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Outline

Let h be a ring spectrum. The goal of this talk is to generalise the cross
product in the homology

× : hs(X )⊗ ht(Y ) → hs+t(X × Y )

to the spaces over the Borel construction of a manifold with a nice Lie
group action: for X → MG ,Y → MG , we define

µ : hs(X )⊗ ht(Y ) → hs+t+dim(G)−dim(M)(X ×MG Y ),

and its secondary version.



Outline of talk:
1. External products for fibre squares
2. Examples in String topology
3. Vanishing of the product
4. A secondary product
5. Computational examples

Preprint at arXiv:1506.00441
(このバージョンは古いのでご覧になりたい方はお知らせください)



External product for fibre square

Given a fibre square (or homotopy pullback)

X ×B Y !!

""

Y

""
X !! B

with certain conditions on B .
Under certain conditions, one can define homomorphisms of the form

hs(X )⊗ ht(Y ) → hs+t+∗(X ×B Y )

with degree shifts.



External product for fibre square
The key idea is that a fibre square

X ×B Y !!

""

Y

g
""

X f !! B

is equivalent to the pullback of fibrations

ΩB !! X ×B Y

""

∆̂ !! X × Y

f×g
""

ΩB !! B ∆ !! B × B

and we use a wrong-way map ∆̂! : h∗(X × Y ) → h∗+shift(X ×B Y ).



When B = M is an
oriented manifold



External product for fibre square
Let B = M be an oriented manifold. Consider the pullback diagram:

X ×M Y

""

∆̂ !! X × Y

f×g
""

M ∆ !! M ×M.

The diagonal ∆ : M → M ×M is a finite codimensional embedding with
the normal bundle isomorphic to TM. We have the Gysin map
∆! : h∗(M ×M) → h∗−dim(M)(M) .
We can pull it back to define a Gysin map for ∆̂:

∆̂! : h∗(X × Y ) → h∗−dim(M)(X ×M Y ).



External product for fibre square

Composing

∆̂! : hs+t(X × Y ) → hs+t− dim(M)(X ×M Y ).

with the cross product

× : hs(X )⊗ ht(Y ) → hs+t(X × Y ).

we define

µM : hs(X )⊗ ht(Y ) → hs+t− dim(M)(X ×M Y ).



Example: Intersection product

The trivial diagram
M M

M M

gives rise to the intersection product
(dual to the cup product on cohomology)

hs(M)⊗ ht(M) → hs+t−dim(M)(M).



Example: String product in M

Consider the following pullback, where LM = Map(S1,M)

Map(S1 ∨ S1,M) !!

""

LM

ev
""

LM ev !! M

Composing µM with the concatenation of loops, we obtain

hs(LM)⊗ ht(LM) → hs+t−dim(M)(LM),

which is equivalent to the Chas-Sullivan product when h∗ = H∗.
(Cohen-Jones’s definition of the string product)



When B = BG is the
classifying space of a
compact Lie group



Grothendieck bundle transfer
Let B = BG be the classifying space of a compact Lie group G . We
require a technical condition: the universal adjoint bundle
g ↪→ ad(EG ) → BG is oriented.
Consider the pullback diagram

ΩBG !! X ×BG Y ∆̂ !!

""

X × Y

""
ΩBG !! BG ∆ !! BG × BG

(G × G )/∆G !! E (G × G )/∆G !! E (G × G )/(G × G )



Grothendieck bundle transfer
We need an wrong-way map for ∆̂ : X ×BG Y → X × Y .

Let F → E → B be a fiber bundle with a compact Lie structure group,
where the fibre F is a compact manifold. By fibre-wise Pontrjagin-Thom
construction, we obtain a map between Thom spectra B0 → E−t , where
t is the bundle of tangents. Applying this to our setting, we have

∆̂! : hs+t(X × Y ) → hs+t+dim(G)(X ×BG Y ).

Composing with the cross product, we define

µBG : hs(X )⊗ ht(Y ) → hs+t+ dim(G)(X ×BG Y )



Example: Equivariant cross product

Consider the following pullback diagram

(X × Y )G !!

""

XG

""
YG

!! (∗)G = BG

where ZG is the Borel construction.
For h = H, we have

µBG : HG
s (X )⊗ HG

t (Y ) → HG
s+t+ dim(G)(X × Y ).



Example: String product in BG

Consider the following fibre square

Map(S1 ∨ S1,BG ) !!

""

LBG

ev
""

LBG ev !! BG

where LBG & Map(S1,BG ) & BLG .
Composing µBG with the concatenation of loops
Map(S1 ∨ S1,BG ) → LBG , we obtain

hs(LBG )⊗ ht(LBG ) → hs+t+ dim(G)(LBG )
which reduces to the Chataur-Menichi product when h∗ = H∗.



Two external products

When B = M is an oriented manifold

µM : hs(X )⊗ ht(Y ) → hs+t− dim(M)(X ×M Y )

When B = BG is the classifying space of a compact Lie group

µBG : hs(X )⊗ ht(Y ) → hs+t+ dim(G)(X ×BG Y )

Can we unify the two constructions?



When B = MG the Borel
construction of a
G-action on M



Mixed external product
We combine the previous two constructions and define an external
product in an equivariant setting. Let G acts on M orientation
preservingly (meaning (TM)G is h-oriented) and MG be the Borel
construction. For a fibre square

X ×MG Y !!

""

X

""
Y !! MG

we will define

µMG : hs(X )⊗ ht(Y ) → hs+t+dim(G)−dim(M)(X ×MG Y ).



Definition: Mixed product
The problem when defining

µMG : hs(X )⊗ ht(Y ) → hs+t+dim(G)−dim(M)(X ×MG Y ).

is that we cannot define a wrong-way map for the diagonal map

MG → MG ×MG

since its fibre is not finite dimensional and it is not a finite codimensional
embedding.

We will decompose the diagonal map into two steps and define
wrong-way maps step-by-step.



Definition: Mixed product

The diagonal map MG → MG ×MG decomposes into two steps:

MG
∆G−−→ (M ×M)∆G

q−→ MG ×MG ,

where ∆G is the equivariant diagonal (which is codimension dim(M))
and

(G × G )/∆G ↪→ (M ×M)∆G
q−→ MG ×MG

is the homogeneous fibration. That is, the pullback of

(G × G )/∆G ↪→ E (G × G )/∆G → E (G × G )/(G × G )



Definition: Mixed product
Consider the ladder of pullbacks:

X ×MG Y
∆̂G !!

""

X ×BG Y
q̂ !!

""

X × Y

""
MG

∆G !! (M ×M)G
q !! MG ×MG .

Then define the product µMG as the composition:

hs(X )⊗ ht(Y ) → hs+t(X × Y )

q̂!

−→ hs+t+dim(G)(X ×BG Y )
∆̂!

G−−→ hs+t+dim(G)−dim(M)(X ×MG Y ).



Mixed product unifies the two

The mixed product

µMG : hs(X )⊗ ht(Y ) → hs+t+dim(G)−dim(M)(X ×MG Y )

reduces to

µBG : hs(X )⊗ ht(Y ) → hs+t+dim(G)(X ×BG Y )

when M = pt and

µM : hs(X )⊗ ht(Y ) → hs+t−dim(M)(X ×M Y ).

when G = ∗.



Example: String product in MG

Consider the following pullback, where L(MG ) = Map(S1,MG )

Map(S1 ∨ S1,MG ) !!

""

L(MG )

ev

""
L(MG )

ev !! MG

Composing µMG with the concatenation of loops, we obtain

hs(L(MG ))⊗ ht(L(MG )) → hs+t+dim(G)−dim(M)(L(MG )).

This reduces to Chas-Sullivan when G = ∗ and to Chataur-Menichi
when M = ∗.



Example: String coproduct in MG

From the following pullback

Map(S1 ∨ S1,MG ) !!

""

L(MG )

(ev0,ev1/2)

""
MG

∆MG !! MG ×MG ,

we obtain h∗(L(MG ))
∆!

G◦p
!

−−−−→ h∗+dim(G)−dim(M)(Map(S1 ∨ S1,MG )).
Composing it with the inclusion, we obtain

h∗(L(MG )) → h∗+dim(G)−dim(M)(L(MG )× L(MG )).

This reduces to Chataur-Menichi when M = ∗.



Example: Equivariant intersection

When applied to the identity square

MG
!!

""

MG

""
MG

!! MG ,

it defines an equivariant intersection product

µMG : hs(MG )⊗ ht(MG ) → hs+t+dim(G)−dim(M)(MG ).



Properties of the product



Properties of µMG
Proposition

! Natural with respect to a homomorphism between homology
theories

! Compatible with the group restriction: Let H ⊂ G be a closed
subgroup and i : MH → MG be the induced map. Then,
µMH ◦ (i ! ⊗ i !) = i ! ◦ µMG .

X ′ ×MH Y ′ !!

""

X ′

""
Y ′ !! MH

i−→ X ×MG Y !!

""

X

""
Y !! MG

! Compatible with the induction (M × G/H)G & MH .



Vanishing of µMG

From now on, we specialises the case when h∗ = H∗( ;R) with a ring R .
An easy but interesting property of µMG is that it vanishes in higher
degrees:

Theorem
Let dX (resp. dY ) be the homological dimension of the homotopy fibre
of the composition X → MG → BG . Then,

µMG : Hs(X ;R)⊗ Ht(Y ;R) → Hs+t+dim(G)−dim(M)(X ×MG Y ;R)

vanishes if s > dX − dim(G ) or t > dY − dim(G ).
When applied to special cases, it has non-trivial consequences.



Vanishing of string product

Chataur-Menichi defined string operations for LBG :
For a surface Fg ,p+q of genus g with p-incoming and q-outgoing
boundary circles, they defined a homomorphism

µ(Fg ,p+q) : H∗(LBG )⊗p → Hdim(G)(2g+p+q−2)(LBG )⊗q

which is compatible with the gluing of the surfaces.
(when g = 0, p = 2, q = 1, it gives the product we saw earlier)
A consequence of our vanishing theorem is:

Corollary
µ(Fg ,p+q) is trivial unless g = 0 and p = 1, or ∗ = 0.



Note that any map f : X → MG is converted to an equivariant map by

X̂
f̂ !!

""

M !!

""

EG

""
X

f !! MG
!! BG ,

which identifies f = f̂G : X̂G → MG with fibre X̂ .
Hence, the initial diagram is equivalent to the Borel construction of

X̂ ×M Ŷ !!

""

X̂

""
Ŷ !! M

µMG : HG
s (X̂ ;R)⊗ HG

t (Ŷ ;R) → HG
s+t+dim(G)−dim(M)(X̂ ×M Ŷ ;R)

vanishes if s > dim(X̂ )− dim(G ) or t > dim(Ŷ )− dim(G ).



Secondary product



Secondary product

Vanishing of

µMG : Hs(X )⊗ Ht(Y ) → Hs+t+dim(G)−dim(M)(X ×MG Y ).

for s > dX − dim(G ) or t > dY − dim(G ) suggests that we may define a
“secondary” product.
In fact, we can define

µMG : Hs(X )⊗ Ht(Y ) → Hs+t+dim(G)−dim(M)+1(X ×MG Y ).

for s > dX − dim(G ) and t > dY − dim(G ).



Given
X ×MG Y !!

""

X

""
Y !! MG

consider the following diagram with all the squares pullback:

Xs ×BG Yt
!!

""

X̃s
!!

""

Xs

""
Ỹt

!!

""

X ×BG Y !!

""

X

""
Yt

!! Y !! BG ,

where Xs and Yt are s- and t-skeleta.



Secondary product
Now we take the homotopy pushforward of the upper-left corner

Xs ×BG Yt
!!

""

X̃s

""

##
R

r

$$
Ỹt

!!

%%

X ×BG Y

Since X̃s and Ỹt have low homological degrees by assumption, we obtain
a well-defined map by the composition

H∗(Xs ×BG Yt)
sus−−→ H∗+1(R)

r∗−→ H∗+1(X ×BG Y )



Secondary product

Our secondary product is defined to be the composition

µMG :Hs(X )⊗ Ht(Y )
lift−−→ Hs(Xs)⊗ Ht(Yt)

µBG−−→ Hs+t+dim(G)(Xs ×BG Yt)

→ Hs+t+dim(G)+1(X ×BG Y )
∆̂!

G−−→ Hs+t+dim(G)−dim(M)+1(X ×MG Y ).

This can be shown to be well-defined. (it does not depend on the
choices of skeleta and lift of classes)

Proposition
µMG is compatible with restriction wrt a closed subgroup H ⊂ G .



Application: String Product in BG

Again from the diagram

Map(S1 ∨ S1,BG ) !!

""

LBG

ev
""

LBG ev !! BG

we obtain

Hs(LBG )⊗ Ht(LBG ) → Hs+t+dim(G)+1(LBG ),

which is a secondary product of Chataur-Menichi’s string product.
This product does not usually vanish!



Application: Intersection product
When X = Y = MG , that is, for the identity square

MG MG

MG MG ,

µMG specialises to a product in HG
∗ (M):

µMG : HG
s (M)⊗ HG

t (M) → HG
s+t+dim(G)−dim(M)+1(M),

which can be thought of as a secondary equivariant intersection product.
For any G , ∃M s.t. this product is non-trivial!



Application: Tate cohomology
When M = pt, we have

Hs(BG )⊗ Ht(BG ) → Hs+t+dim(G)+1(BG )

Theorem
It coincides with the product in Tate cohomology when G is finite.

1. Tate cohomology: cup product in homology of finite groups
2. Kreck product: generalisation to homology of compact Lie groups
3. Our product: generalisation to equivariant homology of manifolds

Note: Greenlees-May[1995] defined a Tate cohomology spectra for
compact Lie groups



Tate cohomology

! G : finite group
! → Pk → Pk−1 → · · ·P0 → Z → 0: the standard Z[G ]-resolution

(Pk := Z[G k+1])
! Then, 0 → Z → HomZ[G ](P0,Z[G ]) → HomZ[G ](P1,Z[G ]) → · · ·

is exact
! set P−i := HomZ[G ](Pi−1,Z[G ]) and

P∗ :=→ Pk → Pk−1 → · · · → P0 → P−1 → P−2 · · ·

! The Tate cohomology Ĥ∗(G ) := H(HomZ[G ](P∗,Z))



Tate cohomology

It is easy to see

Ĥ i (G ) &






H i (G ) (i ≥ 1)
Z/|G |Z (i = 0)
0 (i = −1)
H−i−1(G ) (i ≤ −2).

It amalgamates homology and cohomology into one object.



Cup product in Tate cohomology

By Pi+j → Pi ⊗ Pj , the cup product is defined:

Ĥ l(G )⊗ Ĥk(G ) → Ĥk+l(G ),

which gives a product in homology of degree +1:

H−l−1(G )⊗ H−k−1(G ) → H−k−l−1(G )

through Ĥn(G ) = H−n−1(G ) for n ≤ −2. Note that we have to assume
that −l − 1,−k − 1>0.



Computational Examples



Simplest example
Let X = Y = M = pt. Then the defining pull-push diagram for

µMG : H0(pt)⊗ H0(pt) → Hdim(G)+1(BG )

is identified with the first stage of the Ganea construction:

G !!

""

pt

""

&&
ΣG

r

''
pt !!

((

BG



Second computation
When G = S1,M = pt

HG
∗ (pt;Z) = H∗(BS

1;Z) & Z〈a2k〉 (k ≥ 0),

where a2k is represented by CPk ↪→ CP∞ = BS1.

The product Hs(BS1)⊗ Ht(BS1) → Hs+t+2(BS1) is given by

a2i ∗ a2j = a2(i+j+1).

S2i+1 ×S1 S2j+1 !!

""

CP j

""

))

CP i+j+1

**
CP i !!

++

BS1



Computation for classical groups

Proposition
The product is torsion for all compact Lie groups of rank greater than 1.
The product vanishes for all compact connected classical Lie groups of
rank greater than 1.
For H∗(BSp(1);Z) & Z〈a4k〉 (k ≥ 0),

a4i ∗ a4j = a4(i+j+1).

For H∗(BSO(3);Z) & Z〈b4k〉 ⊕ 2-torsion (k ≥ 0),

b4i ∗ b4j = 2b4(i+j+1)

and all the other products vanish.



Computation for CP1

Let S1 ! CP1 by the standard action. Then,
HS1
∗ (CP1) = Z〈α2k ,β2k+2〉, where

α2k :S2n+1 ×S1 pt → ES1 ×S1 CP1

β2k+2 :S2n+1 ×S1 CP1 → ES1 ×S1 CP1

µMG : HS1
s (CP1)⊗ HS1

t (CP1) → HS1
s+t(CP1) is computed as

Proposition
α2i ∗ α2j = 0,α2i ∗ β2j+2 = α2(i+j+1),β2i+2 ∗ β2j+2 = β2(i+j+1)+2



Future work
! Find other applications (e.g., obstruction for group action)
! Develop computational method (e.g., Eilenberg-Moore SS)

! secondary product for H∗(BG )
! secondary product for HT

∗ (M) for toric and flag manifolds

! Relation with other structures (co-product, Steenrod co-operations)
! Compare the product to Félix-Thomas’s string topology for

Gorenstein spaces
! Compare the product to Behrend-Ginot-Noohi-Xu’s string topology

for differential stacks
! Compare the secondary product to Greenlees-May’s Tate

cohomology
! Extend to more general groups (e.g., p-compact groups)



Thank you!
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