Topology of Polyhedral products and

Golod property of Stanley-Reisner ring, II

Kouyemon Iriye (OPU)

20 February 2014; Matsumoto

Plan of talks

Plan of talks

- First day. Main results and topological background.
- Today. Bridge between algebra and topology
- Tor algebra
- Cellular cochain complex
- Hochster's theorem
- Third day. Sketch of Proofs.

Tor algebra

- $\mathbb{Z}[m]=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]$: the polynomial ring with integer coefficient and $\operatorname{deg} v_{i}=2$.

Tor algebra

- $\mathbb{Z}[m]=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]$: the polynomial ring with integer coefficient and $\operatorname{deg} v_{i}=2$.
- $\Lambda\left[u_{1}, \ldots, u_{m}\right]$: the exterior algebra with integer coefficient and $\operatorname{deg} u_{i}=1$, that is, the free commutative graded algebra generated by degree 1 elements.

Tor algebra

- $\mathbb{Z}[m]=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]$: the polynomial ring with integer coefficient and $\operatorname{deg} v_{i}=2$.
- $\Lambda\left[u_{1}, \ldots, u_{m}\right]$: the exterior algebra with integer coefficient and $\operatorname{deg} u_{i}=1$, that is, the free commutative graded algebra generated by degree 1 elements.
- For a subset $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[m]$ we put $v_{l}=v_{i_{1}} \ldots v_{i_{k}}$.

Tor algebra

- $\mathbb{Z}[m]=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]$: the polynomial ring with integer coefficient and $\operatorname{deg} v_{i}=2$.
- $\wedge\left[u_{1}, \ldots, u_{m}\right]$: the exterior algebra with integer coefficient and $\operatorname{deg} u_{i}=1$, that is, the free commutative graded algebra generated by degree 1 elements.
- For a subset $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[m]$ we put $v_{l}=v_{i_{1}} \ldots v_{i_{k}}$.

Definition (1.1)

Let K be a simplicial complex on the vertex set $[m]=\{1, \ldots, m\}$. The Stanley-Reisner ring of K is the following quotient algebra of the polynomial ring on m generators:

$$
\mathbb{Z}[K]=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] /\left(v_{l} \mid \iota \notin K\right) .
$$

The Stanley-Reisner ring $\mathbb{Z}[K]$ is a $\mathbb{Z}[m]$-module via the quotient projection $\mathbb{Z}[m] \rightarrow \mathbb{Z}[K]$.

A free resolution of $\mathbb{Z}[K]$ is an exact sequence of finitely generated $\mathbb{Z}[m]$-modules:

$$
0 \rightarrow R^{-m} \rightarrow \cdots \rightarrow R^{-1} \rightarrow R^{0} \rightarrow \mathbb{Z}[K] \rightarrow 0
$$

where all R^{-i} are free graded $\mathbb{Z}[m]$-modules and all maps $R^{-i} \rightarrow R^{-i+1}$ are degree preserving.

A free resolution of $\mathbb{Z}[K]$ is an exact sequence of finitely generated $\mathbb{Z}[m]$-modules:

$$
0 \rightarrow R^{-m} \rightarrow \cdots \rightarrow R^{-1} \rightarrow R^{0} \rightarrow \mathbb{Z}[K] \rightarrow 0
$$

where all R^{-i} are free graded $\mathbb{Z}[m]$-modules and all maps $R^{-i} \rightarrow R^{-i+1}$ are degree preserving.

Definition (1.2)

The $-i$ th Tor group $\operatorname{Tor}_{\mathbb{Z}[m]}^{-i}(\mathbb{Z}[K], \mathbb{Z})$ is defined as the $-i$ th cohomology groups of the complex:

$$
0 \rightarrow R^{-m} \otimes_{\mathbb{Z}[m]} \mathbb{Z} \rightarrow \cdots \rightarrow R^{-1} \otimes_{\mathbb{Z}[m]} \mathbb{Z} \rightarrow R^{0} \otimes_{\mathbb{Z}[m]} \mathbb{Z} \rightarrow 0
$$

We define

$$
\operatorname{Tor}_{\mathbb{Z}[m]}(\mathbb{Z}[K], \mathbb{Z})=\bigoplus_{i=0}^{m} \operatorname{Tor}_{\mathbb{Z}[m]}^{-i}(\mathbb{Z}[K], \mathbb{Z})
$$

which has double gradings.

Theorem (Baskakov-Buchstaber-Panov '04, Franz '06)

The cohomology ring of the moment angle complex $Z_{K}=Z_{K}\left(D^{2}, S^{1}\right)$ is given by the isomorphisms

$$
\begin{aligned}
H^{*}\left(Z_{K} ; \mathbb{Z}\right) & \cong \operatorname{Tor}_{\mathbb{Z}[m]}(\mathbb{Z}[K], \mathbb{Z}) \\
& \cong H\left[\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], d\right]
\end{aligned}
$$

where the latter ring is the cohomology of differential graded algebra whose grading and differential are given by

$$
\operatorname{deg} u_{1}=(-1,2), \operatorname{deg} v_{i}=(0,2) ; \quad d u_{i}=v_{i}, d v_{i}=0
$$

The cohomology ring $H^{*}\left(Z_{K} ; \mathbb{Z}\right)$ also has its own bigrading, which will be given later, and the isomorphism above is that of bigraded algebras.

It is well-known that the differential graded algebra

$$
R=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]
$$

gives a free resolution of \mathbb{Z}. It is known as the Koszul resolution and,

It is well-known that the differential graded algebra

$$
R=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]
$$

gives a free resolution of \mathbb{Z}. It is known as the Koszul resolution and, in fact, we have the following exact sequence

$$
\begin{aligned}
0 \rightarrow \Lambda^{m}\left[u_{1}, \ldots, u_{m}\right] \otimes & \mathbb{Z}[m] \rightarrow \ldots \\
& \rightarrow \Lambda^{1}\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[m] \rightarrow \mathbb{Z}[m] \rightarrow \mathbb{Z} \rightarrow 0
\end{aligned}
$$

where $\Lambda^{i}\left[u_{1}, \ldots, u_{m}\right]$ is the subalgebra of $\Lambda\left[u_{1}, \ldots, u_{m}\right]$ spanned by monomials of length i.

It is well-known that the differential graded algebra

$$
R=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]
$$

gives a free resolution of \mathbb{Z}. It is known as the Koszul resolution and, in fact, we have the following exact sequence

$$
\begin{aligned}
0 \rightarrow \Lambda^{m}\left[u_{1}, \ldots, u_{m}\right] \otimes & \mathbb{Z}[m] \rightarrow \ldots \\
& \rightarrow \Lambda^{1}\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[m] \rightarrow \mathbb{Z}[m] \rightarrow \mathbb{Z} \rightarrow 0
\end{aligned}
$$

where $\Lambda^{i}\left[u_{1}, \ldots, u_{m}\right]$ is the subalgebra of $\Lambda\left[u_{1}, \ldots, u_{m}\right]$ spanned by monomials of length i. Therefore we have

$$
\operatorname{Tor}_{\mathbb{Z}[m]}(\mathbb{Z}[K], \mathbb{Z}) \cong H\left[\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K], d\right]
$$

and the latter has an algebra structure. By this isomorphism we endow $\operatorname{Tor}_{\mathbb{Z}[m]}(\mathbb{Z}[K], \mathbb{Z})$ with a bigraded algebra structure.

We introduce a factor algebra

$$
R^{*}(K)=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] /\left(v_{i}^{2}=u_{i} v_{i}=0, i=1, \ldots, m\right)
$$

with the same grading and differential as in $\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]$.

We introduce a factor algebra

$$
R^{*}(K)=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] /\left(v_{i}^{2}=u_{i} v_{i}=0, i=1, \ldots, m\right)
$$

with the same grading and differential as in $\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]$. Let

$$
\rho: \Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] \rightarrow R^{*}(K)
$$

be the projection.

We introduce a factor algebra

$$
R^{*}(K)=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] /\left(v_{i}^{2}=u_{i} v_{i}=0, i=1, \ldots, m\right)
$$

with the same grading and differential as in $\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]$. Let

$$
\rho: \wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] \rightarrow R^{*}(K)
$$

be the projection.
The algebra $R^{*}(K)$ has a finite additive basis consisting of the monomials of the form $u_{\tau} v_{\sigma}$ where $\sigma \in K$ and $\tau \subset[m] \backslash \sigma$.

We introduce a factor algebra

$$
R^{*}(K)=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] /\left(v_{i}^{2}=u_{i} v_{i}=0, i=1, \ldots, m\right)
$$

with the same grading and differential as in $\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]$. Let

$$
\rho: \wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] \rightarrow R^{*}(K)
$$

be the projection.
The algebra $R^{*}(K)$ has a finite additive basis consisting of the monomials of the form $u_{\tau} v_{\sigma}$ where $\sigma \in K$ and $\tau \subset[m] \backslash \sigma$. Therefore we have an additive inclusion

$$
\iota: R^{*}(K) \rightarrow \Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]
$$

which satisfies $\rho \cdot \iota=i d$.

Lemma (1.3)

The quotient map $\rho: \Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] \rightarrow R^{*}(K)$ induces an isomorphism in cohomology.

By this lemma we have $\operatorname{Tor}_{\mathbb{Z}[m]}(\mathbb{Z}[K], \mathbb{Z}) \cong H\left[R^{*}(K), d\right]$ as algebras.

Lemma (1.3)

The quotient map $\rho: \Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] \rightarrow R^{*}(K)$ induces an isomorphism in cohomology.

By this lemma we have $\operatorname{Tor}_{\mathbb{Z}[m]}(\mathbb{Z}[K], \mathbb{Z}) \cong H\left[R^{*}(K), d\right]$ as algebras.

Proof of Lemma 1.3.

We introduce intermediate factor algebras

$$
R^{*}(K)_{j}=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] /\left(v_{i}^{2}=u_{i} v_{i}=0, i=1, \ldots, j\right)
$$

for $j=0, \cdots, m$.

Lemma (1.3)

The quotient map $\rho: \Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] \rightarrow R^{*}(K)$ induces an isomorphism in cohomology.

By this lemma we have $\operatorname{Tor}_{\mathbb{Z}[m]}(\mathbb{Z}[K], \mathbb{Z}) \cong H\left[R^{*}(K), d\right]$ as algebras.

Proof of Lemma 1.3.

We introduce intermediate factor algebras

$$
R^{*}(K)_{j}=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] /\left(v_{i}^{2}=u_{i} v_{i}=0, i=1, \ldots, j\right)
$$

for $j=0, \cdots, m$. The quotient map $\rho: \Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] \rightarrow R^{*}(K)$ factors as

$$
\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]=R^{*}(K)_{0} \rightarrow R^{*}(K)_{1} \rightarrow \cdots \rightarrow R^{*}(K)_{m}=R^{*}(K) .
$$

Lemma (1.3)

The quotient map $\rho: \Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] \rightarrow R^{*}(K)$ induces an isomorphism in cohomology.

By this lemma we have $\operatorname{Tor}_{\mathbb{Z}[m]}(\mathbb{Z}[K], \mathbb{Z}) \cong H\left[R^{*}(K), d\right]$ as algebras.

Proof of Lemma 1.3.

We introduce intermediate factor algebras

$$
R^{*}(K)_{j}=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] /\left(v_{i}^{2}=u_{i} v_{i}=0, i=1, \ldots, j\right)
$$

for $j=0, \cdots, m$. The quotient map $\rho: \Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K] \rightarrow R^{*}(K)$ factors as
$\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[K]=R^{*}(K)_{0} \rightarrow R^{*}(K)_{1} \rightarrow \cdots \rightarrow R^{*}(K)_{m}=R^{*}(K)$.
To prove that ρ is an isomorphism, we show that all maps $\rho_{j}: R^{*}(K)_{j} \rightarrow R^{*}(K)_{j+1}$ are isomorphic for $j=0,1, \cdots, m-1$.

Proof of Lemma 1.3.

$\rho_{j}: R^{*}(K)_{j} \rightarrow R^{*}(K)_{j+1}$ is surjective and its kernel is

$$
u_{j+1} v_{j+1} R^{*}(K)_{j}+v_{j+1}^{2} R^{*}(K)_{j}
$$

Proof of Lemma 1.3.

$\rho_{j}: R^{*}(K)_{j} \rightarrow R^{*}(K)_{j+1}$ is surjective and its kernel is

$$
u_{j+1} v_{j+1} R^{*}(K)_{j}+v_{j+1}^{2} R^{*}(K)_{j} .
$$

Since, for $f, g \in R^{*}(K)_{j}$, we have

$$
d\left(u_{j+1} v_{j+1} f+v_{j+1}^{2} g\right)=-u_{j+1} v_{j+1} d f+v_{j+1}^{2}(f+d g)
$$

it is easy to see that the $H\left[u_{j+1} v_{j+1} R^{*}(K)_{j}+v_{j+1}^{2} R^{*}(K)_{j}, d\right]=0$.

Proof of Lemma 1.3.

$\rho_{j}: R^{*}(K)_{j} \rightarrow R^{*}(K)_{j+1}$ is surjective and its kernel is

$$
u_{j+1} v_{j+1} R^{*}(K)_{j}+v_{j+1}^{2} R^{*}(K)_{j}
$$

Since, for $f, g \in R^{*}(K)_{j}$, we have

$$
d\left(u_{j+1} v_{j+1} f+v_{j+1}^{2} g\right)=-u_{j+1} v_{j+1} d f+v_{j+1}^{2}(f+d g)
$$

it is easy to see that the $H\left[u_{j+1} v_{j+1} R^{*}(K)_{j}+v_{j+1}^{2} R^{*}(K)_{j}, d\right]=0$. By the long exact sequence associated with the short exact sequence of cochain complexes

$$
0 \rightarrow u_{j+1} v_{j+1} R^{*}(K)_{j}+v_{j+1}^{2} R^{*}(K)_{j} \rightarrow R^{*}(K)_{j} \rightarrow R^{*}(K)_{j+1} \rightarrow 0
$$

and the fact above we see that $\rho_{j}: R^{*}(K)_{j} \rightarrow R^{*}(K)_{j+1}$ is isomorphic.

Cellular cochain complex

Recall that

$$
Z_{K}=Z_{K}\left(D^{2}, S^{1}\right)=\bigcup_{\sigma \in K}\left(D^{2}, S^{1}\right)^{\sigma}=\bigcup_{\sigma \in K}\left(D^{2}\right)^{\sigma} \times\left(S^{1}\right)^{[m] \backslash \sigma}
$$

Cellular cochain complex

Recall that

$$
Z_{K}=Z_{K}\left(D^{2}, S^{1}\right)=\bigcup_{\sigma \in K}\left(D^{2}, S^{1}\right)^{\sigma}=\bigcup_{\sigma \in K}\left(D^{2}\right)^{\sigma} \times\left(S^{1}\right)^{[m] \backslash \sigma}
$$

D^{2} has a cell decomposition with 3 closed cells, that is, 1 , $T=S^{1}=\partial D^{2}$ and $D=D^{2}$ of dimension 0,1 and 2 . The polydisc $\left(D^{2}\right)^{m}$ has the product cell decomposition.

Cellular cochain complex

Recall that

$$
Z_{K}=Z_{K}\left(D^{2}, S^{1}\right)=\bigcup_{\sigma \in K}\left(D^{2}, S^{1}\right)^{\sigma}=\bigcup_{\sigma \in K}\left(D^{2}\right)^{\sigma} \times\left(S^{1}\right)^{[m] \backslash \sigma}
$$

D^{2} has a cell decomposition with 3 closed cells, that is, 1 , $T=S^{1}=\partial D^{2}$ and $D=D^{2}$ of dimension 0,1 and 2 . The polydisc $\left(D^{2}\right)^{m}$ has the product cell decomposition. For each pair of subsets $\sigma, \tau \subset[m], \sigma \cap \tau=\emptyset$ we define

$$
T(\sigma, \tau)=D^{\sigma} \times T^{\tau} \times 1^{[m] \backslash(\sigma \cup \tau)}
$$

Cellular cochain complex

Recall that

$$
Z_{K}=Z_{K}\left(D^{2}, S^{1}\right)=\bigcup_{\sigma \in K}\left(D^{2}, S^{1}\right)^{\sigma}=\bigcup_{\sigma \in K}\left(D^{2}\right)^{\sigma} \times\left(S^{1}\right)^{[m] \backslash \sigma}
$$

D^{2} has a cell decomposition with 3 closed cells, that is, 1 , $T=S^{1}=\partial D^{2}$ and $D=D^{2}$ of dimension 0,1 and 2 . The polydisc $\left(D^{2}\right)^{m}$ has the product cell decomposition. For each pair of subsets $\sigma, \tau \subset[m], \sigma \cap \tau=\emptyset$ we define

$$
T(\sigma, \tau)=D^{\sigma} \times T^{\tau} \times 1^{[m] \backslash(\sigma \cup \tau)}
$$

Thus
Lemma (2.1)

$$
Z_{K}=\bigcup_{\sigma \in K,} \bigcup_{\tau \subset[m] \backslash \sigma} T(\sigma, \tau) .
$$

The cellular chain complex $C_{*}\left(Z_{K}\right)$ is a chain complex whose i th chain $C_{i}\left(Z_{K}\right)$ has a free basis $T(\sigma, \tau), \sigma \in K, \tau \subset[m] \backslash \sigma$ with $i=2|\sigma|+|\tau|$. Its boundary operator ∂ is given by

$$
\partial T(\sigma, \tau)=\sum_{j \in \sigma} \operatorname{sgn}(j, \tau) T(\sigma \backslash\{j\}, \tau \cup\{j\})
$$

where we put $\operatorname{sgn}(j, \tau)=(-1)^{\sharp\{s \in \tau \mid s<j\}}$.

The cellular chain complex $C_{*}\left(Z_{K}\right)$ is a chain complex whose i th chain $C_{i}\left(Z_{K}\right)$ has a free basis $T(\sigma, \tau), \sigma \in K, \tau \subset[m] \backslash \sigma$ with $i=2|\sigma|+|\tau|$. Its boundary operator ∂ is given by

$$
\partial T(\sigma, \tau)=\sum_{j \in \sigma} \operatorname{sgn}(j, \tau) T(\sigma \backslash\{j\}, \tau \cup\{j\})
$$

where we put $\operatorname{sgn}(j, \tau)=(-1)^{\sharp\{s \in \tau \mid s<j\}}$.
Example.

$$
\partial(T \times D \times T \times D)=-T \times T \times T \times D+T \times D \times T \times T
$$

The cellular chain complex $C_{*}\left(Z_{K}\right)$ is a chain complex whose i th chain $C_{i}\left(Z_{K}\right)$ has a free basis $T(\sigma, \tau), \sigma \in K, \tau \subset[m] \backslash \sigma$ with $i=2|\sigma|+|\tau|$. Its boundary operator ∂ is given by

$$
\partial T(\sigma, \tau)=\sum_{j \in \sigma} \operatorname{sgn}(j, \tau) T(\sigma \backslash\{j\}, \tau \cup\{j\})
$$

where we put $\operatorname{sgn}(j, \tau)=(-1)^{\sharp\{s \in \tau \mid s<j\}}$.
Example.

$$
\partial(T \times D \times T \times D)=-T \times T \times T \times D+T \times D \times T \times T
$$

Its dual cochain complex is the cellular cochain complex $C^{*}\left(Z_{K}\right)$, which has an additive basis consisting of the cochains $T(\sigma, \tau)^{*}$. The coboundary operator is the dual $\delta=\partial^{*}$. It has a natural bigrading defined by bideg $T(\sigma, \tau)^{*}=(-|\tau|, 2|\sigma|+2|\tau|)$, so that $\operatorname{bideg} D=(0,2), \operatorname{bideg} T=(-1,2)$ and $\operatorname{bideg} 1=(0,0)$.

$$
C^{*}\left(Z_{K}\right)=\oplus_{j=0}^{m} C^{*, 2 j}\left(Z_{K}\right)
$$

Since the cohomology of $C^{*}\left(Z_{K}\right)$ is $H^{*}\left(Z_{K} ; \mathbb{Z}\right)$, the cohomology of Z_{K} acquires an additional grading.

$$
H^{k}\left(Z_{K} ; \mathbb{Z}\right)=\oplus_{-i+2 j=k} H^{-i, 2 j}\left(Z_{K}\right)
$$

where $H^{*, 2 j}\left(Z_{K}\right)=H\left[C^{*, 2 j}\left(Z_{K}\right), \delta\right]$.

$$
C^{*}\left(Z_{K}\right)=\oplus_{j=0}^{m} C^{*, 2 j}\left(Z_{K}\right)
$$

Since the cohomology of $C^{*}\left(Z_{K}\right)$ is $H^{*}\left(Z_{K} ; \mathbb{Z}\right)$, the cohomology of Z_{K} acquires an additional grading.

$$
H^{k}\left(Z_{K} ; \mathbb{Z}\right)=\oplus_{-i+2 j=k} H^{-i, 2 j}\left(Z_{K}\right)
$$

where $H^{*, 2 j}\left(Z_{K}\right)=H\left[C^{*, 2 j}\left(Z_{K}\right), \delta\right]$.

Lemma (2.2)

The map

$$
g: R^{*}(K) \rightarrow C^{*}\left(Z_{K}\right), \quad u_{\tau} v_{\sigma} \rightarrow T(\sigma, \tau)^{*}
$$

is an isomorphism of bigraded differential modules. In particular, we have an additive isomorphism

$$
H\left[R^{*}(K)\right] \cong H^{*}\left(Z_{K}\right) .
$$

Proof.

It is trivial that g induces an isomorphism of modules.

Proof.

It is trivial that g induces an isomorphism of modules. So it suffices to show that g commutes with differentials. In $R^{*}(K)$ we have

$$
d\left(u_{\tau} v_{\sigma}\right)=\sum_{j \in \tau} \operatorname{sgn}(j, \tau) u_{\tau \backslash\{j\}} v_{\sigma \cup\{j\}} .
$$

Here we remark that $v_{\sigma \cup\{j\}}=0$ if $\sigma \cup\{j\} \notin K$ by definition.

Proof.

It is trivial that g induces an isomorphism of modules. So it suffices to show that g commutes with differentials. In $R^{*}(K)$ we have

$$
d\left(u_{\tau} v_{\sigma}\right)=\sum_{j \in \tau} \operatorname{sgn}(j, \tau) u_{\tau \backslash\{j\}} v_{\sigma \cup\{j\}} .
$$

Here we remark that $v_{\sigma \cup\{j\}}=0$ if $\sigma \cup\{j\} \notin K$ by definition. On the other hand in $C^{*}\left(Z_{K}\right)$ we have

$$
\delta T(\sigma, \tau)^{*}=\sum_{j \in \tau,} \operatorname{\sigma \cup \{ j\} \in K} \operatorname{sgn}(j, \tau) T(\sigma \cup\{j\}, \tau \backslash\{j\})^{*}
$$

since

$$
\partial T(\sigma, \tau)=\sum_{j \in \sigma} \operatorname{sgn}(j, \tau) T(\sigma \backslash\{j\}, \tau \cup\{j\})
$$

Finally we show that $g: R^{*}(K) \rightarrow C^{*}\left(Z_{K}\right)$ is multiplicative.

Finally we show that $g: R^{*}(K) \rightarrow C^{*}\left(Z_{K}\right)$ is multiplicative. The standard definition of the multiplication in cohomology of a cell complex X via cellular cochain complex is as follows. Consider a composite map of cellular cochain complexes:

$$
C^{*}(X) \otimes C^{*}(X) \xrightarrow{\times} C^{*}(X \times X) \xrightarrow{\tilde{\Delta}^{*}} C^{*}(X)
$$

Finally we show that $g: R^{*}(K) \rightarrow C^{*}\left(Z_{K}\right)$ is multiplicative. The standard definition of the multiplication in cohomology of a cell complex X via cellular cochain complex is as follows. Consider a composite map of cellular cochain complexes:

$$
C^{*}(X) \otimes C^{*}(X) \xrightarrow{\times} C^{*}(X \times X) \xrightarrow{\tilde{\Delta}^{*}} C^{*}(X)
$$

Here the map \times assigns to a cellular cochain $c_{1} \otimes c_{2} \in C^{p}(X) \otimes C^{q}(X)$ the cochain $c_{1} \times c_{2} \in C^{p+q}(X \times X)$ whose value on a cell $e_{1} \times e_{2} \in X \times X$ is $(-1)^{p q} c_{1}\left(e_{1}\right) c_{2}\left(e_{2}\right)$.

Finally we show that $g: R^{*}(K) \rightarrow C^{*}\left(Z_{K}\right)$ is multiplicative.
The standard definition of the multiplication in cohomology of a cell complex X via cellular cochain complex is as follows. Consider a composite map of cellular cochain complexes:

$$
C^{*}(X) \otimes C^{*}(X) \xrightarrow{\times} C^{*}(X \times X) \xrightarrow{\tilde{\Delta}^{*}} C^{*}(X)
$$

Here the map \times assigns to a cellular cochain $c_{1} \otimes c_{2} \in C^{p}(X) \otimes C^{q}(X)$ the cochain $c_{1} \times c_{2} \in C^{p+q}(X \times X)$ whose value on a cell $e_{1} \times e_{2} \in X \times X$ is $(-1)^{p q} c_{1}\left(e_{1}\right) c_{2}\left(e_{2}\right)$. The map $\tilde{\Delta}^{*}$ is induced by a cellular approximation $\tilde{\Delta}$ of the diagonal map $\Delta: X \rightarrow X \times X$.
In cohomology, the map above induces a multiplication $H^{*}(X) \otimes H^{*}(X) \rightarrow H^{*}(X)$ which does not depend on a choice of cellular approximation.

In the special case $X=Z_{K}$ we may apply the following construction.

In the special case $X=Z_{K}$ we may apply the following construction. Consider a cellular map $\tilde{\Delta}: D^{2} \rightarrow D^{2} \times D^{2}$ which induces a cellular $\left.\operatorname{map} \tilde{\Delta}\right|_{S^{1}}: S^{1} \rightarrow S^{1} \times S^{1}$ which is a cellular approximation of the diagnal map $\Delta: S^{1} \rightarrow S^{1} \times S^{1}$.

In the special case $X=Z_{K}$ we may apply the following construction. Consider a cellular map $\tilde{\Delta}: D^{2} \rightarrow D^{2} \times D^{2}$ which induces a cellular $\left.\operatorname{map} \tilde{\Delta}\right|_{S^{1}}: S^{1} \rightarrow S^{1} \times S^{1}$ which is a cellular approximation of the diagnal map $\Delta: S^{1} \rightarrow S^{1} \times S^{1}$. One of such a map given by for $z=r e^{i \theta} \in D^{2}, 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$ as follows:

$$
\tilde{\Delta}\left(r e^{i \theta}\right)= \begin{cases}\left((1-r)+r e^{2 i \theta}, 1\right) & \text { for } 0 \leq \theta \leq \pi \\ \left(1,(1-r)+r e^{2 i \theta}\right) & \text { for } \pi \leq \theta \leq 2 \pi\end{cases}
$$

In the special case $X=Z_{K}$ we may apply the following construction. Consider a cellular map $\tilde{\Delta}: D^{2} \rightarrow D^{2} \times D^{2}$ which induces a cellular $\left.\operatorname{map} \tilde{\Delta}\right|_{S^{1}}: S^{1} \rightarrow S^{1} \times S^{1}$ which is a cellular approximation of the diagnal map $\Delta: S^{1} \rightarrow S^{1} \times S^{1}$. One of such a map given by for $z=r e^{i \theta} \in D^{2}, 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$ as follows:

$$
\tilde{\Delta}\left(r e^{i \theta}\right)= \begin{cases}\left((1-r)+r e^{2 i \theta}, 1\right) & \text { for } 0 \leq \theta \leq \pi \\ \left(1,(1-r)+r e^{2 i \theta}\right) & \text { for } \pi \leq \theta \leq 2 \pi\end{cases}
$$

Taking an m-fold product, we obtain a cellular approximation $\tilde{\Delta}:\left(D^{2}\right)^{m} \rightarrow\left(D^{2}\right)^{m} \times\left(D^{2}\right)^{m}$ which restricts to a cellular approximation for the diagonal map of Z_{K} for arbitrary K.

$$
\left.\begin{array}{ccc}
Z_{K} & \xrightarrow{\tilde{\Delta}} & Z_{K} \times Z_{K} \\
\downarrow & & \downarrow \\
\left(D^{2}\right)^{m} & \xrightarrow{\tilde{\Delta}} & \left(D^{2}\right)^{m}
\end{array}\right) \times\left(D^{2}\right)^{m}
$$

Lemma (2.3)

The cellular cochain algebra $C^{*}\left(Z_{K}\right)$ defined by the diagonal approximation $\tilde{\Delta}: Z_{K} \rightarrow Z_{K} \times Z_{K}$ is multiplicatively isomorphic to $R^{*}(K)$. Therefore, we get an isomorphism of cohomology algebras:

$$
H\left[R^{*}(K)\right] \cong H^{*}\left(Z_{K} ; \mathbb{Z}\right)
$$

Lemma (2.3)

The cellular cochain algebra $C^{*}\left(Z_{K}\right)$ defined by the diagonal approximation $\tilde{\Delta}: Z_{K} \rightarrow Z_{K} \times Z_{K}$ is multiplicatively isomorphic to $R^{*}(K)$. Therefore, we get an isomorphism of cohomology algebras:

$$
H\left[R^{*}(K)\right] \cong H^{*}\left(Z_{K} ; \mathbb{Z}\right)
$$

Proof of Lemma 2.3.

We first consider the case $m=1$ and $K=\Delta^{[1]}$, that is, $Z_{K}=D^{2}$. The cellular cochain algebra of D^{2} is additively generated by the cochains $1 \in C^{0}\left(D^{2}\right), T^{*} \in C^{1}\left(D^{2}\right)$ and $D^{*} \in C^{2}\left(D^{2}\right)$ dual to the corresponding cells. The multiplication defined in $C^{*}\left(D^{2}\right)$ is trivial. To check this it suffices to show that $T^{*} \cdot T^{*}=0$ by degree reason:

$$
T^{*} \cdot T^{*}\left(D^{2}\right)=\left(T^{*} \otimes T^{*}\right)\left(\tilde{\Delta}\left(D^{2}\right)\right)=\left(T^{*} \otimes T^{*}\right)\left(D^{2} \times 1+1 \times D^{2}\right)=0
$$

Proof of Lemma 2.3.

Thus we get a multiplicative isomorphism

$$
R^{*}\left(\Delta^{[1]}\right)=\Lambda[u] \otimes \mathbb{Z}[v] /\left(v^{2}=u v=0\right) \rightarrow C^{*}\left(D^{2}\right)
$$

Proof of Lemma 2.3.

Thus we get a multiplicative isomorphism

$$
R^{*}\left(\Delta^{[1]}\right)=\Lambda[u] \otimes \mathbb{Z}[v] /\left(v^{2}=u v=0\right) \rightarrow C^{*}\left(D^{2}\right)
$$

By taking the tensor products we obtain a multiplicative isomorphism

$$
R^{*}\left(\Delta^{[m]}\right)=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[m] /\left(v_{i}^{2}=u_{i} v_{i}=0\right) \rightarrow C^{*}\left(\left(D^{2}\right)^{m}\right)
$$

Proof of Lemma 2.3.

Thus we get a multiplicative isomorphism

$$
R^{*}\left(\Delta^{[1]}\right)=\Lambda[u] \otimes \mathbb{Z}[v] /\left(v^{2}=u v=0\right) \rightarrow C^{*}\left(D^{2}\right)
$$

By taking the tensor products we obtain a multiplicative isomorphism

$$
R^{*}\left(\Delta^{[m]}\right)=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[m] /\left(v_{i}^{2}=u_{i} v_{i}=0\right) \rightarrow C^{*}\left(\left(D^{2}\right)^{m}\right)
$$

Since $Z_{K} \subset\left(D^{2}\right)^{m}$ is a cell subcomplex and the cellular approximation $\tilde{\Delta}:\left(D^{2}\right)^{m} \rightarrow\left(D^{2}\right)^{m} \times\left(D^{2}\right)^{m}$ induces a cellular approximation of Z_{K}, we obtain a multiplicative map $q: C^{*}\left(\left(D^{2}\right)^{m}\right) \rightarrow C^{*}\left(Z_{K}\right)$. Now consider the commutative diagram

\[

\]

Proof of Lemma 2.3.

Now consider the commutative diagram

\[

\]

Here the maps p, q and f are multiplicative, while g is an additive isomorphism. Since p is onto, g is also a multiplicative isomorphism.

Hochster's theorem

Since in $C^{*}\left(Z_{K}\right)$ we have

$$
\delta T(\sigma, \tau)^{*}=\sum_{j \in \tau,} \sum_{\sigma \cup\{j\} \in K} \operatorname{sgn}(j, \tau) T(\sigma \cup\{j\}, \tau \backslash\{j\})^{*},
$$

$C^{*}\left(Z_{K}\right)$ is a direct sum of smaller subcomplexes as

$$
C^{*}\left(Z_{K}\right)=\bigoplus_{\tau \in[m]} C^{*, 2 \tau}\left(Z_{K}\right)
$$

where $C^{*, 2 \tau}\left(Z_{K}\right)$ is the subcomplex generated by the cochains $T(\sigma, \tau \backslash \sigma)^{*}$ with $\sigma \subset \tau$ and $\sigma \in K$.

Hochster's theorem

Since in $C^{*}\left(Z_{K}\right)$ we have

$$
\delta T(\sigma, \tau)^{*}=\sum_{j \in \tau, \sigma \cup\{j\} \in K} \operatorname{sgn}(j, \tau) T(\sigma \cup\{j\}, \tau \backslash\{j\})^{*},
$$

$C^{*}\left(Z_{K}\right)$ is a direct sum of smaller subcomplexes as

$$
C^{*}\left(Z_{K}\right)=\bigoplus_{\tau \in[m]} C^{*, 2 \tau}\left(Z_{K}\right)
$$

where $C^{*, 2 \tau}\left(Z_{K}\right)$ is the subcomplex generated by the cochains $T(\sigma, \tau \backslash \sigma)^{*}$ with $\sigma \subset \tau$ and $\sigma \in K$. Since

$$
\operatorname{bideg} T(\sigma, \tau)^{*}=(-|\tau|, 2|\sigma|+2|\tau|)
$$

we have

$$
H^{-i, 2 j}\left(Z_{K}\right)=\bigoplus_{\tau \in[m],|\tau|=j} H^{-i, 2 \tau}\left(Z_{K}\right)
$$

where $H^{-i, 2 \tau}\left(Z_{K}\right)=H^{-i}\left[C^{*, 2 \tau}\left(Z_{K}\right)\right]$.

Recall the join of two simplicial complexes. Given two simplicial complexes K_{1} and K_{2} with disjoint vertex sets V_{1} and V_{2} respectively, their join $K_{1} * K_{2}$ is defined as

$$
K_{1} * K_{2}=\left\{\sigma_{1} \sqcup \sigma_{2} \subset V_{1} \sqcup V_{2} \mid \sigma_{i} \in K_{i} \text { for } i=1,2\right\} .
$$

Recall the join of two simplicial complexes. Given two simplicial complexes K_{1} and K_{2} with disjoint vertex sets V_{1} and V_{2} respectively, their join $K_{1} * K_{2}$ is defined as

$$
K_{1} * K_{2}=\left\{\sigma_{1} \sqcup \sigma_{2} \subset V_{1} \sqcup V_{2} \mid \sigma_{i} \in K_{i} \text { for } i=1,2\right\} .
$$

Now we introduce a multiplication in the sum

$$
\bigoplus_{p \geq-1, I \subset[m]} \tilde{H}^{p}\left(K_{l}\right)
$$

where K_{I} is the full subcomplex and $\tilde{H}^{-1}(\emptyset)=\mathbb{Z}$.

Recall the join of two simplicial complexes. Given two simplicial complexes K_{1} and K_{2} with disjoint vertex sets V_{1} and V_{2} respectively, their join $K_{1} * K_{2}$ is defined as

$$
K_{1} * K_{2}=\left\{\sigma_{1} \sqcup \sigma_{2} \subset V_{1} \sqcup V_{2} \mid \sigma_{i} \in K_{i} \text { for } i=1,2\right\} .
$$

Now we introduce a multiplication in the sum

$$
\bigoplus_{p \geq-1, I \subset[m]} \tilde{H}^{p}\left(K_{l}\right)
$$

where K_{I} is the full subcomplex and $\tilde{H}^{-1}(\emptyset)=\mathbb{Z}$.
For $I, J \subset[m]$ and $\alpha \in \tilde{H}^{*}\left(K_{l}\right)$ and $\beta \in \tilde{H}^{*}\left(K_{J}\right)$ we define the product $\alpha \cdot \beta$ as follows.

Assume that $I \cap J=\emptyset$. Then we have an inclusion of subcomplexes

$$
i: K_{I \sqcup J} \hookrightarrow K_{I} * K_{J}, \quad \sigma \mapsto(\sigma \cap I) \sqcup(\sigma \cap J)
$$

and an injection of reduced simplicial cochains

$$
f: \tilde{C}^{p}\left(K_{l}\right) \otimes \tilde{C}^{q}\left(K_{l}\right) \rightarrow C^{p+q+1}\left(K_{l} * K_{J}\right) .
$$

Assume that $I \cap J=\emptyset$. Then we have an inclusion of subcomplexes

$$
i: K_{I \sqcup J} \hookrightarrow K_{I} * K_{J}, \quad \sigma \mapsto(\sigma \cap I) \sqcup(\sigma \cap J)
$$

and an injection of reduced simplicial cochains

$$
f: \tilde{C}^{p}\left(K_{l}\right) \otimes \tilde{C}^{q}\left(K_{l}\right) \rightarrow C^{p+q+1}\left(K_{l} * K_{J}\right) .
$$

Now we define

$$
\alpha \cdot \beta= \begin{cases}0, & I \cap J \neq \emptyset \\ i^{*} f(\alpha \otimes \beta) \in H^{p+q+1}\left(K_{\text {I }}\right), & I \cap J=\emptyset\end{cases}
$$

Theorem (Baskakov '02)
There are isomorphisms

$$
\tilde{H}^{p}\left(K_{l}\right) \stackrel{\cong}{\leftrightarrows} H^{p+1-|I|, 2 l}\left(Z_{K}\right)
$$

which induce a ring isomorphism

$$
\bigoplus_{p \geq-1, I \subset[m]} \tilde{H}^{p}\left(K_{l}\right) \cong \xlongequal{\cong} H^{*}\left(Z_{K}\right) .
$$

Theorem (Baskakov '02)

There are isomorphisms

$$
\tilde{H}^{p}\left(K_{l}\right) \stackrel{\cong}{\leftrightarrows} H^{p+1-|I|, 2 l}\left(Z_{K}\right)
$$

which induce a ring isomorphism

$$
\bigoplus_{p \geq-1, I \subset[m]} \tilde{H}^{p}\left(K_{l}\right) \cong \xlongequal{\cong} H^{*}\left(Z_{K}\right) .
$$

Proof of Baskakov's theorem.

Define a map of cochain complexes

$$
\gamma: \tilde{C}^{p}\left(K_{l}\right) \rightarrow C^{p+1-|I|, 2 l}\left(Z_{K}\right), \quad \sigma^{*} \mapsto \varepsilon(\sigma) T(\sigma, I \backslash \sigma)^{*},
$$

where $\varepsilon(\sigma)=(-1)^{\sharp\{(s, t) \in(\backslash \backslash \sigma) \times \sigma \mid s>t\}}$. Check that $\operatorname{bideg} T(\sigma, I \backslash \sigma)^{*}=(-|I \backslash \sigma|, 2|\sigma|+2|I \backslash \sigma|)=(p+1-|I|, 2|I|)$.

Proof of Baskakov's theorem.
It is easy to see that γ is an isomorphism of modules.

Proof of Baskakov's theorem.

It is easy to see that γ is an isomorphism of modules. To check that γ is a cochain map, we use the isomorphism given in Lemma 2.2. So

$$
\gamma\left(\sigma^{*}\right)=\varepsilon(\sigma) u_{I \backslash \sigma} v_{\sigma}
$$

Proof of Baskakov's theorem.

It is easy to see that γ is an isomorphism of modules. To check that γ is a cochain map, we use the isomorphism given in Lemma 2.2. So

$$
\gamma\left(\sigma^{*}\right)=\varepsilon(\sigma) u_{I \backslash \sigma} v_{\sigma}
$$

In $C^{*}\left(K_{l}\right)$ we have

$$
\delta \sigma^{*}=\sum_{j \notin \sigma,} \operatorname{sg\cup \{ j\} \in K_{I}}{\operatorname{sgn}(j, \tau)(\sigma \cup\{j\})^{*} .}^{\text {. }}
$$

Proof of Baskakov's theorem.

It is easy to see that γ is an isomorphism of modules. To check that γ is a cochain map, we use the isomorphism given in Lemma 2.2. So

$$
\gamma\left(\sigma^{*}\right)=\varepsilon(\sigma) u_{/ \backslash \sigma} v_{\sigma}
$$

$\ln C^{*}\left(K_{l}\right)$ we have

$$
\delta \sigma^{*}=\sum_{j \notin \sigma,} \operatorname{sg\cup \{ j\} \in K_{I}} \operatorname{sgn}(j, \tau)(\sigma \cup\{j\})^{*} .
$$

On the other hand

$$
\begin{aligned}
d\left(u_{\backslash \backslash \sigma} v_{\sigma}\right) & =\sum_{j \in ハ \backslash \sigma, \sigma \cup\{j\} \in K} \operatorname{sgn}(j, I \backslash \sigma) u_{\backslash \backslash(\sigma \cup\{j\})} v_{\sigma \cup\{j\}}, \\
& =\sum_{j \notin \sigma, \sigma \cup\{j\} \in K_{l}} \operatorname{sgn}(j, I \backslash \sigma) u_{\backslash \backslash(\sigma \cup\{j\})} v_{\sigma \cup\{j\}} .
\end{aligned}
$$

Proof of Baskakov's theorem.

Now we have to do is to check that

$$
\begin{aligned}
& \sharp\{s \in I \backslash \sigma \mid s<j\}+\sharp\{(s, t) \in(I \backslash(\sigma \cup\{j\})) \times(\sigma \cup\{j\}) \mid s>t\} \\
& \equiv \sharp\{(s, t) \in(I \backslash \sigma) \times \sigma \mid s>t\}+\sharp\{s \in I \backslash \sigma \mid s<j\} \quad(\bmod 2) .
\end{aligned}
$$

Proof of Baskakov's theorem.

Now we have to do is to check that

$$
\begin{aligned}
& \sharp\{s \in I \backslash \sigma \mid s<j\}+\sharp\{(s, t) \in(I \backslash(\sigma \cup\{j\})) \times(\sigma \cup\{j\}) \mid s>t\} \\
& \equiv \sharp\{(s, t) \in(I \backslash \sigma) \times \sigma \mid s>t\}+\sharp\{s \in I \backslash \sigma \mid s<j\} \quad(\bmod 2) .
\end{aligned}
$$

In $R^{*}(K)$ we have

$$
u_{\backslash \backslash \sigma} v_{\sigma} u_{J \backslash \tau} v_{\tau}= \begin{cases}0 & I \cap J \neq \emptyset, \\ u_{(I \sqcup J) \backslash(\sigma \sqcup \tau)} v_{\sigma \cup \tau} & I \cap J=\emptyset,\end{cases}
$$

since $u_{i} u_{i}=u_{i} v_{i}=v_{i} v_{i}=0$. Moreover, if $\sigma \cup \tau \notin K$, then $v_{\sigma \cup \tau}=0$ by definition. This multiplicative structure coincides with the definition.

Corollary

A simplicial complex K is Golod over \mathbf{k} if and only if for every pair $I, J \subset[m]$ such that $I \cap J=\emptyset$ the composite of maps

$$
\tilde{H}^{p}\left(K_{l} ; \mathbf{k}\right) \otimes \tilde{H}^{q}\left(K_{J} ; \mathbf{k}\right) \rightarrow \tilde{H}^{p+q+1}\left(K_{l} * K_{J} ; \mathbf{k}\right) \rightarrow \tilde{H}^{p+q+1}\left(K_{l \sqcup J} ; \mathbf{k}\right)
$$

is trivial.

Corollary

A simplicial complex K is Golod over \mathbf{k} if and only if for every pair $I, J \subset[m]$ such that $I \cap J=\emptyset$ the composite of maps

$$
\tilde{H}^{p}\left(K_{l} ; \mathbf{k}\right) \otimes \tilde{H}^{q}\left(K_{J} ; \mathbf{k}\right) \rightarrow \tilde{H}^{p+q+1}\left(K_{l} * K_{J} ; \mathbf{k}\right) \rightarrow \tilde{H}^{p+q+1}\left(K_{l \sqcup J} ; \mathbf{k}\right)
$$

is trivial.

Corollary

If a simplicial complex K is Golod over \mathbf{k}, then so is its full subcomplex $K_{\text {I }}$ for every $I \subset[m]$.

Let K be a simplicial complex. Then the cohomology ring of the real moment-angle complex is given as

$$
H^{p}\left(Z_{K}\left(D^{1}, S^{0}\right)\right) \cong \bigoplus_{I \subset[m]} \tilde{H}^{p-1}\left(K_{l}\right)
$$

The multiplication is given by the following formula under the identification above.

$$
\begin{aligned}
\tilde{H}^{p-1}\left(K_{l}\right) \otimes \tilde{H}^{q-1}\left(K_{J}\right) \rightarrow & \tilde{H}^{p-1}\left(K_{\text {I〇Jc }}\right) \otimes \tilde{H}^{q-1}\left(K_{J}\right) \\
& \cong \tilde{H}^{p+q-1}\left(K_{I \cap J c} * K_{J}\right) \rightarrow \tilde{H}^{p+q-1}\left(K_{l \cup J}\right)
\end{aligned}
$$

Theorem

Let K be a simplicial complex. Then the cohomology ring of the real moment-angle complex is given as

$$
H^{p}\left(Z_{K}\left(D^{1}, S^{0}\right)\right) \cong \bigoplus_{l \subset[m]} \tilde{H}^{p-1}\left(K_{l}\right)
$$

The multiplication is given by the following formula under the identification above.

$$
\begin{aligned}
\tilde{H}^{p-1}\left(K_{l}\right) \otimes \tilde{H}^{q-1}\left(K_{J}\right) \rightarrow & \tilde{H}^{p-1}\left(K_{I \cap J c}\right) \otimes \tilde{H}^{q-1}\left(K_{J}\right) \\
& \cong \tilde{H}^{p+q-1}\left(K_{I \cap J c} * K_{J}\right) \rightarrow \tilde{H}^{p+q-1}\left(K_{I \cup J}\right)
\end{aligned}
$$

Corollary

A simplicial complex K is Golod over \mathbf{k} if and only if the cohomology ring of the real moment-angle complex $H^{*}\left(Z_{K}\left(D^{1}, S^{0}\right) ; \mathbf{k}\right)$ has the trivial multiplication.

