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Outline

Let h be a ring spectrum. The goal of this talk is to generalise the cross
product in the homology

x : hs(X) ® he(Y) = heye(X X Y)

to the spaces over the Borel construction of a manifold with a nice Lie
group action: for X — Mg, Y — Mg, we define

o hs(X) @ he(Y) = hsy ey dim(6)—dim(m) (X Xmg Y),

and its secondary version.




Outline of talk:
1. External products for fibre squares

. Examples in String topology
. Vanishing of the product
. A secondary product

. Computational examples
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External product for fibre square

Given a fibre square (or homotopy pullback)

XxXpY—=Y

|

X B

with certain conditions on B.
Under certain conditions, one can define homomorphisms of the form

hS(X) () ht(Y) = hs+t+*(X XB Y)

with degree shifts.




External product for fibre square

The key idea is that a fibre square
XxgY—=Y

-

S
is equivalent to the pullback of fibrations
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When B = M is an
orientted manifold




External product for fibre square

Let B = M be an oriented manifold. Consider the pullback diagram:

Y Ny

l lfxg

M AL Mx M.

The diagonal A : M — M x M is a finite codimensional embedding with
the normal bundle isomorphic to TM. We have the Gysin map

A" h (M x M) = hy_gim) (M) .

We can pull it back to define a Gysin map for A:

Al h (X X Y) = hy_gimy (X X Y).




External product for fibre square

Composing
A! : hs+t(X X Y) = hs+t—dim(M)(X XM Y)

with the cross product

%t hs(X) ® he(Y) = here(X x Y).

v : hs(X) @ he(Y) = hyt— dimmy(X xm Y).




Example: Intersection product

The trivial diagram
M

:M

M
M

gives rise to the intersection product
(dual to the cup product on cohomology)

hs(M) & ht(M) T hs+t7dim(M)(M)'




Example: String product in M

Consider the following pullback, where LM = Map(S*, M)

Map(St v S, M) ——= LM

Y ad M
Composing jpy with the concatenation of loops, we obtain
hs(LM) @ ht(LM) = hs+t—dim(M)(LM)v

which is equivalent to the Chas-Sullivan product when h, = H,.
(Cohen-Jones's definition of the string product)




When B = BG is the
classifying space Of a

commpact Lie aroup




Grothéndieck bundle transfer

Let B = BG be the classifying space of a compact Lie group G. We
require a technical condition: the universal adjoint bundle

g — ad(EG) — BG s oriented.

Consider the pullback diagram

XXB(_;Y

|
|

(Gx G)/JAG——E(G x G)/AG——E(G x G)/(G x G)




Grothéndieck bundle transfer

We need an wrong-way map for A : X xgg Y — X x Y.

Let F — E — B be a fiber bundle with a compact Lie structure group,
where the fibre F is a compact manifold. By fibre-wise Pontrjagin-Thom
construction, we obtain a map between Thom spectra B — E~t, where
t is the bundle of tangents. Applying this to our setting, we have

AV hey o X X YY) = hoy i dim(e) (X X6 Y).
Composing with the cross product, we define

186 : hs(X) ® he(Y) = hs ity dim(G)(X XBG Y)




Example: Equivariant cross product

Consider the following pullback diagram

(X X Y)G

|

e

where Z¢ is the Borel construction.
For h = H, we have

186+ HY (X) ® HE(Y) = HE 1y dim(e)(X X Y).




Example: String product in BG

Consider the following fibre square

Map(S! v S, BG) —> LBG

VB L

where LBG ~ Map(S?, BG) ~ BLG.
Composing i1gg with the concatenation of loops
Map(St v S, BG) — LBG, we obtain
hs(LBG) ® h:(LBG) — hgi ¢ dim(G)(LBG)
which reduces to the Chataur-Menichi product when h, = H,.




Two external products

When B = M is an oriented manifold
pm : hs(X) ® he(Y) = hoyir— dimmy (X xm Y)
When B = BG is the classifying space of a compact Lie group
186G & hs(X) ® he(Y) = hstiy dim(c)(X XBG6 Y)

Can we unify the two constructions?




When B = M the Borel
construction of a

G-action on M




Mixed external product

We combine the previous two constructions and define an external
product in an equivariant setting. Let G acts on M orientation
preservingly (meaning (TM)¢ is h-oriented) and M be the Borel
construction. For a fibre square

XXMG Y —=X

-

Mg
we will define

img  hs(X) @ he(Y) = hsitidim(6)—dim(m)(X Xmg ).




Definifion: Mixed product

The problem when defining
pmg = hs(X) @ he(Y) = hsytidim(6)—dimm)(X Xmg Y)-
is that we cannot define a wrong-way map for the diagonal map
Mg — Mg x Mg

since its fibre is not finite dimensional and it is not a finite codimensional
embedding.

We will decompose the diagonal map into two steps and define
wrong-way maps step-by-step.




Definifion: Mixed product

The diagonal map Mg — Mg x Mg decomposes into two steps:
Mg 25 (M x M)ag % Mg x Mg,

where Ag is the equivariant diagonal (which is codimension dim(M))

and
(G x G)/AG — (M x M)ag 2 Mg x Mg

is the homogeneous fibration. That is, the pullback of

(G x G)/AG — E(G x G)/AG — E(G x G)/(G x G)




Definifion: Mixed product

Consider the ladder of pullbacks:

e s Y XYY

Fo . -

M (M x M)g —— Mg x Mg.
Then define the product jp. as the composition:
hs(X) @ he(Y) = hoye(X X Y)

~h A!
D5 Aot eraim(6) (X XB6 Y) = Aot tidim(G)—dim(my (X X V).




Mixed product unifies the two

The mixed product
pmg  hs(X) @ he(Y) = hsytidim(6)—dimm)(X Xmg Y)
reduces to
186 : hs(X) ® he(Y) = heytidim(c)(X xB6 Y)
when M = pt and
s = Bs(X) @ Be(Y) = hoe_gimomy(X Xm Y).

when G = *.




Example: String product in Mg

Consider the following pullback, where L(Mg) = Map(St, Mg)

Map(S* v St, Mg) — L(Mg)

L (el Mg
Composing fip, With the concatenation of loops, we obtain
hs(L(Mg)) @ ht(L(Mg)) — hs+t+dim(G)—dim(M)(L(MG))-

This reduces to Chas-Sullivan when G = * and to Chataur-Menichi
when M = x.




Example: String coproduct in Mg

From the following pullback
Map(S* v S*, Mg) —— L(Mg)

l l(evo,evuz)
Amg
MG MG X MG?

] Al opf
we obtain h*(L(MG)) G—) h*+dim(G)7dim(M)(Map(51 V 51, MG))
Composing it with the inclusion, we obtain

h(L(Mg)) = hytdim(G)—dim(m)(L(Mc) x L(Mg)).

This reduces to Chataur-Menichi when M = x.




Example: Equivariant intersection

When applied to the identity square

Mg —— Mg

i

Mctseo=t VG,
it defines an equivariant intersection product

img : hs(Mg) ® he(Mg) — hsy ttdim(G)—dim(m)(Me)-







Properties of .-

Proposition

»+ Natural with respect to a homomorphism between homology
theories

#+ Compatible with the group restriction: Let H C G be a closed
subgroup and i : My — Mg be the induced map. Then,

pmy © (P ® i) = if o ppy .

ST, 5, Y — K

- |

Yo My i Mg

»+ Compatible with the induction (M x G/H)g ~ My.




Vanishing of i,

From now on, we specialises the case when h, = H,( ; R) with a ring R.
An easy but interesting property of jup,. is that it vanishes in higher
degrees:

Theorem
Let dx (resp. dy) be the homological dimension of the homotopy fibre
of the composition X — Mg — BG. Then,

pmg - Hs(X; R) @ He (Y5 R) = Hs i t4dim(6)—dim(m)(X Xmg Y R)

vanishes if s > dx — dim(G) or t > dy — dim(G).

When applied to special cases, it has non-trivial consequences.




Vanishing of string product

Chataur-Menichi defined string operations for LBG:
For a surface Fg ptq of genus g with p-incoming and g-outgoing
boundary circles, they defined a homomorphism

#(Fg,p+q) : Hi(LBG)®P — Hyim(G)(2-+p+q-2)(LBG)®*

which is compatible with the gluing of the surfaces.
(when g =0,p = 2,9 =1, it gives the product we saw earlier)
A consequence of our vanishing theorem is:

Corollary
1(Fg,p+q) is trivial unless g =0 and p =1, or x = 0.




Note that any map f : X — Mg is converted to an equivariant map by

G_)BG7

which identifies f = f¢ : Xg — Mg with fibre X.
Hence, the initial diagram is equivalent to the Borel construction of

)?XMVH
%

pme - HE (Xi R) @ HE (Y1 R) = HY, i dim(6)—dimmy (X Xm Vi R)

A~ S

vanishes if s > dim(X) — dim(G) or t > dim(Y) — dim(G).




Secondary product




Secondary product

Vanishing of
fimg : Hs(X) @ He(Y) = Hsp v dim(G)—dim(m) (X Xmg )

for s > dx — dim(G) or t > dy — dim(G) suggests that we may define a
“secondary” product.
In fact, we can define

Iimvg : Hs(X) ® He(Y) = Hspt1dim(6)—dim(m)+1(X Xmg Y).

for s > dx — dim(G) and t > dy — dim(G).




R v RO

g

YoRL L

consider the following diagram with all the squares pullback:

Xs X6 Yi

where X; and Y; are s- and t-skeleta.



Secondary product

Now we take the homotopy pushforward of the upper-left corner

Xs XBG Yt

XXBgy

Since Xs and Y; have low homological degrees by assumption, we obtain
a well-defined map by the composition

H.(Xs xge Yi) == Hyr1(R) =5 Huy1(X X5 Y)




Secondary product

Our secondary product is defined to be the composition

Bt Hs(X) ® H(Y) 25 H(X,) ® He(Ye) 255 He e yaim(c)(Xs X586 Y2)

A
— Heytrdim(G)+1(X X86 Y) = Hsitidim(G)—dimm)+1(X Xmg Y).

This can be shown to be well-defined. (it does not depend on the
choices of skeleta and lift of classes)

Proposition
fim, is compatible with restriction wrt a closed subgroup H C G.




Applicétion: String Product in BG

Again from the diagram

Map(S! v S, BG) —> LBG

(s CE - BE

Hs(LBG) ® Hy(LBG) — Hs i t1dim(G)+1(LBG),

which is a secondary product of Chataur-Menichi's string product.
This product does not usually vanish!




Application: Intersection product

When X = Y = Mg, that is, for the identity square

— M

Mg
Mg

MGa
Ting specialises to a product in HE (M):

g+ H (M) @ HE (M) = HE, ¢y gim(6)—dim(a)+1(M),

which can be thought of as a secondary equivariant intersection product.
For any G, dM s.t. this product is non-trivial!




Application: Tate cohomology

When M = pt, we have

Hs(BG) ® Hy(BG) — Hsy t1dim(6)+1(BG)

Theorem
It coincides with the product in Tate cohomology when G is finite.

1. Tate cohomology: cup product in homology of finite groups
2. Kreck product: generalisation to homology of compact Lie groups
3. Our product: generalisation to equivariant homology of manifolds

Note: Greenlees-May[1995] defined a Tate cohomology spectra for
compact Lie groups




Tate cohomology

»+ G: finite group

» — Py — Px_1 — -+ Pp — Z — 0: the standard Z[G]-resolution
(P :=Z[G*))

» Then, 0 - Z — HOmZ[G](Po,Z[G]) S HOmZ[G](Pl,Z[G]) — o0g
IS exact

B+ set P_; := Homgjg)(Pi-1,Z[G]) and

P*I:—>Pk_>PkA1_>"'_>P0_>P—1_>P_2“.

=+ The Tate cohomology H*(G) := H(Homgjg)(Px, Z))




Tate cohomology

It is easy to see

H'(G)
zZ/\6|z

Hi(G) ~ :



Cup product in Tate cohomology

By Pit; — P; ® P;j, the cup product is defined:
A'(G) ® AX(G) — A*'(6),
which gives a product in homology of degree +1:
H_;—1(G) ® H_-1(G) = H—k—i-1(G)

through A"(G) = H_,_1(G) for n < —2. Note that we have to assume
that —/ — 1, —k — 1>0.




Computational Examples




Simplest example

Let X = Y = M = pt. Then the defining pull-push diagram for
fimg  Ho(pt) ® Ho(pt) — Haim(c)+1(BG)
is identified with the first stage of the Ganea construction:

G pt

e

G

N
N P
N
N




Second computation
When G = S', M = pt
HE (pt; Z) = H,(BSY; Z) ~ Z{ap,) (k >0),

where ay is represented by CPX < CP> = BS!.

The product Hs(BS!) ® H(BS!) — Hsit12(BS?) is given by

azj * d2j = Ap(j+j+1)-
§2i+1 e ot

l Cpititl

P'/




Computation for classical groups

Proposition
The product is torsion for all compact Lie groups of rank greater than 1.
The product vanishes for all compact connected classical Lie groups of

rank greater than 1.
For H.(BSp(1); Z) ~ Z{asx) (k >0),

a4 * d4j = A4(j+j+1)-
For H.(BSO(3); Z) ~ Z(bsx) ® 2-torsion (k > 0),
baj * baj = 2by(iy jy1)

and all the other products vanish.




Computation for CP?

Let ST ~ CP! by the standard action. Then,
HS'(CPY) = Z(aiak, Bak+2), where

ok :52n+1 Xg1 pt — E51 X g1 CPl
/32k+2 :52n+1 X1 (CPl 7 ESl X g1 (CPl
fing - H3' (CPY) @ HE' (CPY) — HZ, ,(CPY) is computed as

Proposition
ao; * anj = 0, g * Bajto = p(iyjr1)s Bait2 * Bajt2 = Bo(itjr1)+2




Future work

Find other applications (e.g., obstruction for group action)
Develop computational method (e.g., Eilenberg-Moore SS)

» secondary product for H,(BG)
» secondary product for H] (M) for toric and flag manifolds

Relation with other structures (co-product, Steenrod co-operations)

Compare the product to Félix-Thomas's string topology for
Gorenstein spaces

Compare the product to Behrend-Ginot-Noohi-Xu's string topology
for differential stacks

Compare the secondary product to Greenlees-May's Tate
cohomology

Extend to more general groups (e.g., p-compact groups)
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