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Spaces and maps will be pointed.

Part 1. Free loop spaces
1. MOTIVATION

Aim : Give an explicit description of H*(LX).
The most popular way to compute H*(LX) is the Eilenberg-Moore spectral sequence of a
homotopy pullback

LX —X
|,k
A
X— X x X.
Good points are that things are purely algebraic and Jhelpful tools. Bad points are that

the extensions are too hard and results are less geometric.

Our policy : Don’t use spectral sequences.

2. FREE COHOMOLOGY SUSPENSION

The coefficient of the cohomology will be a ring R. Let X be a simply connected space.
Observation on QX : The cohomology suspension o(z) of z € H' (X), equivalently z : X —
K(R,n), is

Qr: QX - QK(R,n) = K(R,n—1).

Jcommutative diagram

YOX ——— X —— K(R,n)

J{EQI

SOK(R,n) —=— K(R,n),
1
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where w(t, ) = £(t) is the evaluation map. Then
o (x) = s®o(x)

for the dual s € H'(S') of the Hurewicz image of [15:] € m(S').
Let w: S' x LX — X be the evaluation &(t,£) = ((t).

Definition . The free cohomology suspension
6:H (X)— H (LX)
is defined as
O () =s®0(r)+1®x,
where we regard H*(X) C H*(LX) by the evaluation LX — X at the basepoint of S.

Remark . Kuribayashi called 6 a module derivation and used it to solve the extension of the

above Eilenberg-Moore spectral sequence.
Proposition . (1) For f: X =Y,
Lffog=a6of".

(2) For the inclusion i : QX — LX,

1s a derivation.

Q>

(3)

(4)
Proof. (1) follows from naturality of ©. We get (2) by the above observation on 2X. For
z,yeH (X),

Q>

commutes with Steenrod operations.

w(ry) =s®@a(ry) + 1 zy
=0"(x)*(y) = (s®6(x)+1R2)(s®6(y) +1 Q)

=s® (o(x)y + (—1)'“:100((?/)) +1® ay,

implying (3). For any Steenrod operation a, we have a(s) = 0, and then for a Steenrod

operation «, we have
a(@(z) =s@a(d(x)) +1® alx)
=w'(a(r)) =s®@d(a(z)) + 1 ® alx),
implying (4). O
Theorem . If H*(X) = R[X,,...,x,], then
H*(LX) = R[zy, ..., 2, @ AG(z1), ..., 6(x)).
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Proof. By the Borel transgression theorem, we have
H* (QX) = Ao(xy),...,0(z,)).

Then since ¢ restricts to o, the result follows from the Leray-Hirsch theorem applied to a fiber
sequence QX — LX — X. Il

3. EXAMPLE CALCULATION

Let us calculate H*(LBG2;Z/2).
Data : H*(BGsy) = Z/2[xy, x6, x7|, || = 1.
‘ Ty T Ty
Sq' | 0 0
Sq® |z 0 0
Sq* | 22 a4x6  T477

Theorem . For z; = 6(z;),
H*(LBGs) = Z/2[x4, x4, T7, &3, 25|/ (23 + B3z7 + 1483, 35 + B527 + 0613).
Proof. By the above theorem,
H*(LBG3) = Z/2[xy, k¢, k7] @ A(T3, T5, Tg)-
Then our task is to compute #%. By the Adem relation,
Sq® =Sq'Sq?,  Sq® = Sq*Sq’ +Sq¢?Sq'Sq!,  Sq°® = Sq°Sq' + Sq*Sq?,

and thus

4. INVARIANT THEORY

There is a close relationship between the polynomial invariants of reflection groups and the
cohomology of Lie groups as follows. Let V be a vector space over a field k of dimension n. If
V ={(x1,...,z,), we put

k[V] = Kk[z1,. .., x,]

which is independent of a choice of zy, ..., x,. Note that a group action on V' extends canoni-

cally to k[V].
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Theorem ((a small part of) Shephard-Todd). If W is a finite group generated by reflections
on 'V and chark t |W/|, then

k[V]" =Klg, ..., )

for some qu, ..., q, € k[V].

Let G be a compact, connected Lie group with the Weyl group W(G). Then W(G) is
generated by reflections on H?(BT;k). Then if chark { |IW(G)|, there is a natural isomorphism

H*(BG:k) = H*(BT:;k)"©.

In fact, the above holds if H,(G;Z) has no p-torsion, where p = chark.
The Shephard-Todd theorem is generalized to polynomial tensor exterior algebras as follow.
Fix an isomorphism f : V' = V. Then a group action on V' is translated to 1% through f and

~

extended to the group action on k[V] ® A(V'). We also have a derivation

— ~

fk[V] =k[V]®AV)
extending f.

Theorem (Solomon). If W is a finite group generated by reflections on V' and chark 1 |W/|,
then

K[VI@ AV =Kg1, .., ] @ AF(@1), - - Flan),

where kK[VIWV =K[qy, ..., qu].

This generalization of the Shephard-Todd theorem applies to free loop spaces of the classifying

spaces of Lie groups.

Theorem . Let G be a compact, connected Lie group. If chark 1 |W(G)|, there is a natural

isomorphism

H*(LBG;k) = H*(LBT;k)"V'%).
Proof. In Solomon’s theorem, we put V = H?(BT) and f = 6. Then the result follows. O

Remark . We don’t have the above isomorphism if chark | |[W(G)| but H.(G;Z) is torsion
free. For example, put G = Sp(1). Then H*(BT) = (t) and W (Sp(1)) is generated by a
reflection 7 with 7(¢) = —t. Then we have H*(BSp(1);Z/2) = 7Z/2|q] such that ¢ pulls back to
t? in H*(BT;7/2). Thus since 6(t*) = 0, H*(LBSp(1);Z/2) — H*(LBT;7Z/2)"®P(1) is not

injective.
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Part 2. Homotopy fixed points
5. REVIEW OF THE FREE COHOMOLOGY SUSPENSION

Let X be a simply connected space, and let @ : S* x LX — X be the evaluation &(t, () = £(t).
Er have defined the free cohomology suspension 6 : H (X) — H* (LX) as

() =s®o(r)+1®x,

where s is the dual of the Hurewicz image of [151] € 71(S'), and we have seen the following

properties.

(1) For the inclusion i : QX — LX),

(2) ¢ is a derivation.
(3) 6 commutes with Steenrod operations.

6. HOMOTOPY FIXED POINTS

The homotopy fixed points of a self-map ¢ : X — X is defined as the homotopy pullback

Namely,
X =10:10,1] — X | £(1) = ¢(£(0))}.

Aim : Describe H*(X"%) without spectral sequences.

To this end, we would like to generalize the free cohomology suspension. But X" includes
non-closed paths, we don’t have the evaluation S* x X" — X. So we force to close elements
of X9,

7. MAPPING TORUS
Definition . The mapping torus of ¢ : X — X is defined as

M, = [0.1] x X/(0,2) ~ (1,6(x)).

Since ¢ is pointed, we may regard S' = {(¢,9) € My} C M, for the basepoint zy of X. Let
t: X — My be the inclusion «(x) = (1, ).

Proposition . for a selff-map ¢ :Y — Y and a map f : X — Y satisfying o f ~ fo¢, there
is a natural map M(f) : My — M,y.
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Consider the Mayer-Vietoris exact sequence for the covering
My={(t,z) e My |0<t<iord<t<1}U{(t,z)e My|1<t<3}
Then we get an exact sequence
oo HY (M) S HH(X) £S5 B (X)) — HP (M) — -

Let A}, be the subalgebra of A, generated by Pt for p odd and Sq* for p = 2.
Proposition . Let R = Z/p. If H*Y(X) =0 and ¢* = 1, then * : H*(My) — H*(X) has a
section as Aj,-modules.

8. TWISTED COHOMOLOGY SUSPENSION

Define a map § : X" — LMy as

6(€) = [t — (¢, £(£))].
Every element of X", possibly non-closed, is closed by 6.
Definition . The twisted cohomology suspension
Gy H (My) — H*H(X")
is defined as the composite
H (M) % HN(LM,) S H* (X)),
Proposition . (1) For the inclusion i : QX — X™ and the projection q : My — M,/S?,
" obs0q =00l og".
(2) Forv:Y =Y and f: X =Y with fop~1of,
frobs=06y0M(f),
where f: X" — Y™ s the induced map.
(3) Let w: X" — X be the evaluation at 0. For wy =10 ¢ow,
Go(y) = o(x)w(y) + (=1)wj(@)d4(y).
(4) 64 commutes with Steenrod operations.

Proof. Define h : [0,1] x S* x QX — M,/S" as

2st, 0((1 — s)t 0<t<i
st~ [ @1 = 90) )<t}
(min{2st, 1}, (1 +s)t —s)) 5 <t <1
Using this homotopy, we get a homotopy commutative diagram
St x QX = X ——— M,

Jm |s

S xhe 0§15 LM, % My —% M, /S
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Then (1) and (2) follows.

Jcommutative diagram

i 1x6
Xhe 19 g1 xhe X% U LM,

L

X X M,

Then
(Wo(1x6§)(z) =s5®0d4(x) +1® w:;(x),
implying (3) and (4). O]
Theorem . If H*(X) = Rx1,...,x,] and 3section o of v* : H*(My) — H*(X), then
H*(X") = Rlwj(21),... swi(n)] @ A(Gg(a(zr)), - .- 0g(alzn))).

Moreover, if a respects A;, (resp. A,), the above identification is over A} (resp. A,).

9. APPLICATIONS

Let G be a connected Lie group and let ¢ : BG,, — BG, be the unstable Adams operation
for a prime power ¢ with p t ¢. Let G(q) be the Chevalley group of type G over a field F,. Then

we have
BG(q), ~ BG£¢q.
Theorem . If H*(G;Z) has no p-torsion and ¢ =1 mod p, then
H*(G(q);Z/p) = H*(LBG; Z/p)
as A,-modules. Moreover, if g =1 mod p?, the above congruence is over A,.
Proof. If H*(G;7Z) has no p-torsion, H°Y(BG;Z/p) = 0, implying the first assertion. The
second assertion follows analogously. O

For an odd prime power ¢, let us next calculate H*(G2(q);Z/2). We construct a section of
o HY(Mya) — H*(BGs). Since H*(Myq) = 7Z/2, we get T, € H*(My) with o*(Z4) = x4. Put

Sq2f4 = .1_36, Sqlffﬁ = Z7.
Then (*(Z;) = x; for i = 6,7. We can now define a section « as
alx;)) =x; fori=4,6,7.

We show that a respects As. Since ¢*> = 1 mod 4, we have Sq'Zs = 0 by considering the

integral cohomology, which implies
Sq?Zs = Sq°Sq’Zs = Sq*Sq' s = 0, Sq’Z7 = Sq*Sq’Z4 = (Sq'Sq* + Sq*Sq')z, = 0.
Since HY(BGy) =0, v* : H' (M) — H'(BG5) is monic, and then

Sq4.7_36 = T4%¢, Sq41_37 = Sq4Sq3§:4 = Sqlsq4Sq2i4 = Sq18q4f6 = Sql (i’4f6) = T4Z7.
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Thus we have seen that « respects A,.
Theorem . H*(G5(q);Z/2) = H*(LBG+;7Z/2) over Ax-algebras.
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