コンパクト Lie 群の分類空間のペアリング

矢山史恭 福岡大学理学研究科

一般に、位相空間の積からの写像 $\mu: X \times Y \longrightarrow Z$ に対し、それぞれの制限を $\alpha \simeq \mu|_{X}, f \simeq \mu|_{Y}$ とするとき、写像 μ は α と f を軸 (axis) に持つペアリング (pairing) と言う。逆に α と f に対し、そのペアリングが存在するとき $\alpha \perp f$ と 表わす。そして、ホモトピー集合 [X,Z] の部分集合 $f^{\perp}(X,Z)$ を

$$f^{\perp}(X,Z) = \{ \alpha \in [X,Z] \mid \alpha \perp f \}$$

と定義する。単射準同形 $j:U(n-1)\longrightarrow SU(n)$ を $j(A)=\begin{pmatrix}A&0\\0&\det A^{-1}\end{pmatrix}$ により定めるとき、誘導される分類空間上の monomorphism に対し、次の定理が得られた。

定理 1 この単射準同形 $j: U(n-1) \longrightarrow SU(n)$ に対し、次が成り立つ。

- 1. $(Bj)^{\perp}(BS^1, BSU(n)) \neq 0$.
- 2. 連結なコンパクト Lie 群 K が semi-simple ならば、すべての $\alpha \in (Bj)^{\perp}(BK,BSU(n))$ は null-homotopic である。

この結果は次の定理で、H が semi-simple でない場合について考察したものであり、その場合は多少状況が異なることを示している。ただし、K が semi-simple であるという条件を加えると、類似した結果が成り立つと言える。

定理 2(Ishiguro-Kudo-Nakano) G を連結なコンパクト Lie 群とし、その部分群 H が semi-simple で、 rank(H) = rank(G) とする。K をコンパクト Lie 群 (連結でなくてもよい) とするとき、包含写像 $i:BH\longrightarrow BG$ に対し、次が成り立つ。

- 1. $\alpha \in (Bi)^{\perp}(BK, BG)$ ならば、写像 $\alpha : BK \longrightarrow BG$ は $B\pi_0K$ を factor through する。特に、K が連結ならば、 $\alpha \simeq 0$ である。
- 2. 更に、射影を $q: K \longrightarrow \pi_0 K$ とするとき、 $\alpha \simeq B\rho \circ Bq$ となるような準同形 $\rho: \pi_0 K \longrightarrow G$ が存在する。尚、 $\rho(\pi_0 K)$ は centralizer $C_G(H)$ に含まれる。