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Plan of talks

Plan of talks

o First day. Main results and topological background.
@ Today. Bridge between algebra and topology

e Tor algebra
e Cellular cochain complex
o Hochster's theorem

@ Third day. Sketch of Proofs.
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Tor algebra

@ Z[m| = Z[v1,. .., vm]: the polynomial ring with integer coefficient
and degv; = 2.
@ Afui,...,upm|: the exterior algebra with integer coefficient and

deg u; = 1, that is, the free commutative graded algebra generated
by degree 1 elements.
o For asubset | = {i,..., ik} C [m] we put v; = vj, ...V,.

Definition (1.1)

Let K be a simplicial complex on the vertex set [m] = {1,...,m}. The
Stanley-Reisner ring of K is the following quotient algebra of the
polynomial ring on m generators:

ZIK] = Z]vi, ..., vm)/(vi | | € K).

The Stanley-Reisner ring Z[K] is a Z[m]-module via the quotient
projection Z[m] — Z[K].



A free resolution of Z[K] is an exact sequence of finitely generated
Z|m]-modules:
0R ™= ... >R RO ZIK] =0,

where all R™" are free graded Z[m]-modules and all maps
R~ — R™'*1 are degree preserving.
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A free resolution of Z[K] is an exact sequence of finitely generated
Z|m]-modules:

0R ™= ... >R RO ZIK] =0,

where all R™" are free graded Z[m]-modules and all maps
R~ — R™'*1 are degree preserving.

Definition (1.2)

The —i th Tor group Tori["m] (Z[K],7Z) is defined as the —i th
cohomology groups of the complex:

0—>R™ ®Z[m]Z4) o R ®Z[m]Z*> RO ®Z[m]Z—>0.

We define

Torg)m (ZIK], Z) = @ Tory{ 1(ZIK], Z)
i=0

which has double gradings.
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Theorem (Baskakov-Buchstaber-Panov '04, Franz '06)

The cohomology ring of the moment angle complex Zx = Zx(D?, S*)
is given by the isomorphisms

H*(ZK; Z) = TOI‘Z[m](Z[K], Z)
H[A[u1, ..., um] ® Z[K], d],

Il

where the latter ring is the cohomology of differential graded algebra
whose grading and differential are given by

degu; = (—1,2), degv; =(0,2); duj =v;, dv;=0.

The cohomology ring H*(Zx; Z) also has its own bigrading, which will
be given later, and the isomorphism above is that of bigraded algebras.
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It is well-known that the differential graded algebra
R=Nu,...,un)®Z[vi,...,Vn]

gives a free resolution of Z. It is known as the Koszul resolution and,
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It is well-known that the differential graded algebra
R=Nu,...,un)®Z[vi,...,Vn]

gives a free resolution of Z. It is known as the Koszul resolution and, in
fact, we have the following exact sequence

0— A"ug,...,um| ® Z[m] — ...
— Nuy, ..., um] @ Z[m] — Z[m] = Z — 0

where A'[u1, ..., upy] is the subalgebra of A[ui, ..., un] spanned by
monomials of length /.

6
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It is well-known that the differential graded algebra
R=Nu,...,un)®Z[vi,...,Vn]

gives a free resolution of Z. It is known as the Koszul resolution and, in
fact, we have the following exact sequence

0— A"ug,...,um| ® Z[m] — ...
— Nuy, ..., um] @ Z[m] — Z[m] = Z — 0

where A'[u1, ..., upy] is the subalgebra of A[ui, ..., un] spanned by
monomials of length i. Therefore we have

Torgm (ZIK],Z) = H[A[uy, . . ., um] @ Z[K], d]

and the latter has an algebra structure. By this isomorphism we endow
Torzy, (Z[K], Z) with a bigraded algebra structure.

6

26



We introduce a factor algebra
R*(K) = Nuz, ..., um] @ Z[K]/(vV} = ujvi =0, i=1,...,m)

with the same grading and differential as in Afu1, ..., um] ® Z[K].

7/26



We introduce a factor algebra
R*(K) = Nuz, ..., um] @ Z[K]/(vV} = ujvi =0, i=1,...,m)
with the same grading and differential as in Afu1, ..., um] ® Z[K]. Let
p:Nui,. .. un ®ZIK] — R*(K)

be the projection.

7/26



We introduce a factor algebra
R*(K) = Nuz, ..., um] @ Z[K]/(vV} = ujvi =0, i=1,...,m)
with the same grading and differential as in Afu1, ..., um] ® Z[K]. Let
p:Nui,. .. un ®ZIK] — R*(K)

be the projection.
The algebra R*(K) has a finite additive basis consisting of the
monomials of the form u;v, where o € K and 7 C [m] \ 0.
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We introduce a factor algebra
R*(K) = Nuz, ..., um] @ Z[K]/(vV} = ujvi =0, i=1,...,m)
with the same grading and differential as in Afu1, ..., um] ® Z[K]. Let
p:Nui,. .. un ®ZIK] — R*(K)

be the projection.

The algebra R*(K) has a finite additive basis consisting of the
monomials of the form u;v, where ¢ € K and 7 C [m] \ 0. Therefore
we have an additive inclusion

L RY(K) = Aug, ..., um] @ Z[K]

which satisfies p -+ = id.
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The quotient map p : Nu, ..., um] ® Z[K] — R*(K) induces an
isomorphism in cohomology.

By this lemma we have Tory,,(Z[K], Z) = H[R*(K), d] as algebras.
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The quotient map p : Nu, ..., um] ® Z[K] — R*(K) induces an
isomorphism in cohomology.

By this lemma we have Tory,,(Z[K], Z) = H[R*(K), d] as algebras.

Proof of Lemma 1.3.

We introduce intermediate factor algebras
R*(K); = Nui, ..., um] (X)Z[K]/(v,-2 =uvi=0,i=1,...,))

forj=0,---,m.
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The quotient map p : Nu, ..., um] ® Z[K] — R*(K) induces an
isomorphism in cohomology.

By this lemma we have Tory,,(Z[K], Z) = H[R*(K), d] as algebras.

Proof of Lemma 1.3.
We introduce intermediate factor algebras

R*(K)j = ANut, ..., um] ® ZIK]/(V? = ujvi =0, i =1,...,))

for j=0,---,m. The quotient map p : Aluy, ..., un] ® Z[K] = R*(K)
factors as

Nut, ..., um] OZ[K] = R*(K)o — R*(K)1 — -+ = R*(K)m = R*(K).
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The quotient map p : Nu, ..., um] ® Z[K] — R*(K) induces an
isomorphism in cohomology.

By this lemma we have Tory,,(Z[K], Z) = H[R*(K), d] as algebras.

Proof of Lemma 1.3.
We introduce intermediate factor algebras

R*(K)j = ANut, ..., um] ® ZIK]/(V? = ujvi =0, i =1,...,))

for j=0,---,m. The quotient map p : Aluy, ..., un] ® Z[K] = R*(K)
factors as

Nui, .. um|®ZIK] = R* (K)o — R*(K)1 — - = R*(K)m = R*(K).
To prove that p is an isomorphism, we show that all maps

pj : R*(K)j = R*(K)j+1 are isomorphic for j =0,1,--- ,m— 1. O

v
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Proof of Lemma 1.3.

pj : R*(K)j = R*(K)j+1 is surjective and its kernel is

uj1Vi1 R (K)j + v R (K);.
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Proof of Lemma 1.3

i - R*(K)j = R*(K)j41 is surjective and its kernel is
uj1Vi1 R (K)j + v R (K);.
Since, for f, g € R*(K);, we have

d(UJJerJ+1f+ +1g) uj+1‘/_[+1df+ +l(f+dg)

it is easy to see that the H[uj11vj11R*(K); + vj2+1R*(K)j, d] =0.
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Proof of Lemma 1.3
i - R*(K)j = R*(K)j41 is surjective and its kernel is

uj1Vi1 R (K)j + v R (K);.
Since, for f, g € R*(K);, we have
d(ujs1viaf + vi18) = —ujravipadf + 2 (f + dg),
it is easy to see that the H[uj11vj11R*(K); + \/J?+1R*(K)j, d] =0. By
the long exact sequence associated with the short exact sequence of
cochain complexes
0— Uj+1\/j+1R*(K)j + \/_,-2+1R*(K)j — R*(K)J — R*(K)jJr]_ — 0

and the fact above we see that p; : R*(K); = R*(K)j41 is

isomorphic. []
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Cellular cochain complex

Recall that

Zx = Zx(D?,S") = | J(D?,§)7 = [ J(D?)7 x (Sh)lmh\.

geK geK
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Cellular cochain complex

Recall that
Zk :ZK(D2751): U(D2751)U: U(D2)U X (51)[m]\cr'
ceK ceK

D? has a cell decomposition with 3 closed cells, that is, 1,
T = St = 9D? and D = D? of dimension 0,1 and 2. The polydisc
(D?)™ has the product cell decomposition.
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Cellular cochain complex

Recall that
Zk = ZK(Dzv 51) = U (D2751)U = U (D2)U X (51)[m]\cr'

ceK geK

D? has a cell decomposition with 3 closed cells, that is, 1,

T = S = 0D? and D = D? of dimension 0,1 and 2. The polydisc
(D?)™ has the product cell decomposition. For each pair of subsets
o,7 C [m], o N7 =0 we define

T(o,7) = D% x T7 x 1lm\(evm),

10/26



Cellular cochain complex

Recall that

Zk = ZK(D27 51) = U (D2751)U = U (D2)U X (51)[m]\cr'
ceK ceK

D? has a cell decomposition with 3 closed cells, that is, 1,

T = St = 9D? and D = D? of dimension 0,1 and 2. The polydisc
(D?)™ has the product cell decomposition. For each pair of subsets
o,7 C [m], o N7 =0 we define

T(o,7) = D% x T7 x 1lm\(evm),

Thus

Zx= U Tl

ceK, 7C[m]\o
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The cellular chain complex C.(Zk) is a chain complex whose ith chain
Ci(Zk) has a free basis T(o0,7), 0 € K, 7 C [m] \ o with
i =2|o| + |7|. Its boundary operator 0 is given by

= " sgn(i, ) T(o \ (i}, 7 U {1},

j€o

where we put sgn(j, 7) = (—1)Hs€7 [ s<},
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The cellular chain complex C.(Zk) is a chain complex whose ith chain
Ci(Zk) has a free basis T(o0,7), 0 € K, 7 C [m] \ o with
i =2|o| + |7|. Its boundary operator 0 is given by

= sgn(j,7)T (o \ {j}. 7 U {j}),

j€o

where we put sgn(j, 7) = (—1)Hs€7 [ s<},

Example.

NTXDXTxD)=—-TxTxTxD+TxDxTxT.
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The cellular chain complex C.(Zk) is a chain complex whose ith chain
Ci(Zk) has a free basis T(o0,7), 0 € K, 7 C [m] \ o with
i =2|o| + |7|. Its boundary operator 0 is given by

= sgn(j,7)T (o \ {j}. 7 U {j}),

j€o

where we put sgn(j, 7) = (—1)Hs€7 [ s<},

Example.

NTXDXTxD)=—-TxTxTxD+TxDxTxT.

Its dual cochain complex is the cellular cochain complex C*(Zk), which
has an additive basis consisting of the cochains T (o, 7)*. The
coboundary operator is the dual § = 0*. It has a natural bigrading
defined by bideg T (o, 7)* = (—|7|,2|0| 4 2|7|), so that

bidegD = (0,2), bideg T = (—1,2) and bidegl = (0, 0).
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C*(Zk) = @y C¥(Zk)

Since the cohomology of C*(Zk) is H*(Zk;Z), the cohomology of Zx
acquires an additional grading.

HX(Zk: Z) = @ik H ¥ (Zk),

where H*%(Zx) = H[C*%(Zk), d].
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C*(ZK) — @jmzo C*’2j(ZK)

Since the cohomology of C*(Zk) is H*(Zk;Z), the cohomology of Zx
acquires an additional grading.

HX(Zk: Z) = @ik H ¥ (Zk),

where H*%(Zx) = H[C*%(Zk), d].

Lemma (2.2)
The map

g: R (K)— C(Zk), urve — T(o,7)"

is an isomorphism of bigraded differential modules. In particular, we
have an additive isomorphism

HIR* (K)] = H*(Zx).
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It is trivial that g induces an isomorphism of modules.
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Proof

It is trivial that g induces an isomorphism of modules. So it suffices to

show that g commutes with differentials. In R*(K) we have

d(urvo) =Y sgnlj, 7)tn (ol

JEeT

Here we remark that v, = 0 if 0 U {j} € K by definition.
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Proof

It is trivial that g induces an isomorphism of modules. So it suffices to
show that g commutes with differentials. In R*(K) we have

d(urvo) =Y sgnlj, 7)tn (ol

JEeT

Here we remark that v, j; = 0 if 0 U {j} € K by definition. On the
other hand in C*(Zx) we have

o= Y sl ) ToUlhr\ G}
jer, cU{jteK

since

0T (0,7) =) sgn(j,m)T(o\ {j}, 7 U {j})-

JjEo
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Finally we show that g : R*(K) — C*(Zk) is multiplicative.
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Finally we show that g : R*(K) — C*(Zk) is multiplicative.

The standard definition of the multiplication in cohomology of a cell
complex X via cellular cochain complex is as follows. Consider a
composite map of cellular cochain complexes:

C*(X) @ C*(X) =5 (X x X) 25 ¢ (x).
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Finally we show that g : R*(K) — C*(Zk) is multiplicative.

The standard definition of the multiplication in cohomology of a cell
complex X via cellular cochain complex is as follows. Consider a
composite map of cellular cochain complexes:

C*(X) @ C*(X) =5 (X x X) 25 ¢ (x).

Here the map X assigns to a cellular cochain c; ® ¢ € CP(X) ® C9(X)

the cochain ¢; x ¢ € CPT9(X x X) whose value on a cell
e1 X ea € X x Xis (—1)P9ci(e1)ca(e2).
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Finally we show that g : R*(K) — C*(Zk) is multiplicative.

The standard definition of the multiplication in cohomology of a cell
complex X via cellular cochain complex is as follows. Consider a
composite map of cellular cochain complexes:

C*(X) @ C*(X) =5 (X x X) 25 ¢ (x).

Here the map X assigns to a cellular cochain c; ® ¢ € CP(X) ® C9(X)
the cochain ¢; x ¢ € CPT9(X x X) whose value on a cell

e1 X &g € X x X'is (=1)P9¢i(e1)c2(e2). The map A* is induced by a
cellular approximation A of the diagonal map A : X — X x X.

In cohomology, the map above induces a multiplication

H*(X) ® H*(X) — H*(X) which does not depend on a choice of

cellular approximation.
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In the special case X = Zx we may apply the following construction.
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In the special case X = Zx we may apply the following construction.
Consider a cellular map A : D2 — D? x D? which induces a cellular
map Al : ST — S x S! which is a cellular approximation of the
diagnal map A : St — St x St
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In the special case X = Zx we may apply the following construction.

Consider a cellular map A : D2 — D? x D? which induces a cellular
map Al : ST — S x S! which is a cellular approximation of the
diagnal map A : ST — S x S. One of such a map given by for
z=re? € D?2,0<r<1,0<6<2r as follows:

o iy [ (A=r)+re?® 1) for0<6 <,
Alre )_{ (17(1—r)+re2i9) for m < 0 < 2.
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In the special case X = Zx we may apply the following construction.

Consider a cellular map A : D2 — D? x D? which induces a cellular
map Al : ST — S x S! which is a cellular approximation of the
diagnal map A : ST — S x S. One of such a map given by for
z=re? € D?2,0<r<1,0<6<2r as follows:

o iy [ (A=r)+re?® 1) for0<6 <,
Alre )_{ (17(1—r)+re2i9) for m < 0 < 2.

Taking an m-fold product, we obtain a cellular approximation
A : (D?)™ — (D?)™ x (D?)™ which restricts to a cellular
approximation for the diagonal map of Zx for arbitrary K.

ZK L} ZK X ZK

| l

(D2)m A ; (D2)m x (D2)m
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The cellular cochain algebra C*(Zx) defined by the diagonal
approximation A : Zx — Zk X Zk is multiplicatively isomorphic to
R*(K). Therefore, we get an isomorphism of cohomology algebras:

H[R*(K)] = H*(Zx; Z)
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Lemma (2.3)

The cellular cochain algebra C*(Zx) defined by the diagonal
approximation A : Zx — Zk X Zk is multiplicatively isomorphic to
R*(K). Therefore, we get an isomorphism of cohomology algebras:

HIR*(K)] & H*(Zk; Z)

| A\

Proof of Lemma 2.3.

We first consider the case m =1 and K = A[”, that is, Zx = D?. The
cellular cochain algebra of D? is additively generated by the cochains
1€ C%D?), T* € CY(D?) and D* € C?(D?) dual to the
corresponding cells. The multiplication defined in C*(D?) is trivial. To
check this it suffices to show that T*- T* = 0 by degree reason:

T T*(D?) = (T*® T*)(A(D?) = (T*®@ T*) (D> x14+1x D?) =0

Ol

v
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Proof of Lemma 2.3.

Thus we get a multiplicative isomorphism

R*(AM) = A[u] ® Z[v]/(v? = uv = 0) — C*(D?).
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Proof of Lemma 2.3.
Thus we get a multiplicative isomorphism

R*(AM) = A[u] ® Z[v]/(v? = uv = 0) — C*(D?).
By taking the tensor products we obtain a multiplicative isomorphism

R*(AMY = Aluy,. .., um] ® Z[m]/(v? = uiv; = 0) = C*((D?)™).
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Proof of Lemma 2.3
Thus we get a multiplicative isomorphism

R*(AM) = A[u] ® Z[v]/(v? = uv = 0) — C*(D?).
By taking the tensor products we obtain a multiplicative isomorphism
R (A1) = Alus, ..., tm] ® Zlm] /(= ujvi = 0) = C*((D?)™).

Since Zx C (D?)™ is a cell subcomplex and the cellular approximation
A - (D?)™ — (D?)™ x (D?)™ induces a cellular approximation of Zk,
we obtain a multiplicative map g : C*((D?)™) — C*(Zk). Now
consider the commutative diagram

Re(alm) —— c*((D?)m)

l L

R*(K) —&— C*(Zx).
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Proof of Lemma 2.3.
Now consider the commutative diagram

R(al) —— c((D))
I I
R¥(K) —5— C*(Zk).
Here the maps p, g and f are multiplicative, while g is an additive

isomorphism. Since p is onto, g is also a multiplicative
isomorphism.
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Hochster's theorem

Since in C*(Zk) we have
0T(or)' = Y sen(,)T(eU{ihr\ ()"
jer, cU{jteK
C*(Zk) is a direct sum of smaller subcomplexes as
C*(ZK) _ @ C*,ZT(ZK)
T€[m]

where C*27(Zy) is the subcomplex generated by the cochains
T(o,7\ 0)* withoc C7and o € K.
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Hochster's theorem

Since in C*(Zk) we have
0T(or)' = Y sen(,)T(eU{ihr\ ()"
jer, cU{jteK
C*(Zk) is a direct sum of smaller subcomplexes as
C*(ZK) _ @ C*,ZT(ZK)
T€[m]

where C*27(Zy) is the subcomplex generated by the cochains
T(o,7\ 0)" with o C 7 and 0 € K. Since

bideg T (0, 7)* = (|71, 2|o] + 2|7]),

we have N '
Hfl,ZJ(ZK) — @ Hfl,2T(ZK)
T€[m], |7|=j

where H=27(Z) = H7'[C*?7(Zk)].
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Recall the join of two simplicial complexes. Given two simplicial
complexes K1 and K> with disjoint vertex sets V; and V), respectively,
their join Ki * K5 is defined as

K]_*KQZ{O']_UUZCV]_UVQ‘O','eKijri:l,2}.
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Recall the join of two simplicial complexes. Given two simplicial
complexes K1 and K> with disjoint vertex sets V; and V), respectively,
their join Ki * K5 is defined as

K]_*KQZ{O']_UUZCV]_UVQ‘O','eKijri:l,2}.

Now we introduce a multiplication in the sum

@ k)

p>—1, IC[m]

where K; is the full subcomplex and H=1(0) = Z.
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Recall the join of two simplicial complexes. Given two simplicial
complexes K1 and K> with disjoint vertex sets V; and V), respectively,
their join Ki * K5 is defined as

K]_*KQZ{O']_UUZCV]_UVQ‘O','eKijri:l,2}.

Now we introduce a multiplication in the sum

@ k)

p>—1, IC[m]

where K is the full subcomplex and I:I*1~((Z)) =7Z.
For I,J C [m] and o € H*(K;) and 8 € H*(K}) we define the product
« - B as follows.
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Assume that / N J = (). Then we have an inclusion of subcomplexes
i Ky = K*«Ky, o (onl)u(ocnd)
and an injection of reduced simplicial cochains

f:CP(K) ® CI(K)) = CPHItY(K) « K)).
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Assume that / N J = (). Then we have an inclusion of subcomplexes
i Ky = K*«Ky, o (onl)u(ocnd)

and an injection of reduced simplicial cochains
f:CP(K) ® CI(K)) = CPHItY(K) « K)).

Now we define

5= 0, InJ#0,
T fla® B) € HPYIFLY(K,,), 1nJ=0.
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Theorem (Baskakov '02)

There are isomorphisms

AP(K) = HP+1_|I|’2I(ZK)

which induce a ring isomorphism

P AP = H (Zk).
pZ_lv IC[m]
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Theorem (Baskakov '02)
There are isomorphisms

F[P(KI) = Hp+1_“|’2l(ZK)

which induce a ring isomorphism

P Ark) = H (Zk).
PZ*L IC[m]

| A\

Proof of Baskakov's theorem.
Define a map of cochain complexes

v EP(K)) = CPHNZ,) 0% s e(0) T (o, 1\ o),

where (o) = (—1)H(s:D€(\o)xo [ s>t} Check that
bideg T (o, 1\ 0)* = (=|/'\ o, 2|0 +2[/ \ o]) = (p + 1 — |/],2//]).

Ol

v
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Proof of Baskakov's theorem.

It is easy to see that  is an isomorphism of modules.
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Proof of Baskakov's theorem.

It is easy to see that y is an isomorphism of modules. To check that ~
is a cochain map, we use the isomorphism given in Lemma 2.2. So

V(o") = e(o)unovo
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Proof of Baskakov's theorem.

It is easy to see that y is an isomorphism of modules. To check that ~
is a cochain map, we use the isomorphism given in Lemma 2.2. So

V(o") = e(o)unovo

In C*(K;) we have

b= Y sen(ir)(o U

j¢o, cU{j}EK]
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Proof of Baskakov's theorem.

It is easy to see that y is an isomorphism of modules. To check that ~
is a cochain map, we use the isomorphism given in Lemma 2.2. So

Y(0") = e(o)ups Vo
In C*(K;) we have
dbor = > sgn(j,T)(oU{j})"
jgo, oU{j}eK;
On the other hand
d(upove) = > sgn(j, '\ o)up (cugiy) Vouljys
J€N\o, cU{j}eK

= Yo sgn(, I\ o)uneugn ety
j¢07 UU{.j}EKI
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Proof of Baskakov's theorem.

Now we have to do is to check that

Hsel\o|s<jt+t{(s,t) e I\ (cU{})) x(eU{}) s>t}
=t{(s,t) e (I\o)xo|s>tt+t{sel\o|s<j} (mod2).
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Proof of Baskakov's theorem.
Now we have to do is to check that

tsel\o|s<ji+t{(s,t) c I\ (eU{})) x(eU{j}) [ s>t}
=t{(s,t) e (I\o)xo|s>t}+H{sel\o|s<j} (mod2).
In R*(K) we have

0 INnJd#0,

Upg Vo Up Ve =
Ao tot\ { UL\ (our)Vour 1N J =10,

since uju; = ujv; = vjv; = 0. Moreover, if c UT & K, then v,y = 0 by
definition. This multiplicative structure coincides with the
definition. O

v
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Corollary

A simplicial complex K is Golod over k if and only if for every pair
I,J C [m] such that | N J = () the composite of maps

HP (K k) @ HI(Ky; k) — HPYIPL (K« K k) — HPFITL(K ) k)

is trivial.
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Corollary

A simplicial complex K is Golod over k if and only if for every pair
I,J C [m] such that | N J = () the composite of maps

HP(K; k) @ HI(Kj; k) — HPTITY(K) % K k) — HPYIYY(KL 0 k)

is trivial.

If a simplicial complex K is Golod over k, then so is its full subcomplex
K; for every | C [m].
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Theorem

Let K be a simplicial complex. Then the cohomology ring of the real
moment-angle complex is given as

HP(Zk(D', S%) = €P AP (K)).
I1C[m]
The multiplication is given by the following formula under the
identification above.
/:Ip_l(K[) X qu_l(KJ) — /:Ip_l(K[ch) &® /:Iq_l(K_/)

= {PHIY (K ge % Ky) — HPFI71(K)y)
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Theorem

Let K be a simplicial complex. Then the cohomology ring of the real
moment-angle complex is given as

HP(Zk(D', S%) = €P AP (K)).
I1C[m]
The multiplication is given by the following formula under the
identification above.
/:Ip_l(K[) X qu_l(KJ) — /:Ip_l(K[ch) &® /:Iq_l(K_/)

= {PHIY (K ge % Ky) — HPFI71(K)y)

A simplicial complex K is Golod over k if and only if the cohomology
ring of the real moment-angle complex H*(Zx(D?, S°); k) has the
trivial multiplication.
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