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Plan of talks

Plan of talks
@ First day. Main results and topological background.
@ Second day. Bridge between algebra and topology.

@ Today. Sketch of Proofs.

e Stratification
e Splitting of Stratification
o Generalization



Result and Idea of proof

Our main result is

Theorem (I. & Kishimoto '13 and '14)

If the Alexander dual of K is SCM over 7 and each X; is a based
CW-complex,
Zk(cx, X)~ \/ [ZKiIrX
O#IC[m]
where K| is the full subcomplex of K on | and X! = A
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Result and Idea of proof

Our main result is

Theorem (I. & Kishimoto '13 and '14)

If the Alexander dual of K is SCM over 7 and each X; is a based
CW-complex,

Ze(CX, X)~ \/ [ZK|AX!
O#IC[m]

where K is the full subcomplex of K on | and X! = Nics Xi-

We prove the theorem by the following steps.
@ We introduce a stratification on real moment-angle complex.
@ We show that the stratification is split.

@ We generalize the stratification and prove the theorem.



Stratification

Recall that
Zi = ZK(Dl,SO) _ U (Dl’so)cr _ U (Dl)a % (50)[m]\a

oeK oceK
where —1 is the base point of S® = {-1,1} C [-1,1] = D™.
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Stratification

Recall that
Zi = ZK(Dl,SO) _ U (Dl’so)cr _ U (Dl)a % (50)[m]\0

oeK oceK
where —1 is the base point of S® = {-1,1} C [-1,1] = D™.

Definition (1.1)

For i =0,..., m, we define

zZe= U z
I1c[m], |l|=i

where Z, lies in {(x1,...,xm) € (D})™|x; = —1 for j & I}.

Then we get a stratification

x=Zy CZkC---CZT T CZP = Zk.



By analyzing the stratification
_ ZO 1 m—1 m __
¥ =Ly CL C---C LY~ CLg =Lk,

we will show that Z;'< is obtained from Z;'{l by attaching cones along
some map X — Z,’(_l.

5/26



By analyzing the stratification
_ ZO 1 m—1 m __
¥ =Ly CL C---C LY~ CLg =Lk,

we will show that Z;'< is obtained from Z;'{l by attaching cones along
some map X — Z,’<_1.

Definition (1.2)

For a (continuous) map f : X — Y the mapping cone of f is the space
Cr=YUr CX = (YU CX)/ ~,

where ~ is generated by the relation (1,x) ~ f(x) € Y. Here
CX =[0,1] x X/{0} x X.

Cr is said a space obtained from Y by attaching a cone along a map
f: X—=Y.
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The following theorem is the key to understand the homotopy type of
mapping cones.

f~g: X =Y then Cr ~ Cg. In particular, f is null-homotopic, then
Cr~YVXIX.
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The following theorem is the key to understand the homotopy type of
mapping cones.

f~g: X =Y then Cr ~ Cg. In particular, f is null-homotopic, then
Cr~YVXIX.

Question (1.4)

How to show that Z ,’< is obtained from Z ;"{1 by attaching cones along
some map X — Z,’{l ?
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Let (X, A), (Y, B) be pairs of spaces and f : X — Y be a map. If
f(A) C B, then f is written as f : (X, A) — (Y, B). Moreover f
induces a homeomorphism f|x\4: X\ A— Y\ Band f: X — f(X) is
a quotient map onto a closed subset f(X) in Y, then f is called a
relative homeomorphism.
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Let (X, A), (Y, B) be pairs of spaces and f : X — Y be a map. If
f(A) C B, then f is written as f : (X, A) — (Y, B). Moreover f
induces a homeomorphism f|x\4: X\ A— Y\ Band f: X — f(X) is
a quotient map onto a closed subset f(X) in Y, then f is called a
relative homeomorphism.

Iff:(CX,X)— (Y,B) is a relative homeomorphism and B is closed
in'Y, then Y is homeomorphic to the mapping cone Cy|, .

Define a map g : BU CX — Y by defining g|g = inclusion : B — Y
and g|cx = f. This map induces a map g : G, = BUg, CX = Y
which is clearly continuous and bijective. By assumption g is a
homeomorphism. []
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Let us briefly review the embedding of the barycentric subdivision
|SAK | into the cube (D)™ due to Buchstaber and Panov.
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Let us briefly review the embedding of the barycentric subdivision
|SAK | into the cube (D)™ due to Buchstaber and Panov.

e For o C 7 C [m], put
Cocr ={(x1,...,xm) € (D)™ |xi=—1,+1forico, idT}
which is a (|7| — |o|)-dimensional face of (D).
In particular, vertices of (D)™ are

-1 i€eo

C =(€1,-.--,Em), €=
oco = (&1 m) € {+1 ido.
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Let us briefly review the embedding of the barycentric subdivision
|SAK | into the cube (D)™ due to Buchstaber and Panov.

e For o C 7 C [m], put

Cocr ={(x1,-- -, xm) €(D))™|x;= -1, +1forico, ig T}

which is a (|7| — |o|)-dimensional face of (D).
In particular, vertices of (D)™ are
-1 ji€o
Coco = (e1,...,6m), &i= {+1 2o

@ A piecewise linear map
ic 1|SAA™ Y = (DY)™, o Coco
is an embedding, where () # o C [m] is a vertex of SAA™ 1,

So i.(]SdA™~1|) is the union of all proper faces of (D)™ having the
vertex (—1,...,—1).
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{1} 1,2} {2}

(1, -11)
(-1,1,1)

i
131,232,385
(1,-1,-1)

{3}

(-1,1,-1) (1,1,-1)

Figure: The embedding i, : |SdA2| — (D)3
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{1} 1,2} {2}

(1, -11)
(-1,1,1)

i
131,232,385
(1, -1,-1)

{3}

(-1,1,-1) (1,1,-1)
Figure: The embedding i : |SdA2| — (D)3
@ Define the embeddings
e+ ISdK| — (D)™, C(i2) : |C(SAK)| — (DY)

as the restriction of the above embedding and the extension of i,
sending the cone point of C(SdK)| to (1,...,1) € (D})™,
respectively.
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By definition, we have

zz = J (0 x (s
peEK
_ U (Dl)p x (=1)7 x 1[mN\(puo) U Cocr

pEK, ocCTC[m],
oC[m]\p T—oeK
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By definition, we have

zz = [J (0 x ($0)m

peEK
- U vy

PEK,
oC[m]\p

and
7t =

x (—1)7 x 1[mN\(puo) U Cocr

ocCTC[m],
T—0€eK

U CO‘CT'

O#£cCTC[m],
T—o€eK
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By definition, we have

zz = [J (0 x ($0)m

peEK
— U (DY) x (—1)7 x 1[m\(pe) — U
pEK, ocCTC[m],
oC[m]\p T—0€K
and
zet= J G
O#£cCTC[m],
T—0€K
and then

ZK - Zm 1 U Ca’C‘r - U CUCT'

oCteK 0#ocCTeEK
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On the other hand,

clilcsd) = | Ger ic(sdk) = | Goer

oCreK #oCTeK
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On the other hand,

clilcsd) = | Ger ic(sdk) = | Goer

oCTeK DAoCTeEK
Then the map C(ic) : |C(SdK)| — (D)™ descends to

Clic) = (IC(SdK), ISdK) — (ZR, Zg ™)

which is a relative homeomorphism since

ZR — Zg ! = C(ic)(IC(SAK)) — ic(ISdK]).
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More generally, we have:

Proposition (1.6)
The map

Clic): [ (C(sdkp)l.Isdkil) = (Zk. Zit)

Ic[m], |I|=i

is a relative homeomorphism.
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More generally, we have:

Proposition (1.6)
The map

Clic): [ (C(sdkp)l.Isdkil) = (Zk. Zit)

Ic[m], |I|=i

is a relative homeomorphism.

Corollary (1.7)

Z ;( is obtained from Z ;"{1 by attaching cones along maps
ic o |SAK)| — Z:t for all 1  [m] with |I] = i.
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By the above corollary, the proof of the main theorem for a real
moment-angle complex is completed by :

If the Alexander dual of K is SCM over Z, then for any i =1,...,m
and ) # | C [m] with |I| = i, the map ic : |SAK|| — Z;=* is null
homotopic.
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By the above corollary, the proof of the main theorem for a real
moment-angle complex is completed by :

If the Alexander dual of K is SCM over Z, then for any i =1,...,m
and ) # | C [m] with |I| = i, the map ic : |SAK|| — Z;=* is null
homotopic.

Since the idea is the same, we sketch the proof of this theorem only for
shellable complexes, for simplicity.
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By the above corollary, the proof of the main theorem for a real
moment-angle complex is completed by :

If the Alexander dual of K is SCM over Z, then for any i =1,...,m
and ) # | C [m] with |I| = i, the map ic : |SAK|| — Z;=* is null
homotopic.

Since the idea is the same, we sketch the proof of this theorem only for
shellable complexes, for simplicity.

There are implications of simplicial complexes:

shifted = vertex-decomposable = shellable = SCM over Z
pure SCM over k & CM over k
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Definition (2.2)
K is called shellable if there is an ordering of facets Fq,. .., Fx (called a
shelling ordering) such that the subcomplex

<F,'> M <F1, cey F,'_1>

is pure and (dim F; — 1)-dimensional for i =2, ..., k.
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Definition (2.2)

K is called shellable if there is an ordering of facets Fq,. .., Fx (called a
shelling ordering) such that the subcomplex

<F,'> M <F1, cey F,'_1>

is pure and (dim F; — 1)-dimensional for i =2, ..., k.

It is known that:

If K* is shellable, so is (K;)* for any () # | C [m].

Then it is sufficient to show that ic : [SdK| — Z7~* is null homotopic.
To do this, we try to find a contractible space A such that the map
ic : |SdK| — Z27 factors as

ISdK| — A — Z77L,

14 /26



@ p C [m] is called a minimal non-face of K if p & K and dp C K.
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@ p C [m] is called a minimal non-face of K if p & K and dp C K.

o Let K be a simplicial complex obtained from K by adding all
minimal non-faces.
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@ p C [m] is called a minimal non-face of K if p & K and dp C K.

o Let K be a simplicial complex obtained from K by adding all
minimal non-faces.

The map i : |SdK| — Z2~ factors as

ISdK| 2 |SdK| — Z 1.

15/26



@ p C [m] is called a minimal non-face of K if p & K and dp C K.

o Let K be a simplicial complex obtained from K by adding all
minimal non-faces.

Lemma (2.4)
The map i : |SdK| — Z2~ factors as

ISdK| 2 |SdK| — Z 1.

Proof

If p C [m] is a minimal non-face of K, then

Sdp’ LJ C&Cp LJ Cocr ::232_1'

0#£oCp @#UCTﬁyﬂ
T—0E
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Then it is sufficient to show:

Proposition (2.5)

If K* is shellable, there is a simplicial complex A such that

KcAcCK and |A| ~ .
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Then it is sufficient to show:

Proposition (2.5)

If K* is shellable, there is a simplicial complex A such that

KcAcCK and |A| ~ .

We recall the definition of a collapsible complex.

Definition (2.6)

A simplicial complex L is obtained from another simplicial complex K
via an elementary collapse if L = K\ {0, 7} and o is a proper face of 7.
This means that 7 is the only face in K properly containing ¢ and o is
called free face of K. If L can be obtained from K via a sequence of
elementary collapses, then K can be collapsed to L. If K can be
collapsed to a O-simplex {0, {v}}, then K is collapsible.

16

26



We use the following simple lemma to prove Proposition 2.5.

If K is collapsible, |K*| is contractible.
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We use the following simple lemma to prove Proposition 2.5.

If K is collapsible, |K*| is contractible.

We assume that L is obtained from K via an elementary collapse, that
is, L= K\ {o,7} and o is a proper face of 7.
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We use the following simple lemma to prove Proposition 2.5.

If K is collapsible, |K*| is contractible.

Proof.

We assume that L is obtained from K via an elementary collapse, that
is, L= K\ {o,7} and o is a proper face of 7. Then
K* = L*\ {7,060} with 7€ is a free face of o°.
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We use the following simple lemma to prove Proposition 2.5.

If K is collapsible, |K*| is contractible.

Proof.
We assume that L is obtained from K via an elementary collapse, that
is, L= K\ {o,7} and o is a proper face of 7. Then

K* = L*\ {7,060} with 7€ is a free face of o°.In fact,

L* = {pcIml | p°¢L}={pC[m]|p® €K\ {oT}}
= {pClml | p°€Korp"=corp =1}
= K'U{r% o}
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We use the following simple lemma to prove Proposition 2.5.

If K is collapsible, |K*| is contractible.

We assume that L is obtained from K via an elementary collapse, that

is, L= K\ {o,7} and o is a proper face of 7. Then
K* = L*\ {7,060} with 7€ is a free face of o°.In fact,

L* = {pcIml | p°¢L}={pC[m]|p® €K\ {oT}}
= {pClml | p°€Korp"=corp =1}
= K'U{r% o}

If K is collapsible, then there is a sequence of elementary collapses from

K to O-simplex {@, {1}} ¢ Al™. Then K* is homotopy equivalent to

{0,{1}}],; = {o < [m] | o¢ & {0,{1}}} = A\ {[m], [2, m]}, which

is contractible. Therefore, K* is contractible.

O

4
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Proof of Proposition 2.5.

Let Fq,..., Fx be a shelling ordering of K*, and let F;, ..., F; be all
spanning facets, that is, facets satisfying

(FYN(Fy,...,Fi_1) = OF;

Is*
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Proof of Proposition 2.5.

Let Fi,..., Fx be a shelling ordering of K*, and let F;, ..

spanning facets, that is, facets satisfying
<Fis> N <F1, ey Fisfl> — 8Fis-

Put

where Ff = [m] —

D

., Fi, be all
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Proof of Proposition 2.5.

Let Fq,..., Fx be a shelling ordering of K*, and let F;, ..., F; be all
spanning facets, that is, facets satisfying

(F)YN(F,...,Fi_1) = OF;

Is*

Put
A=KUF;U---UF;

where F£ = [m] — F;. Since F£,..., F{ are minimal non-faces of K, A
is a simplicial complex satisfying

KCACR.
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Proof of Proposition 2.5.

Let Fq,..., Fx be a shelling ordering of K*, and let F;, ..., F; be all
spanning facets, that is, facets satisfying

(F)YN(F,...,Fi_1) = OF;

Is*

Put
A=KUF;U---UF;

where F£ = [m] — F;. Since F£,..., F{ are minimal non-faces of K, A
is a simplicial complex satisfying

KCAC K.
On the other hand,
A" =K"—{F,...,F.}

which is collapsible by definition, implying that |A| is contractible by
Lemma 2.7. []

18
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The proof implies that

=K| =~ |A]/|K| = \/ smIFl,
s=1
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The proof implies that

=K| =~ |A]/|K| = \/ smIFl,
s=1

To see this we need the following theorem.

Theorem (2.8)

In the following homotopy commutative diagram

A—y x  (IKl —— |4
L |

the vertical maps induce a map between mapping cones Cr — Cg.
Moreover, the vertical maps are homotopy equivalent, then the map
Cr — Cg is a homotopy equivalent.
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Generalization

Define Z,’;(CK,K) C Zk(CX, X) similarly to Z;"( C Zk, that is,

Ic[ml]|l|=i
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Generalization

Define Z,’;(CK,K) C Zk(CX, X) similarly to Z;"( C Zk, that is,

Ic[ml]|l|=i

Then there is a stratification

¥ = ZR(CX,X) C ZH(CX. X) C -+ C ZR(CX. X) = Zk(CX. X).
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Generalization

Define Z,’;(CK,K) C Zk(CX, X) similarly to Z;"( C Zk, that is,
Zi(cx,x)= |J  Zw(cx.X)
IC[m],[l|=i
Then there is a stratification
x=Z2(CX,X) C ZK(CX,X) C -+ C ZR(CX, X) = Zx(CX, X).
The composite
|C(SAK)| x X1 X -+ X Xy i“—Xl)(Dl)m X Xy X o X Xy
(DY x X1) x -+ x (D' x Xp)
proj CXy x -+ x CXpy
descends to a relative homeomorphism
(IC(SdK)], ISdK)]) x (X, F) = (ZR(CX, X), Zg~H(CX, X))
where X = Xj X --- X X}, and F is the fat wedge of Xi,..., Xpn.

20/26



We can get an analogous relative homemorphism for the pair

(ZI(CX, X), ZEY(CX, X)) (i=1,...,m).

Then we obtain that Zj(CX, X) is constructed from Z,-*(CX, X) by

attaching certain spaces, where the attaching maps are explicitly
described.
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We can get an analogous relative homemorphism for the pair
(Zik(CX, X), ZTH(CX, X)) (i =1, m).
Then we obtain that Zj(CX, X) is constructed from Z,-*(CX, X) by

attaching certain spaces, where the attaching maps are explicitly
described.

Theorem (2.9)

If the attaching maps |SdK;| — Z,|<I|_1 are null-homotopic for all
I C [m] , then we have the following decomposition for every collection
of based CW-complexes X = {X;}",,

Zk(CX, X)~ \/ [ZK|AX"
0A£IC[m]
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First we consider the case when all CW-complexes have a disjoint base
point, that is, Xj = X! U {*;}
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First we consider the case when all CW-complexes have a disjoint base
point, that is, X; = X/ U {*;} and the attaching map is

J 1 (|SdK| x X) U (C|SdK| x F) — Z7 1(CX, X),
where X = X7 x --- x X, and

U"'UXIX"'XXm—1X{*m}

is the fat wedge.
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First we consider the case when all CW-complexes have a disjoint base
point, that is, X; = X/ U {*;} and the attaching map is

J 1 (|SdK| x X) U (C|SdK| x F) — Z7 1(CX, X),
where X = X7 x --- x X, and

U"'UXIX"'XXm—1X{*m}

is the fat wedge. Then it is easy to see that
(|SdK| x X) U (C|SdK| x F) = (|SdK]| x X") LI (C|SdK| x F)

where X' = X{ x --- x X/

22/26



Deforming C|SdK]| to its cone point the restriction of j to C|SAK| x F
is naturally homotopic to the composite

C|SAK| x F — F — Z77Y(CX, X),

where the first map is the projection and the second map in the
inclusion.
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Deforming C|SdK]| to its cone point the restriction of j to C|SAK| x F
is naturally homotopic to the composite

C|SAK| x F — F — Z77Y(CX, X),

where the first map is the projection and the second map in the

inclusion.
Zk"fl(CK, X) has the following subcomplex

{x1} X (CXa x Xz X -+ X XU+ UXy X -+ X X1 X CXpy)
U {2} X (CX1 x X3 X «++ X Xpp U+ UXy X X3 X+ X Xppe1 X CXpyy)
U -U{km } X (CX1 X Xa X+ - X Xy 1U- - -UXy X Xo X+ - X Xip—a X CXip1),

so we can deform CX; to its cone point sequentially for i = 1 to m.
Thus we deform F to the point in Z71(CX, X).

23 /26



On the other hand on |SdK| x X, j factors as
ISAK| x X — Z771 x X — ZZ71(CX, X).

By assumption [SAK| — Z7~! is null-homotopic, j is deformed to a
map
ISAK| x X — {¥} x X = Z771(CX, X).

Since {*} x X is mapped to the base-point in Z7*(CX, X), we
proved that j is null-homotopic.
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We use the following lemma to prove Theorem in the general case.

Lemma (2.10)

Suppose that there is a commutative diagram

Ar < By > G
01

| L

Ay < B> G
0>

in which 01,0, are cofibrations and ., 3,~ are homotopy equivalences.

Then the induced map between pushouts A; Ug, C; — A2 Up, G5 is a
homotopy equivalence.
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We recall a class of simplicial complexes which satisfy the strong
gcd-condition.

Definition (Jollenbeck, '06)

A simplicial complex K is said to satisfy the strong gcd-condition if the
set of minimal non-faces of K admits a strong gcd-order. A strong
gcd-order is a linear order, My, - - - , M,, of the minimal non-faces of K
such that whenever 1 </ < j < r and M; N M; =0, there is a k with

i < k # j such that M, C M; U M;.
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We recall a class of simplicial complexes which satisfy the strong
gcd-condition.

Definition (Jollenbeck, '06)

A simplicial complex K is said to satisfy the strong gcd-condition if the
set of minimal non-faces of K admits a strong gcd-order. A strong
gcd-order is a linear order, My, - - - , M,, of the minimal non-faces of K
such that whenever 1 </ < j < r and M; N M; =0, there is a k with

i < k # j such that M, C M; U M;.

Let K be a simplicial complex which satisfies the strong gcd-condition.
Can we find a contractible subcomplex of Z7~*(D*, S°) which
contains i(|SAK|)?

26
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