈ Mφ | 1

4
≤ t ≤ 3

4
}.

Then we get an exact sequence

· · · → H∗(Mφ)
ι∗−→ H∗(X)

φ∗−1−−−→ H∗(X) → H∗+1(Mφ) → · · · .

Let A′
p be the subalgebra of Ap generated by P i for p odd and Sq2i for p = 2.

Proposition . Let R = Z/p. If Hodd(X) = 0 and φ∗ = 1, then ι∗ : H∗(Mφ) → H∗(X) has a

section as A′
p-modules.

8. Twisted cohomology suspension

Define a map δ : Xhφ → LMφ as

δ(`) = [t 7→ (t, `(t))].

Every element of Xhφ, possibly non-closed, is closed by δ.

Definition . The twisted cohomology suspension

σ̂φ : H
∗
(Mφ) → H∗−1(Xhφ)

is defined as the composite

H
∗
(Mφ)

σ̂−→ H∗−1(LMφ)
δ∗−→ H∗−1(Xhφ).

Proposition . (1) For the inclusion i : ΩX → Xhφ and the projection q : Mφ → Mφ/S
1,

i∗ ◦ σ̂φ ◦ q∗ = σ ◦ ι∗ ◦ q∗.

(2) For ψ : Y → Y and f : X → Y with f ◦ φ ' ψ ◦ f ,

f̄∗ ◦ σ̂φ = σ̂ψ ◦ M(f)∗,

where f̄ : Xhφ → Y hψ is the induced map.

(3) Let ω : Xhφ → X be the evaluation at 0. For ωφ = ι ◦ φ ◦ ω,

σ̂φ(xy) = σ̂φ(x)ω∗
φ(y) + (−1)|x|ω∗

φ(x)σ̂φ(y).

(4) σ̂φ commutes with Steenrod operations.

Proof. Define h : [0, 1] × S1 × ΩX → Mφ/S
1 as

h(s, t, `) =

{
(2st, `((1 − s)t)) 0 ≤ t ≤ 1

2

(min{2st, 1}, `((1 + s)t − s)) 1
2
≤ t ≤ 1.

Using this homotopy, we get a homotopy commutative diagram

S1 × ΩX
ω̄

//

1×i

²²

X
ι

// Mφ

q

²²

S1 × Xhφ
1×δ

// S1 × LMφ
ω̂

// Mφ
q

// Mφ/S
1.
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Then (1) and (2) follows.

∃commutative diagram

Xhφ
incl

//

ω

²²

S1 × Xhφ
1×δ

// S1 × LMφ

ω̂
²²

X
φ

// X
ι

// Mφ.

Then

(ω̂ ◦ (1 × δ))∗(x) = s ⊗ σ̂φ(x) + 1 ⊗ ω∗
φ(x),

implying (3) and (4). ¤

Theorem . If H∗(X) = R[x1, . . . , xn] and ∃section α of ι∗ : H∗(Mφ) → H∗(X), then

H∗(Xhφ) ∼= R[ω∗
φ(x1), . . . , ω

∗
φ(xn)] ⊗ ∆(σ̂φ(α(x1)), . . . , σ̂φ(α(xn))).

Moreover, if α respects A′
p (resp. Ap), the above identification is over A′

p (resp. Ap).

9. Applications

Let G be a connected Lie group and let φq : BGp → BGp be the unstable Adams operation

for a prime power q with p - q. Let G(q) be the Chevalley group of type G over a field Fq. Then

we have

BG(q)p ' BGhφq

p .

Theorem . If H∗(G; Z) has no p-torsion and q ≡ 1 mod p, then

H∗(G(q); Z/p) ∼= H∗(LBG; Z/p)

as A′
p-modules. Moreover, if q ≡ 1 mod p2, the above congruence is over Ap.

Proof. If H∗(G; Z) has no p-torsion, Hodd(BG; Z/p) = 0, implying the first assertion. The

second assertion follows analogously. ¤

For an odd prime power q, let us next calculate H∗(G2(q); Z/2). We construct a section of

ι∗ : H∗(Mφq) → H∗(BG2). Since H4(Mφq) ∼= Z/2, we get x̄4 ∈ H4(Mφq) with ι∗(x̄4) = x4. Put

Sq2x̄4 = x̄6, Sq1x̄6 = x̄7.

Then ι∗(x̄i) = xi for i = 6, 7. We can now define a section α as

α(xi) = x̄i for i = 4, 6, 7.

We show that α respects A2. Since q2 ≡ 1 mod 4, we have Sq1x̄4 = 0 by considering the

integral cohomology, which implies

Sq2x̄6 = Sq2Sq2x̄4 = Sq3Sq1x̄4 = 0, Sq2x̄7 = Sq2Sq3x̄4 = (Sq1Sq4 + Sq4Sq1)x̄4 = 0.

Since H9(BG2) = 0, ι∗ : H10(Mφq) → H10(BG2) is monic, and then

Sq4x̄6 = x̄4x̄6, Sq4x̄7 = Sq4Sq3x̄4 = Sq1Sq4Sq2x̄4 = Sq1Sq4x̄6 = Sq1(x̄4x̄6) = x̄4x̄7.
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Thus we have seen that α respects A2.

Theorem . H∗(G2(q); Z/2) ∼= H∗(LBG2; Z/2) over A2-algebras.
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