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Plan of talks

Plan of talks

First day. Main results and topological background.

Today. Bridge between algebra and topology

Tor algebra
Cellular cochain complex
Hochster’s theorem

Third day. Sketch of Proofs.
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Tor algebra

Z[m] = Z[v1, . . . , vm]: the polynomial ring with integer coefficient
and deg vi = 2.

Λ[u1, . . . , um]: the exterior algebra with integer coefficient and
deg ui = 1, that is, the free commutative graded algebra generated
by degree 1 elements.
For a subset I = {i1, . . . , ik} ⊂ [m] we put vI = vi1 . . . vik .

.
Definition (1.1)
..

.

. ..

.

.

Let K be a simplicial complex on the vertex set [m] = {1, . . . ,m}. The
Stanley-Reisner ring of K is the following quotient algebra of the
polynomial ring on m generators:

Z[K ] = Z[v1, . . . , vm]/(vI | I ̸∈ K ).

The Stanley-Reisner ring Z[K ] is a Z[m]-module via the quotient
projection Z[m] → Z[K ].
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A free resolution of Z[K ] is an exact sequence of finitely generated
Z[m]-modules:

0 → R−m → · · · → R−1 → R0 → Z[K ] → 0,

where all R−i are free graded Z[m]-modules and all maps
R−i → R−i+1 are degree preserving.

.
Definition (1.2)
..

.

. ..

.

.

The −i th Tor group Tor−i
Z[m](Z[K ],Z) is defined as the −i th

cohomology groups of the complex:

0 → R−m ⊗Z[m] Z → · · · → R−1 ⊗Z[m] Z → R0 ⊗Z[m] Z → 0.

We define

TorZ[m](Z[K ],Z) =
m⊕
i=0

Tor−i
Z[m](Z[K ],Z)

which has double gradings.
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.
Theorem (Baskakov-Buchstaber-Panov ’04, Franz ’06)
..

.

. ..

.

.

The cohomology ring of the moment angle complex ZK = ZK (D
2, S1)

is given by the isomorphisms

H∗(ZK ;Z) ∼= TorZ[m](Z[K ],Z)
∼= H[Λ[u1, . . . , um]⊗ Z[K ], d ],

where the latter ring is the cohomology of differential graded algebra
whose grading and differential are given by

deg u1 = (−1, 2), deg vi = (0, 2); dui = vi , dvi = 0.

The cohomology ring H∗(ZK ;Z) also has its own bigrading, which will
be given later, and the isomorphism above is that of bigraded algebras.
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It is well-known that the differential graded algebra

R = Λ[u1, . . . , um]⊗ Z[v1, . . . , vm]

gives a free resolution of Z. It is known as the Koszul resolution and,

in
fact, we have the following exact sequence

0 → Λm[u1, . . . , um]⊗ Z[m] → . . .

→ Λ1[u1, . . . , um]⊗ Z[m] → Z[m] → Z → 0

where Λi [u1, . . . , um] is the subalgebra of Λ[u1, . . . , um] spanned by
monomials of length i . Therefore we have

TorZ[m](Z[K ],Z) ∼= H[Λ[u1, . . . , um]⊗ Z[K ], d ]

and the latter has an algebra structure. By this isomorphism we endow
TorZ[m](Z[K ],Z) with a bigraded algebra structure.
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We introduce a factor algebra

R∗(K ) = Λ[u1, . . . , um]⊗ Z[K ]/(v2i = uivi = 0, i = 1, . . . ,m)

with the same grading and differential as in Λ[u1, . . . , um]⊗ Z[K ].

Let

ρ : Λ[u1, . . . , um]⊗ Z[K ] → R∗(K )

be the projection.
The algebra R∗(K ) has a finite additive basis consisting of the
monomials of the form uτvσ where σ ∈ K and τ ⊂ [m] \ σ. Therefore
we have an additive inclusion

ι : R∗(K ) → Λ[u1, . . . , um]⊗ Z[K ]

which satisfies ρ · ι = id .
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.
Lemma (1.3)
..

.

. ..

.

.

The quotient map ρ : Λ[u1, . . . , um]⊗ Z[K ] → R∗(K ) induces an
isomorphism in cohomology.

By this lemma we have TorZ[m](Z[K ],Z) ∼= H[R∗(K ), d ] as algebras.

.
Proof of Lemma 1.3.
..

.

. ..

.

.

We introduce intermediate factor algebras

R∗(K )j = Λ[u1, . . . , um]⊗ Z[K ]/(v2i = uivi = 0, i = 1, . . . , j)

for j = 0, · · · ,m. The quotient map ρ : Λ[u1, . . . , um]⊗ Z[K ] → R∗(K )
factors as

Λ[u1, . . . , um]⊗Z[K ] = R∗(K )0 → R∗(K )1 → · · · → R∗(K )m = R∗(K ).

To prove that ρ is an isomorphism, we show that all maps
ρj : R

∗(K )j → R∗(K )j+1 are isomorphic for j = 0, 1, · · · ,m − 1.
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.
Proof of Lemma 1.3.
..

.

. ..

.

.

ρj : R
∗(K )j → R∗(K )j+1 is surjective and its kernel is

uj+1vj+1R
∗(K )j + v2j+1R

∗(K )j .

Since, for f , g ∈ R∗(K )j , we have

d(uj+1vj+1f + v2j+1g) = −uj+1vj+1df + v2j+1(f + dg),

it is easy to see that the H[uj+1vj+1R
∗(K )j + v2j+1R

∗(K )j , d ] = 0. By
the long exact sequence associated with the short exact sequence of
cochain complexes

0 → uj+1vj+1R
∗(K )j + v2j+1R

∗(K )j → R∗(K )j → R∗(K )j+1 → 0

and the fact above we see that ρj : R
∗(K )j → R∗(K )j+1 is

isomorphic.
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Cellular cochain complex

Recall that

ZK = ZK (D
2, S1) =

∪
σ∈K

(D2, S1)σ =
∪
σ∈K

(D2)σ × (S1)[m]\σ.

D2 has a cell decomposition with 3 closed cells, that is, 1,
T = S1 = ∂D2 and D = D2 of dimension 0,1 and 2. The polydisc
(D2)m has the product cell decomposition. For each pair of subsets
σ, τ ⊂ [m], σ ∩ τ = ∅ we define

T (σ, τ) = Dσ × T τ × 1[m]\(σ∪τ).

Thus

.
Lemma (2.1)
..

.

. ..

.

.

ZK =
∪

σ∈K , τ⊂[m]\σ

T (σ, τ).
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The cellular chain complex C∗(ZK ) is a chain complex whose ith chain
Ci (ZK ) has a free basis T (σ, τ), σ ∈ K , τ ⊂ [m] \ σ with
i = 2|σ|+ |τ |. Its boundary operator ∂ is given by

∂T (σ, τ) =
∑
j∈σ

sgn(j , τ)T (σ \ {j}, τ ∪ {j}),

where we put sgn(j , τ) = (−1)♯{s∈τ | s<j}.

Example.

∂(T × D × T × D) = −T × T × T × D + T × D × T × T .

Its dual cochain complex is the cellular cochain complex C ∗(ZK ), which
has an additive basis consisting of the cochains T (σ, τ)∗. The
coboundary operator is the dual δ = ∂∗. It has a natural bigrading
defined by bidegT (σ, τ)∗ = (−|τ |, 2|σ|+ 2|τ |), so that
bidegD = (0, 2), bidegT = (−1, 2) and bideg1 = (0, 0).
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C ∗(ZK ) = ⊕m
j=0C

∗,2j(ZK )

Since the cohomology of C ∗(ZK ) is H
∗(ZK ;Z), the cohomology of ZK

acquires an additional grading.

Hk(ZK ;Z) = ⊕−i+2j=kH
−i ,2j(ZK ),

where H∗,2j(ZK ) = H[C ∗,2j(ZK ), δ].

.
Lemma (2.2)
..

.

. ..

.

.

The map
g : R∗(K ) → C ∗(ZK ), uτvσ → T (σ, τ)∗

is an isomorphism of bigraded differential modules. In particular, we
have an additive isomorphism

H[R∗(K )] ∼= H∗(ZK ).
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H[R∗(K )] ∼= H∗(ZK ).
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.
Proof.
..

.

. ..

.

.

It is trivial that g induces an isomorphism of modules.

So it suffices to
show that g commutes with differentials. In R∗(K ) we have

d(uτvσ) =
∑
j∈τ

sgn(j , τ)uτ\{j}vσ∪{j}.

Here we remark that vσ∪{j} = 0 if σ ∪ {j} ̸∈ K by definition. On the
other hand in C ∗(ZK ) we have

δT (σ, τ)∗ =
∑

j∈τ, σ∪{j}∈K

sgn(j , τ)T (σ ∪ {j}, τ \ {j})∗

since
∂T (σ, τ) =

∑
j∈σ

sgn(j , τ)T (σ \ {j}, τ ∪ {j}).
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Finally we show that g : R∗(K ) → C ∗(ZK ) is multiplicative.

The standard definition of the multiplication in cohomology of a cell
complex X via cellular cochain complex is as follows. Consider a
composite map of cellular cochain complexes:

C ∗(X )⊗ C ∗(X )
×−→ C ∗(X × X )

∆̃∗
−−→ C ∗(X ).

Here the map × assigns to a cellular cochain c1 ⊗ c2 ∈ Cp(X )⊗Cq(X )
the cochain c1 × c2 ∈ Cp+q(X × X ) whose value on a cell
e1 × e2 ∈ X × X is (−1)pqc1(e1)c2(e2). The map ∆̃∗ is induced by a
cellular approximation ∆̃ of the diagonal map ∆ : X → X × X .
In cohomology, the map above induces a multiplication
H∗(X )⊗ H∗(X ) → H∗(X ) which does not depend on a choice of
cellular approximation.
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In the special case X = ZK we may apply the following construction.

Consider a cellular map ∆̃ : D2 → D2 × D2 which induces a cellular
map ∆̃|S1 : S1 → S1 × S1 which is a cellular approximation of the
diagnal map ∆ : S1 → S1 × S1. One of such a map given by for
z = re iθ ∈ D2, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π as follows:

∆̃(re iθ) =

{
((1− r) + re2iθ, 1) for 0 ≤ θ ≤ π,
(1, (1− r) + re2iθ) for π ≤ θ ≤ 2π.

Taking an m-fold product, we obtain a cellular approximation
∆̃ : (D2)m → (D2)m × (D2)m which restricts to a cellular
approximation for the diagonal map of ZK for arbitrary K .

ZK
∆̃−−−−→ ZK × ZKy y

(D2)m
∆̃−−−−→ (D2)m × (D2)m

15 / 26



In the special case X = ZK we may apply the following construction.
Consider a cellular map ∆̃ : D2 → D2 × D2 which induces a cellular
map ∆̃|S1 : S1 → S1 × S1 which is a cellular approximation of the
diagnal map ∆ : S1 → S1 × S1.

One of such a map given by for
z = re iθ ∈ D2, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π as follows:

∆̃(re iθ) =

{
((1− r) + re2iθ, 1) for 0 ≤ θ ≤ π,
(1, (1− r) + re2iθ) for π ≤ θ ≤ 2π.

Taking an m-fold product, we obtain a cellular approximation
∆̃ : (D2)m → (D2)m × (D2)m which restricts to a cellular
approximation for the diagonal map of ZK for arbitrary K .

ZK
∆̃−−−−→ ZK × ZKy y

(D2)m
∆̃−−−−→ (D2)m × (D2)m

15 / 26



In the special case X = ZK we may apply the following construction.
Consider a cellular map ∆̃ : D2 → D2 × D2 which induces a cellular
map ∆̃|S1 : S1 → S1 × S1 which is a cellular approximation of the
diagnal map ∆ : S1 → S1 × S1. One of such a map given by for
z = re iθ ∈ D2, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π as follows:

∆̃(re iθ) =

{
((1− r) + re2iθ, 1) for 0 ≤ θ ≤ π,
(1, (1− r) + re2iθ) for π ≤ θ ≤ 2π.

Taking an m-fold product, we obtain a cellular approximation
∆̃ : (D2)m → (D2)m × (D2)m which restricts to a cellular
approximation for the diagonal map of ZK for arbitrary K .

ZK
∆̃−−−−→ ZK × ZKy y

(D2)m
∆̃−−−−→ (D2)m × (D2)m

15 / 26



In the special case X = ZK we may apply the following construction.
Consider a cellular map ∆̃ : D2 → D2 × D2 which induces a cellular
map ∆̃|S1 : S1 → S1 × S1 which is a cellular approximation of the
diagnal map ∆ : S1 → S1 × S1. One of such a map given by for
z = re iθ ∈ D2, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π as follows:

∆̃(re iθ) =

{
((1− r) + re2iθ, 1) for 0 ≤ θ ≤ π,
(1, (1− r) + re2iθ) for π ≤ θ ≤ 2π.

Taking an m-fold product, we obtain a cellular approximation
∆̃ : (D2)m → (D2)m × (D2)m which restricts to a cellular
approximation for the diagonal map of ZK for arbitrary K .

ZK
∆̃−−−−→ ZK × ZKy y

(D2)m
∆̃−−−−→ (D2)m × (D2)m

15 / 26



.
Lemma (2.3)
..

.

. ..

.

.

The cellular cochain algebra C ∗(ZK ) defined by the diagonal
approximation ∆̃ : ZK → ZK × ZK is multiplicatively isomorphic to
R∗(K ). Therefore, we get an isomorphism of cohomology algebras:

H[R∗(K )] ∼= H∗(ZK ;Z)

.
Proof of Lemma 2.3.
..

.

. ..

.

.

We first consider the case m = 1 and K = ∆[1], that is, ZK = D2. The
cellular cochain algebra of D2 is additively generated by the cochains
1 ∈ C 0(D2), T ∗ ∈ C 1(D2) and D∗ ∈ C 2(D2) dual to the
corresponding cells. The multiplication defined in C ∗(D2) is trivial. To
check this it suffices to show that T ∗ · T ∗ = 0 by degree reason:

T ∗ ·T ∗(D2) = (T ∗ ⊗T ∗)(∆̃(D2)) = (T ∗ ⊗T ∗)(D2 × 1+ 1×D2) = 0
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.
Proof of Lemma 2.3.
..

.

. ..

.

.

Thus we get a multiplicative isomorphism

R∗(∆[1]) = Λ[u]⊗ Z[v ]/(v2 = uv = 0) → C ∗(D2).

By taking the tensor products we obtain a multiplicative isomorphism

R∗(∆[m]) = Λ[u1, . . . , um]⊗ Z[m]/(v2i = uivi = 0) → C ∗((D2)m).

Since ZK ⊂ (D2)m is a cell subcomplex and the cellular approximation
∆̃ : (D2)m → (D2)m × (D2)m induces a cellular approximation of ZK ,
we obtain a multiplicative map q : C ∗((D2)m) → C ∗(ZK ). Now
consider the commutative diagram

R∗(∆[m])
f−−−−→ C ∗((D2)m)yp

yq

R∗(K )
g−−−−→ C ∗(ZK ).
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.
Proof of Lemma 2.3.
..

.

. ..

.

.

Now consider the commutative diagram

R∗(∆[m])
f−−−−→ C ∗((D2)m)yp

yq

R∗(K )
g−−−−→ C ∗(ZK ).

Here the maps p, q and f are multiplicative, while g is an additive
isomorphism. Since p is onto, g is also a multiplicative
isomorphism.
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Hochster’s theorem

Since in C ∗(ZK ) we have

δT (σ, τ)∗ =
∑

j∈τ, σ∪{j}∈K

sgn(j , τ)T (σ ∪ {j}, τ \ {j})∗,

C ∗(ZK ) is a direct sum of smaller subcomplexes as

C ∗(ZK ) =
⊕
τ∈[m]

C ∗,2τ (ZK )

where C ∗,2τ (ZK ) is the subcomplex generated by the cochains
T (σ, τ \ σ)∗ with σ ⊂ τ and σ ∈ K .

Since

bidegT (σ, τ)∗ = (−|τ |, 2|σ|+ 2|τ |),

we have
H−i ,2j(ZK ) =

⊕
τ∈[m], |τ |=j

H−i ,2τ (ZK )

where H−i ,2τ (ZK ) = H−i [C ∗,2τ (ZK )].
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Recall the join of two simplicial complexes. Given two simplicial
complexes K1 and K2 with disjoint vertex sets V1 and V2 respectively,
their join K1 ∗ K2 is defined as

K1 ∗ K2 = {σ1 ⊔ σ2 ⊂ V1 ⊔ V2 | σi ∈ Ki for i = 1, 2}.

Now we introduce a multiplication in the sum⊕
p≥−1, I⊂[m]

H̃p(KI )

where KI is the full subcomplex and H̃−1(∅) = Z.
For I , J ⊂ [m] and α ∈ H̃∗(KI ) and β ∈ H̃∗(KJ) we define the product
α · β as follows.
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Assume that I ∩ J = ∅. Then we have an inclusion of subcomplexes

i : KI⊔J ↪→ KI ∗ KJ , σ 7→ (σ ∩ I ) ⊔ (σ ∩ J)

and an injection of reduced simplicial cochains

f : C̃p(KI )⊗ C̃q(KI ) → Cp+q+1(KI ∗ KJ).

Now we define

α · β =

{
0, I ∩ J ̸= ∅,
i∗f (α⊗ β) ∈ Hp+q+1(KI⊔J), I ∩ J = ∅.
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.
Theorem (Baskakov ’02)
..

.

. ..

.

.

There are isomorphisms

H̃p(KI )
∼=−→ Hp+1−|I |,2I (ZK )

which induce a ring isomorphism⊕
p≥−1, I⊂[m]

H̃p(KI )
∼=−→ H∗(ZK ).

.
Proof of Baskakov’s theorem.
..

.

. ..

.

.

Define a map of cochain complexes

γ : C̃p(KI ) → Cp+1−|I |,2I (ZK ), σ∗ 7→ ε(σ)T (σ, I \ σ)∗,

where ε(σ) = (−1)♯{(s,t)∈(I\σ)×σ | s>t}. Check that
bidegT (σ, I \ σ)∗ = (−|I \ σ|, 2|σ|+ 2|I \ σ|) = (p + 1− |I |, 2|I |).
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.
Proof of Baskakov’s theorem.
..

.

. ..

.

.

It is easy to see that γ is an isomorphism of modules.

To check that γ
is a cochain map, we use the isomorphism given in Lemma 2.2. So

γ(σ∗) = ε(σ)uI\σvσ

In C ∗(KI ) we have

δσ∗ =
∑

j ̸∈σ, σ∪{j}∈KI

sgn(j , τ)(σ ∪ {j})∗.

On the other hand

d(uI\σvσ) =
∑

j∈I\σ, σ∪{j}∈K

sgn(j , I \ σ)uI\(σ∪{j})vσ∪{j},

=
∑

j ̸∈σ, σ∪{j}∈KI

sgn(j , I \ σ)uI\(σ∪{j})vσ∪{j}.
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.
Proof of Baskakov’s theorem.
..

.

. ..

.

.

Now we have to do is to check that

♯{s ∈ I \ σ | s < j}+ ♯{(s, t) ∈ (I \ (σ ∪ {j}))× (σ ∪ {j}) | s > t}

≡ ♯{(s, t) ∈ (I \ σ)× σ | s > t}+ ♯{s ∈ I \ σ | s < j} (mod 2).

In R∗(K ) we have

uI\σvσuJ\τvτ =

{
0 I ∩ J ̸= ∅,
u(I⊔J)\(σ⊔τ)vσ∪τ I ∩ J = ∅,

since uiui = uivi = vivi = 0. Moreover, if σ ∪ τ ̸∈ K , then vσ∪τ = 0 by
definition. This multiplicative structure coincides with the
definition.
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Now we have to do is to check that
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.
Corollary
..

.

. ..

.

.

A simplicial complex K is Golod over k if and only if for every pair
I , J ⊂ [m] such that I ∩ J = ∅ the composite of maps

H̃p(KI ; k)⊗ H̃q(KJ ; k) → H̃p+q+1(KI ∗ KJ ; k) → H̃p+q+1(KI⊔J ; k)

is trivial.

.
Corollary
..

.

. ..

.

.

If a simplicial complex K is Golod over k, then so is its full subcomplex
KI for every I ⊂ [m].
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.
Theorem
..

.

. ..

.

.

Let K be a simplicial complex. Then the cohomology ring of the real
moment-angle complex is given as

Hp(ZK (D
1, S0)) ∼=

⊕
I⊂[m]

H̃p−1(KI ).

The multiplication is given by the following formula under the
identification above.

H̃p−1(KI )⊗ H̃q−1(KJ) → H̃p−1(KI∩Jc )⊗ H̃q−1(KJ)

∼= H̃p+q−1(KI∩Jc ∗ KJ) → H̃p+q−1(KI∪J)

.
Corollary
..

.

. ..

.

.

A simplicial complex K is Golod over k if and only if the cohomology
ring of the real moment-angle complex H∗(ZK (D

1, S0); k) has the
trivial multiplication.
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