Topology of Polyhedral products and Golod property of Stanley-Reisner ring, III

Kouyemon Iriye (OPU)

21 February 2014; Matsumoto

Plan of talks

- First day. Main results and topological background.
- Second day. Bridge between algebra and topology.
- Today. Sketch of Proofs.
 - Stratification
 - Splitting of Stratification
 - Generalization

Theorem (I. & Kishimoto '13 and '14)

If the Alexander dual of K is SCM over \mathbb{Z} and each X_i is a based CW-complex,

$$Z_{\mathcal{K}}(C\underline{X},\underline{X})\simeq igvee_{\emptyset
eq I\subset [m]}|\Sigma\mathcal{K}_{I}|\wedge\widehat{X}^{I}|$$

where K_I is the full subcomplex of K on I and $\hat{X}^I = \bigwedge_{i \in I} X_i$.

Theorem (I. & Kishimoto '13 and '14)

If the Alexander dual of K is SCM over \mathbb{Z} and each X_i is a based CW-complex,

$$Z_{\mathcal{K}}(C\underline{X},\underline{X})\simeq igvee_{\emptyset
eq I\subset [m]}|\Sigma \mathcal{K}_{I}|\wedge \widehat{X}^{I}|$$

where K_I is the full subcomplex of K on I and $\hat{X}^I = \bigwedge_{i \in I} X_i$.

We prove the theorem by the following steps.

• We introduce a stratification on real moment-angle complex.

Theorem (I. & Kishimoto '13 and '14)

If the Alexander dual of K is SCM over \mathbb{Z} and each X_i is a based CW-complex,

$$Z_{\mathcal{K}}(C\underline{X},\underline{X})\simeq igvee_{\emptyset
eq I\subset [m]}|\Sigma \mathcal{K}_{I}|\wedge \widehat{X}^{I}$$

where K_I is the full subcomplex of K on I and $\hat{X}^I = \bigwedge_{i \in I} X_i$.

We prove the theorem by the following steps.

- We introduce a stratification on real moment-angle complex.
- We show that the stratification is split.

Theorem (I. & Kishimoto '13 and '14)

If the Alexander dual of K is SCM over \mathbb{Z} and each X_i is a based CW-complex,

$$Z_{\mathcal{K}}(C\underline{X},\underline{X})\simeq igvee_{\emptyset
eq I\subset [m]}|\Sigma \mathcal{K}_{I}|\wedge \widehat{X}^{I}$$

where K_I is the full subcomplex of K on I and $\hat{X}^I = \bigwedge_{i \in I} X_i$.

We prove the theorem by the following steps.

- We introduce a stratification on real moment-angle complex.
- We show that the stratification is split.
- We generalize the stratification and prove the theorem.

Stratification

Recall that

$$Z_{\mathcal{K}} = Z_{\mathcal{K}}(D^1, S^0) = \bigcup_{\sigma \in \mathcal{K}} (D^1, S^0)^{\sigma} = \bigcup_{\sigma \in \mathcal{K}} (D^1)^{\sigma} \times (S^0)^{[m] \setminus \sigma}$$

where -1 is the base point of $S^0 = \{-1,1\} \subset [-1,1] = D^1$.

Stratification

Recall that

$$Z_{\mathcal{K}} = Z_{\mathcal{K}}(D^1, S^0) = \bigcup_{\sigma \in \mathcal{K}} (D^1, S^0)^{\sigma} = \bigcup_{\sigma \in \mathcal{K}} (D^1)^{\sigma} \times (S^0)^{[m] \setminus \sigma}$$

where -1 is the base point of $S^0 = \{-1, 1\} \subset [-1, 1] = D^1$.

Definition (1.1)

For $i = 0, \ldots, m$, we define

$$Z_{K}^{i} = \bigcup_{I \subset [m], \ |I|=i} Z_{K_{I}}$$

where $Z_{\mathcal{K}_I}$ lies in $\{(x_1, \ldots, x_m) \in (D^1)^m \mid x_j = -1 \text{ for } j \notin I\}$.

Stratification

Recall that

$$Z_{\mathcal{K}} = Z_{\mathcal{K}}(D^1, S^0) = \bigcup_{\sigma \in \mathcal{K}} (D^1, S^0)^{\sigma} = \bigcup_{\sigma \in \mathcal{K}} (D^1)^{\sigma} \times (S^0)^{[m] \setminus \sigma}$$

where -1 is the base point of $S^0 = \{-1, 1\} \subset [-1, 1] = D^1$.

Definition (1.1)

For $i = 0, \ldots, m$, we define

$$Z_K^i = \bigcup_{I \subset [m], \ |I|=i} Z_{K_I}$$

where $Z_{\mathcal{K}_I}$ lies in $\{(x_1, \ldots, x_m) \in (D^1)^m \mid x_j = -1 \text{ for } j \notin I\}.$

Then we get a stratification

$$* = Z_K^0 \subset Z_K^1 \subset \cdots \subset Z_K^{m-1} \subset Z_K^m = Z_K.$$

By analyzing the stratification

$$* = Z_K^0 \subset Z_K^1 \subset \cdots \subset Z_K^{m-1} \subset Z_K^m = Z_K,$$

we will show that Z_K^i is obtained from Z_K^{i-1} by attaching cones along some map $X \to Z_K^{i-1}$.

By analyzing the stratification

$$* = Z_K^0 \subset Z_K^1 \subset \cdots \subset Z_K^{m-1} \subset Z_K^m = Z_K,$$

we will show that Z_K^i is obtained from Z_K^{i-1} by attaching cones along some map $X \to Z_K^{i-1}$.

Definition (1.2)

For a (continuous) map $f: X \to Y$ the mapping cone of f is the space

$$C_f = Y \cup_f CX = (Y \sqcup CX) / \sim,$$

where \sim is generated by the relation $(1, x) \sim f(x) \in Y$. Here $CX = [0, 1] \times X / \{0\} \times X$. C_f is said a space obtained from Y by attaching a cone along a map $f : X \to Y$. The following theorem is the key to understand the homotopy type of mapping cones.

Theorem (1.3)

 $f\simeq g:X\to Y$ then $C_f\simeq C_g.$ In particular, f is null-homotopic, then $C_f\simeq Y\vee \Sigma X.$

The following theorem is the key to understand the homotopy type of mapping cones.

Theorem (1.3)

 $f\simeq g:X\to Y$ then $C_f\simeq C_g.$ In particular, f is null-homotopic, then $C_f\simeq Y\vee \Sigma X.$

Question (1.4)

How to show that Z_K^i is obtained from Z_K^{i-1} by attaching cones along some map $X \to Z_K^{i-1}$?

Let (X, A), (Y, B) be pairs of spaces and $f : X \to Y$ be a map. If $f(A) \subset B$, then f is written as $f : (X, A) \to (Y, B)$. Moreover f induces a homeomorphism $f|_{X \setminus A} : X \setminus A \to Y \setminus B$ and $f : X \to f(X)$ is a quotient map onto a closed subset f(X) in Y, then f is called a relative homeomorphism.

Let (X, A), (Y, B) be pairs of spaces and $f : X \to Y$ be a map. If $f(A) \subset B$, then f is written as $f : (X, A) \to (Y, B)$. Moreover f induces a homeomorphism $f|_{X \setminus A} : X \setminus A \to Y \setminus B$ and $f : X \to f(X)$ is a quotient map onto a closed subset f(X) in Y, then f is called a relative homeomorphism.

Theorem (1.5)

If $f : (CX, X) \rightarrow (Y, B)$ is a relative homeomorphism and B is closed in Y, then Y is homeomorphic to the mapping cone $C_{f|_X}$. Let (X, A), (Y, B) be pairs of spaces and $f : X \to Y$ be a map. If $f(A) \subset B$, then f is written as $f : (X, A) \to (Y, B)$. Moreover f induces a homeomorphism $f|_{X \setminus A} : X \setminus A \to Y \setminus B$ and $f : X \to f(X)$ is a quotient map onto a closed subset f(X) in Y, then f is called a relative homeomorphism.

Theorem (1.5)

If $f : (CX, X) \rightarrow (Y, B)$ is a relative homeomorphism and B is closed in Y, then Y is homeomorphic to the mapping cone $C_{f|_X}$.

Proof.

Define a map $g: B \sqcup CX \to Y$ by defining $g|_B = \text{inclusion}: B \to Y$ and $g|_{CX} = f$. This map induces a map $\tilde{g}: C_{f|_X} = B \cup_{f|_X} CX \to Y$ which is clearly continuous and bijective. By assumption \tilde{g} is a homeomorphism.

• For
$$\sigma \subset \tau \subset [m]$$
, put

$$\mathcal{C}_{\sigma\subset\tau} = \{(x_1,\ldots,x_m)\in (D^1)^m \,|\, x_i = -1, +1 \text{ for } i\in\sigma, \ i\notin\tau\}$$

which is a $(|\tau| - |\sigma|)$ -dimensional face of $(D^1)^m$.

• For
$$\sigma \subset \tau \subset [m]$$
, put
 $C_{\sigma \subset \tau} = \{(x_1, \ldots, x_m) \in (D^1)^m \mid x_i = -1, \pm 1 \text{ for } i \in \sigma, i \notin \tau\}$

which is a $(|\tau| - |\sigma|)$ -dimensional face of $(D^1)^m$.

In particular, vertices of $(D^1)^m$ are

$$C_{\sigma \subset \sigma} = (\varepsilon_1, \ldots, \varepsilon_m), \quad \varepsilon_i = \begin{cases} -1 & i \in \sigma \\ +1 & i \notin \sigma. \end{cases}$$

• For
$$\sigma \subset \tau \subset [m]$$
, put
 $C_{\sigma \subset \tau} = \{(x_1, \dots, x_m) \in (D^1)^m \mid x_i = -1, +1 \text{ for } i \in \sigma, i \notin \tau\}$

which is a $(|\tau| - |\sigma|)$ -dimensional face of $(D^1)^m$.

In particular, vertices of $(D^1)^m$ are

$$C_{\sigma \subset \sigma} = (\varepsilon_1, \ldots, \varepsilon_m), \quad \varepsilon_i = \begin{cases} -1 & i \in \sigma \\ +1 & i \notin \sigma. \end{cases}$$

• A piecewise linear map

$$i_c: |\mathsf{Sd}\Delta^{m-1}| o (D^1)^m, \quad \sigma \mapsto C_{\sigma \subset \sigma}$$

is an embedding, where $\emptyset \neq \sigma \subset [m]$ is a vertex of Sd Δ^{m-1} .

• For
$$\sigma \subset \tau \subset [m]$$
, put
 $C_{\sigma \subset \tau} = \{(x_1, \dots, x_m) \in (D^1)^m \mid x_i = -1, +1 \text{ for } i \in \sigma, i \notin \tau\}$

which is a $(|\tau| - |\sigma|)$ -dimensional face of $(D^1)^m$.

In particular, vertices of $(D^1)^m$ are

$$C_{\sigma \subset \sigma} = (\varepsilon_1, \ldots, \varepsilon_m), \quad \varepsilon_i = \begin{cases} -1 & i \in \sigma \\ +1 & i \notin \sigma. \end{cases}$$

• A piecewise linear map

$$i_c: |\mathsf{Sd}\Delta^{m-1}| o (D^1)^m, \quad \sigma \mapsto \mathcal{C}_{\sigma \subset \sigma}$$

is an embedding, where $\emptyset \neq \sigma \subset [m]$ is a vertex of $\mathrm{Sd}\Delta^{m-1}$. So $i_c(|\mathrm{Sd}\Delta^{m-1}|)$ is the union of all proper faces of $(D^1)^m$ having the vertex $(-1, \ldots, -1)$.

Figure: The embedding $i_c: |\mathsf{Sd}\Delta^2| \to (D^1)^3$

Figure: The embedding $i_c: |\mathsf{Sd}\Delta^2| o (D^1)^3$

Define the embeddings

$$i_c: |\mathsf{Sd}\mathcal{K}| o (D^1)^m, \quad \mathsf{C}(i_c): |\mathsf{C}(\mathsf{Sd}\mathcal{K})| o (D^1)^m$$

as the restriction of the above embedding and the extension of i_c sending the cone point of C(SdK)| to $(1, ..., 1) \in (D^1)^m$, respectively.

By definition, we have

$$Z_{K}^{m} = \bigcup_{\rho \in K} (D^{1})^{\rho} \times (S^{0})^{[m] \setminus \rho}$$
$$= \bigcup_{\substack{\rho \in K, \\ \sigma \subset [m] \setminus \rho}} (D^{1})^{\rho} \times (-1)^{\sigma} \times 1^{[m] \setminus (\rho \cup \sigma)} = \bigcup_{\substack{\sigma \subset \tau \subset [m], \\ \tau - \sigma \in K}} C_{\sigma \subset \tau}$$

By definition, we have

$$Z_{K}^{m} = \bigcup_{\rho \in K} (D^{1})^{\rho} \times (S^{0})^{[m] \setminus \rho}$$
$$= \bigcup_{\substack{\rho \in K, \\ \sigma \subset [m] \setminus \rho}} (D^{1})^{\rho} \times (-1)^{\sigma} \times 1^{[m] \setminus (\rho \cup \sigma)} = \bigcup_{\substack{\sigma \subset \tau \subset [m], \\ \tau - \sigma \in K}} C_{\sigma \subset \tau}$$

 $\quad \text{and} \quad$

$$Z_{K}^{m-1} = \bigcup_{\substack{\emptyset \neq \sigma \subset \tau \subset [m], \\ \tau - \sigma \in K}} C_{\sigma \subset \tau}.$$

By definition, we have

$$Z_{K}^{m} = \bigcup_{\rho \in K} (D^{1})^{\rho} \times (S^{0})^{[m] \setminus \rho}$$
$$= \bigcup_{\substack{\rho \in K, \\ \sigma \subset [m] \setminus \rho}} (D^{1})^{\rho} \times (-1)^{\sigma} \times 1^{[m] \setminus (\rho \cup \sigma)} = \bigcup_{\substack{\sigma \subset \tau \subset [m], \\ \tau - \sigma \in K}} C_{\sigma \subset \tau}$$

 $\quad \text{and} \quad$

$$Z_{K}^{m-1} = \bigcup_{\substack{\emptyset \neq \sigma \subset \tau \subset [m], \\ \tau - \sigma \in K}} C_{\sigma \subset \tau}.$$

and then

$$Z_{K}^{m}-Z_{K}^{m-1}=\bigcup_{\sigma\subset\tau\in K}C_{\sigma\subset\tau}-\bigcup_{\emptyset\neq\sigma\subset\tau\in K}C_{\sigma\subset\tau}.$$

On the other hand,

$$\mathsf{C}(i_c)(|\mathsf{C}(\mathsf{Sd}\mathcal{K})|) = \bigcup_{\sigma \subset \tau \in \mathcal{K}} C_{\sigma \subset \tau}, \quad i_c(|\mathsf{Sd}\mathcal{K}|) = \bigcup_{\emptyset \neq \sigma \subset \tau \in \mathcal{K}} C_{\sigma \subset \tau}.$$

On the other hand,

$$\mathsf{C}(i_c)(|\mathsf{C}(\mathsf{Sd}\mathcal{K})|) = \bigcup_{\sigma \subset \tau \in \mathcal{K}} C_{\sigma \subset \tau}, \quad i_c(|\mathsf{Sd}\mathcal{K}|) = \bigcup_{\emptyset \neq \sigma \subset \tau \in \mathcal{K}} C_{\sigma \subset \tau}.$$

Then the map $\mathsf{C}(i_c): |\mathsf{C}(\mathsf{Sd} \mathcal{K})| o (D^1)^m$ descends to

$$\mathsf{C}(i_c): (|\mathsf{C}(\mathsf{Sd} K)|, |\mathsf{Sd} K|) \to (Z_K^m, Z_K^{m-1})$$

which is a relative homeomorphism since

$$Z_{K}^{m}-Z_{K}^{m-1}=\mathsf{C}(i_{c})(|\mathsf{C}(\mathsf{Sd}K)|)-i_{c}(|\mathsf{Sd}K|).$$

More generally, we have:

Proposition (1.6)

The map

$$\mathsf{C}(i_c): \coprod_{I \subset [m], \ |I|=i} (|\mathsf{C}(\mathsf{Sd}\mathcal{K}_I)|, |\mathsf{Sd}\mathcal{K}_I|) \to (Z_K^i, Z_K^{i-1})$$

is a relative homeomorphism.

More generally, we have:

Proposition (1.6)

The map

$$\mathsf{C}(i_c): \coprod_{I \subset [m], \ |I|=i} (|\mathsf{C}(\mathsf{Sd}\mathcal{K}_I)|, |\mathsf{Sd}\mathcal{K}_I|) \to (Z_{\mathcal{K}}^i, Z_{\mathcal{K}}^{i-1})$$

is a relative homeomorphism.

Corollary (1.7)

 Z_{K}^{i} is obtained from Z_{K}^{i-1} by attaching cones along maps $i_{c} : |SdK_{I}| \rightarrow Z_{K}^{i-1}$ for all $I \subset [m]$ with |I| = i.

Triviality

By the above corollary, the proof of the main theorem for a real moment-angle complex is completed by :

Theorem (2.1)

If the Alexander dual of K is SCM over \mathbb{Z} , then for any i = 1, ..., mand $\emptyset \neq I \subset [m]$ with |I| = i, the map $i_c : |SdK_I| \rightarrow Z_K^{i-1}$ is null homotopic.

Triviality

By the above corollary, the proof of the main theorem for a real moment-angle complex is completed by :

Theorem (2.1)

If the Alexander dual of K is SCM over \mathbb{Z} , then for any i = 1, ..., mand $\emptyset \neq I \subset [m]$ with |I| = i, the map $i_c : |SdK_I| \to Z_K^{i-1}$ is null homotopic.

Since the idea is the same, we sketch the proof of this theorem only for shellable complexes, for simplicity.

Triviality

By the above corollary, the proof of the main theorem for a real moment-angle complex is completed by :

Theorem (2.1)

If the Alexander dual of K is SCM over \mathbb{Z} , then for any i = 1, ..., mand $\emptyset \neq I \subset [m]$ with |I| = i, the map $i_c : |SdK_I| \to Z_K^{i-1}$ is null homotopic.

Since the idea is the same, we sketch the proof of this theorem only for shellable complexes, for simplicity.

There are implications of simplicial complexes:

shifted \Rightarrow vertex-decomposable \Rightarrow shellable \Rightarrow SCM over \mathbb{Z}

pure SCM over $\Bbbk \Leftrightarrow \mathsf{CM}$ over \Bbbk

Definition (2.2)

K is called shellable if there is an ordering of facets F_1, \ldots, F_k (called a shelling ordering) such that the subcomplex

 $\langle F_i \rangle \cap \langle F_1, \ldots, F_{i-1} \rangle$

is pure and (dim $F_i - 1$)-dimensional for i = 2, ..., k.

Definition (2.2)

K is called shellable if there is an ordering of facets F_1, \ldots, F_k (called a shelling ordering) such that the subcomplex

 $\langle F_i \rangle \cap \langle F_1, \ldots, F_{i-1} \rangle$

is pure and (dim $F_i - 1$)-dimensional for i = 2, ..., k.

It is known that:

Lemma (2.3)

If K^* is shellable, so is $(K_I)^*$ for any $\emptyset \neq I \subset [m]$.

Definition (2.2)

K is called shellable if there is an ordering of facets F_1, \ldots, F_k (called a shelling ordering) such that the subcomplex

 $\langle F_i \rangle \cap \langle F_1, \ldots, F_{i-1} \rangle$

is pure and (dim $F_i - 1$)-dimensional for i = 2, ..., k.

It is known that:

Lemma (2.3)

If K^* is shellable, so is $(K_I)^*$ for any $\emptyset \neq I \subset [m]$.

Then it is sufficient to show that $i_c : |SdK| \to Z_K^{m-1}$ is null homotopic. To do this, we try to find a contractible space Δ such that the map $i_c : |SdK| \to Z_K^{m-1}$ factors as

$$|\mathsf{Sd}K| o \Delta o Z_K^{m-1}.$$

• $\rho \subset [m]$ is called a minimal non-face of K if $\rho \notin K$ and $\partial \rho \subset K$.

- $\rho \subset [m]$ is called a minimal non-face of K if $\rho \notin K$ and $\partial \rho \subset K$.
- Let \widehat{K} be a simplicial complex obtained from K by adding all minimal non-faces.

- $\rho \subset [m]$ is called a minimal non-face of K if $\rho \notin K$ and $\partial \rho \subset K$.
- Let \widehat{K} be a simplicial complex obtained from K by adding all minimal non-faces.

Lemma (2.4)

The map $i_c : |SdK| \to Z_K^{m-1}$ factors as

$$|\mathsf{Sd}\mathcal{K}| \xrightarrow{\mathsf{incl}} |\mathsf{Sd}\widehat{\mathcal{K}}| \to Z^{m-1}_{\mathcal{K}}.$$

- $\rho \subset [m]$ is called a minimal non-face of K if $\rho \notin K$ and $\partial \rho \subset K$.
- Let \widehat{K} be a simplicial complex obtained from K by adding all minimal non-faces.

Lemma (2.4)

The map
$$i_c : |\mathsf{Sd}K| \to Z_K^{m-1}$$
 factors as

$$\operatorname{Sd} K| \xrightarrow{\operatorname{incl}} |\operatorname{Sd} \widehat{K}| \to Z_K^{m-1}.$$

Proof.

If $\rho \subset [m]$ is a minimal non-face of K, then

$$i_c(\mathrm{Sd}
ho|) = \bigcup_{\emptyset
eq \sigma \subset
ho} C_{\sigma \subset
ho} \subset \bigcup_{\substack{\emptyset
eq \sigma \subset \tau \subset [m] \\ \tau - \sigma \in K}} C_{\sigma \subset \tau} = Z_K^{m-1}.$$

Proposition (2.5)

If K^* is shellable, there is a simplicial complex Δ such that

$$K \subset \Delta \subset \widehat{K}$$
 and $|\Delta| \simeq *$.

Proposition (2.5)

If K^* is shellable, there is a simplicial complex Δ such that

$$K \subset \Delta \subset \widehat{K}$$
 and $|\Delta| \simeq *$.

We recall the definition of a collapsible complex.

Definition (2.6)

A simplicial complex *L* is obtained from another simplicial complex *K* via an elementary collapse if $L = K \setminus \{\sigma, \tau\}$ and σ is a proper face of τ . This means that τ is the only face in *K* properly containing σ and σ is called free face of *K*. If *L* can be obtained from *K* via a sequence of elementary collapses, then *K* can be collapsed to *L*. If *K* can be collapsed to a 0-simplex $\{\emptyset, \{v\}\}$, then *K* is collapsible.

Lemma (2.7)

If K is collapsible, $|K^*|$ is contractible.

Lemma (2.7)

If K is collapsible, $|K^*|$ is contractible.

Proof.

We assume that L is obtained from K via an elementary collapse, that is, $L = K \setminus \{\sigma, \tau\}$ and σ is a proper face of τ .

Lemma (2.7)

If K is collapsible, $|K^*|$ is contractible.

Proof.

We assume that L is obtained from K via an elementary collapse, that is, $L = K \setminus \{\sigma, \tau\}$ and σ is a proper face of τ . Then $K^* = L^* \setminus \{\tau^c, \sigma^c\}$ with τ^c is a free face of σ^c .

Lemma (2.7)

If K is collapsible, $|K^*|$ is contractible.

Proof.

We assume that *L* is obtained from *K* via an elementary collapse, that is, $L = K \setminus \{\sigma, \tau\}$ and σ is a proper face of τ . Then $K^* = L^* \setminus \{\tau^c, \sigma^c\}$ with τ^c is a free face of σ^c . In fact, $L^* = \{\rho \subset [m] \mid \rho^c \notin L\} = \{\rho \subset [m] \mid \rho^c \notin K \setminus \{\sigma, \tau\}\}\$ $= \{\rho \subset [m] \mid \rho^c \notin K \text{ or } \rho^c = \sigma \text{ or } \rho^c = \tau\}\$ $= K^* \cup \{\tau^c, \sigma^c\}.$

Lemma (2.7)

If K is collapsible, $|K^*|$ is contractible.

Proof.

We assume that *L* is obtained from *K* via an elementary collapse, that is, $L = K \setminus \{\sigma, \tau\}$ and σ is a proper face of τ . Then $K^* = L^* \setminus \{\tau^c, \sigma^c\}$ with τ^c is a free face of σ^c . In fact, $L^* = \{\rho \subset [m] \mid \rho^c \notin L\} = \{\rho \subset [m] \mid \rho^c \notin K \setminus \{\sigma, \tau\}\}$ $= \{\rho \subset [m] \mid \rho^c \notin K \text{ or } \rho^c = \sigma \text{ or } \rho^c = \tau\}$ $= K^* \cup \{\tau^c, \sigma^c\}.$

If *K* is collapsible, then there is a sequence of elementary collapses from *K* to 0-simplex $\{\emptyset, \{1\}\} \subset \Delta^{[m]}$. Then *K*^{*} is homotopy equivalent to $\{\emptyset, \{1\}\}_{[m]}^* = \{\sigma \subset [m] \mid \sigma^c \notin \{\emptyset, \{1\}\}\} = \Delta^{[m]} \setminus \{[m], [2, m]\}$, which is contractible. Therefore, *K*^{*} is contractible.

Let F_1, \ldots, F_k be a shelling ordering of K^* , and let F_{i_1}, \ldots, F_{i_r} be all spanning facets, that is, facets satisfying

 $\langle F_{i_s} \rangle \cap \langle F_1, \ldots, F_{i_s-1} \rangle = \partial F_{i_s}.$

Let F_1, \ldots, F_k be a shelling ordering of K^* , and let F_{i_1}, \ldots, F_{i_r} be all spanning facets, that is, facets satisfying

$$\langle F_{i_s} \rangle \cap \langle F_1, \ldots, F_{i_s-1} \rangle = \partial F_{i_s}.$$

Put

$$\Delta = K \cup F_{i_1}^c \cup \cdots \cup F_{i_r}^c$$

where $F_j^c = [m] - F_j$.

Let F_1, \ldots, F_k be a shelling ordering of K^* , and let F_{i_1}, \ldots, F_{i_r} be all spanning facets, that is, facets satisfying

$$\langle F_{i_s} \rangle \cap \langle F_1, \ldots, F_{i_s-1} \rangle = \partial F_{i_s}.$$

Put

$$\Delta = K \cup F_{i_1}^c \cup \cdots \cup F_{i_r}^c$$

where $F_j^c = [m] - F_j$. Since $F_{i_1}^c, \ldots, F_{i_r}^c$ are minimal non-faces of K, Δ is a simplicial complex satisfying

$$K \subset \Delta \subset \widehat{K}.$$

Let F_1, \ldots, F_k be a shelling ordering of K^* , and let F_{i_1}, \ldots, F_{i_r} be all spanning facets, that is, facets satisfying

$$\langle F_{i_s} \rangle \cap \langle F_1, \ldots, F_{i_s-1} \rangle = \partial F_{i_s}.$$

Put

$$\Delta = K \cup F_{i_1}^c \cup \cdots \cup F_{i_r}^c$$

where $F_j^c = [m] - F_j$. Since $F_{i_1}^c, \ldots, F_{i_r}^c$ are minimal non-faces of K, Δ is a simplicial complex satisfying

$$K \subset \Delta \subset \widehat{K}.$$

On the other hand,

$$\Delta^* = K^* - \{F_{i_1}, \ldots, F_{i_r}\}$$

which is collapsible by definition, implying that $|\Delta|$ is contractible by Lemma 2.7.

Remark

The proof implies that

$$|\Sigma \mathcal{K}| \simeq |\Delta|/|\mathcal{K}| = \bigvee_{s=1}^r S^{m-|\mathcal{F}_{i_s}|-1}.$$

Remark

The proof implies that

$$|\Sigma K| \simeq |\Delta|/|K| = \bigvee_{s=1}^r S^{m-|F_{i_s}|-1}.$$

To see this we need the following theorem.

Theorem (2.8)

In the following homotopy commutative diagram

$$\begin{array}{cccc} A & \stackrel{f}{\longrightarrow} & X \\ \downarrow & & \downarrow \\ B & \stackrel{g}{\longrightarrow} & Y \end{array} \begin{pmatrix} |K| & \longrightarrow & |\Delta| \\ \| & & \downarrow \\ |K| & \longrightarrow & C|K| \end{pmatrix}$$

the vertical maps induce a map between mapping cones $C_f \rightarrow C_g$. Moreover, the vertical maps are homotopy equivalent, then the map $C_f \rightarrow C_g$ is a homotopy equivalent.

Generalization

Define $Z_{K}^{i}(C\underline{X},\underline{X}) \subset Z_{K}(C\underline{X},\underline{X})$ similarly to $Z_{K}^{i} \subset Z_{K}$, that is, $Z_{K}^{i}(C\underline{X},\underline{X}) = \bigcup_{I \subset [m], |I|=i} Z_{K_{I}}(C\underline{X},\underline{X})$

Generalization

Define $Z_{K}^{i}(C\underline{X},\underline{X}) \subset Z_{K}(C\underline{X},\underline{X})$ similarly to $Z_{K}^{i} \subset Z_{K}$, that is, $Z_{K}^{i}(C\underline{X},\underline{X}) = \bigcup_{I \subset [m], |I|=i} Z_{K_{I}}(C\underline{X},\underline{X})$

Then there is a stratification

 $*=Z^0_K(C\underline{X},\underline{X})\subset Z^1_K(C\underline{X},\underline{X})\subset\cdots\subset Z^m_K(C\underline{X},\underline{X})=Z_K(C\underline{X},\underline{X}).$

Generalization

Define $Z_{\mathcal{K}}^{i}(C\underline{X},\underline{X}) \subset Z_{\mathcal{K}}(C\underline{X},\underline{X})$ similarly to $Z_{\mathcal{K}}^{i} \subset Z_{\mathcal{K}}$, that is, $Z_{\mathcal{K}}^{i}(C\underline{X},\underline{X}) = \bigcup_{I \subset [m], |I|=i} Z_{\mathcal{K}_{I}}(C\underline{X},\underline{X})$

Then there is a stratification

$$*=Z^0_{\mathcal{K}}(C\underline{X},\underline{X})\subset Z^1_{\mathcal{K}}(C\underline{X},\underline{X})\subset \cdots \subset Z^m_{\mathcal{K}}(C\underline{X},\underline{X})=Z_{\mathcal{K}}(C\underline{X},\underline{X}).$$

The composite

$$\begin{aligned} |\mathsf{C}(\mathsf{Sd}\mathcal{K})| \times X_1 \times \cdots \times X_m & \stackrel{i_c \times 1}{\longrightarrow} (D^1)^m \times X_1 \times \cdots \times X_m \\ & \stackrel{\mathsf{perm}}{\longrightarrow} (D^1 \times X_1) \times \cdots \times (D^1 \times X_m) \\ & \stackrel{\mathsf{proj}}{\longrightarrow} CX_1 \times \cdots \times CX_m \end{aligned}$$

descends to a relative homeomorphism

$$(|\mathsf{C}(\mathsf{Sd}\mathcal{K})|,|\mathsf{Sd}\mathcal{K})|) \times (X,F) \to (Z_{\mathcal{K}}^{m}(C\underline{X},\underline{X}),Z_{\mathcal{K}}^{m-1}(C\underline{X},\underline{X}))$$

where $X = X_{1} \times \cdots \times X_{m}$ and F is the fat wedge of X_{1},\ldots,X_{m} .

We can get an analogous relative homemorphism for the pair

$$(Z_{K}^{i}(C\underline{X},\underline{X}),Z_{K}^{i-1}(C\underline{X},\underline{X})) \quad (i=1,\ldots,m).$$

Then we obtain that $Z_{K}^{i}(C\underline{X},\underline{X})$ is constructed from $Z_{K}^{i-1}(C\underline{X},\underline{X})$ by attaching certain spaces, where the attaching maps are explicitly described.

We can get an analogous relative homemorphism for the pair

$$(Z_{K}^{i}(C\underline{X},\underline{X}),Z_{K}^{i-1}(C\underline{X},\underline{X})) \quad (i=1,\ldots,m).$$

Then we obtain that $Z_{K}^{i}(C\underline{X},\underline{X})$ is constructed from $Z_{K}^{i-1}(C\underline{X},\underline{X})$ by attaching certain spaces, where the attaching maps are explicitly described.

Theorem (2.9)

If the attaching maps $|\mathrm{Sd}K_I| \to Z_K^{|I|-1}$ are null-homotopic for all $I \subset [m]$, then we have the following decomposition for every collection of based CW-complexes $\underline{X} = \{X_i\}_{i=1}^m$,

$$Z_{\mathcal{K}}(C\underline{X},\underline{X})\simeq \bigvee_{\emptyset
eq I\subset [m]} |\Sigma \mathcal{K}_I|\wedge \widehat{X}^I.$$

First we consider the case when all CW-complexes have a disjoint base point, that is, $X_i = X'_i \sqcup \{*_i\}$

First we consider the case when all CW-complexes have a disjoint base point, that is, $X_i = X'_i \sqcup \{*_i\}$ and the attaching map is

$$j: (|\mathrm{Sd}\mathcal{K}| \times X) \cup (\mathsf{C}|\mathsf{Sd}\mathcal{K}| \times F) \to Z^{m-1}_{\mathcal{K}}(C\underline{X},\underline{X}),$$

where $X = X_1 \times \cdots \times X_m$ and

$$F = \{*_1\} \times X_2 \times \cdots \times X_m \cup X_1 \times \{*_2\} \times X_3 \times \cdots \times X_m$$
$$\cup \cdots \cup X_1 \times \cdots \times X_{m-1} \times \{*_m\}$$

is the fat wedge.

First we consider the case when all CW-complexes have a disjoint base point, that is, $X_i = X'_i \sqcup \{*_i\}$ and the attaching map is

$$j: (|\mathrm{Sd}\mathcal{K}| \times X) \cup (\mathsf{C}|\mathsf{Sd}\mathcal{K}| \times F) \to Z^{m-1}_{\mathcal{K}}(C\underline{X},\underline{X}),$$

where $X = X_1 \times \cdots \times X_m$ and

$$F = \{*_1\} \times X_2 \times \cdots \times X_m \cup X_1 \times \{*_2\} \times X_3 \times \cdots \times X_m$$
$$\cup \cdots \cup X_1 \times \cdots \times X_{m-1} \times \{*_m\}$$

is the fat wedge. Then it is easy to see that

 $(|\mathsf{Sd}\mathcal{K}| \times X) \cup (\mathsf{C}|\mathsf{Sd}\mathcal{K}| \times F) = (|\mathsf{Sd}\mathcal{K}| \times X') \sqcup (\mathsf{C}|\mathsf{Sd}\mathcal{K}| \times F)$ where $X' = X'_1 \times \cdots \times X'_m$. Deforming C|SdK| to its cone point the restriction of j to $C|SdK| \times F$ is naturally homotopic to the composite

$$\mathsf{C}|\mathrm{Sd}K| \times F \to F \to Z_K^{m-1}(C\underline{X},\underline{X}),$$

where the first map is the projection and the second map in the inclusion.

Deforming C|SdK| to its cone point the restriction of j to $C|SdK| \times F$ is naturally homotopic to the composite

$$C|SdK| \times F \to F \to Z_K^{m-1}(C\underline{X},\underline{X}),$$

where the first map is the projection and the second map in the inclusion.

 $Z_{K}^{m-1}(C\underline{X},\underline{X})$ has the following subcomplex

$$\{*_1\} \times (CX_2 \times X_3 \times \cdots \times X_m \cup \cdots \cup X_2 \times \cdots \times X_{m-1} \times CX_m) \\ \cup \{*_2\} \times (CX_1 \times X_3 \times \cdots \times X_m \cup \cdots \cup X_1 \times X_3 \times \cdots \times X_{m-1} \times CX_m) \\ \cup \cdots \cup \{*_m\} \times (CX_1 \times X_2 \times \cdots \times X_{m-1} \cup \cdots \cup X_1 \times X_2 \times \cdots \times X_{m-2} \times CX_{m-1}),$$

so we can deform CX_i to its cone point sequentially for i = 1 to m. Thus we deform F to the point in $Z_K^{m-1}(C\underline{X},\underline{X})$. On the other hand on $|SdK| \times X$, *j* factors as

$$|\mathrm{Sd}\mathcal{K}| \times X \to Z^{m-1}_{\mathcal{K}} \times X \to Z^{m-1}_{\mathcal{K}}(C\underline{X},\underline{X}).$$

By assumption $|SdK| \rightarrow Z_K^{m-1}$ is null-homotopic, j is deformed to a map

$$\mathrm{Sd}\mathcal{K}| \times X \to \{*\} \times X \to Z^{m-1}_{\mathcal{K}}(C\underline{X},\underline{X}).$$

Since $\{*\} \times X$ is mapped to the base-point in $Z_{K}^{m-1}(C\underline{X},\underline{X})$, we proved that j is null-homotopic.

We use the following lemma to prove Theorem in the general case.

Lemma (2.10)

Suppose that there is a commutative diagram

$$\begin{array}{cccc} A_1 & \longleftarrow & B_1 & \longrightarrow & C_1 \\ \downarrow^{\alpha} & & \downarrow^{\beta} & & \downarrow^{\gamma} \\ A_2 & \longleftarrow & B_2 & \longrightarrow & C_2 \end{array}$$

in which θ_1, θ_2 are cofibrations and α, β, γ are homotopy equivalences. Then the induced map between pushouts $A_1 \cup_{B_1} C_1 \rightarrow A_2 \cup_{B_2} C_2$ is a homotopy equivalence. We recall a class of simplicial complexes which satisfy the strong gcd-condition.

Definition (Jöllenbeck, '06)

A simplicial complex K is said to satisfy the strong gcd-condition if the set of minimal non-faces of K admits a strong gcd-order. A strong gcd-order is a linear order, M_1, \dots, M_r , of the minimal non-faces of K such that whenever $1 \le i < j \le r$ and $M_i \cap M_j = \emptyset$, there is a k with $i < k \ne j$ such that $M_k \subset M_i \cup M_j$.

We recall a class of simplicial complexes which satisfy the strong gcd-condition.

Definition (Jöllenbeck, '06)

A simplicial complex K is said to satisfy the strong gcd-condition if the set of minimal non-faces of K admits a strong gcd-order. A strong gcd-order is a linear order, M_1, \dots, M_r , of the minimal non-faces of K such that whenever $1 \le i < j \le r$ and $M_i \cap M_j = \emptyset$, there is a k with $i < k \ne j$ such that $M_k \subset M_i \cup M_j$.

Question

Let K be a simplicial complex which satisfies the strong gcd-condition. Can we find a contractible subcomplex of $Z_K^{m-1}(D^1, S^0)$ which contains $i_c(|SdK|)$?