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Introduction

In this series of talks I aim to show ideas of the proofs of the following
theorems and talk about their algebraic and topological background.

.
Theorem (I. & Kishimoto ’13 and ’14)
..

.

. ..

.

.

Let K be a simplicial complex on the vertex set [m] = {1, . . . ,m} and
X = {Xi}mi=1 be a set of based CW-complexes. If the Alexander dual of
K is sequentially Cohen-Macaulay over Z, there is a homotopy
equivalence

ZK (CX ,X ) ≃
∨

I⊂[m]

|ΣKI | ∧ X̂ I .
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.
Corollary
..

.

. ..

.

.

If the Alexander dual of K is sequentially Cohen-Macaulay over Z, the
moment-angle complex ZK (D

2, S1) is homotopy equivalent to a wedge
of spheres with dimension greater than 1.

.
Corollary (Herzog-Reiner-Welker, ’99)
..

.

. ..

.

.

If the Alexander dual of K is sequentially Cohen-Macaulay over Z, K is
Golod over any field.
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Plan of talks

Today. I will explain all technical terms in the main result and
topological and homotopy theoretical background.

Simplicial complex
Polyhedral Products
Coordinate subspace arrangements

Second day. Bridge between algebra and topology

Third day. Sketch of Proofs.
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Simplicial Complex

.
Definition (2.1)
..

.

. ..

.

.

Let V be a finite set. A subset K of 2V is called a (abstract) simplicial
complex on the vertex set V , if the following two conditions are
satisfied:

...1 {v} ∈ K for any v ∈ V , and

...2 σ ⊂ τ ∈ K , then σ ∈ K . In particular, ∅ ∈ K .

If K = 2V , we write K = ∆V . An element of a simplicial complex K is
called a face or simplex of K and the dimension of a face σ is defined
as dimσ = |σ| − 1. The dimension of K is the maximum dimension of
its faces. A maximal face is called facet and K is called pure if all its
facets have the same dimension.
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For a simplicial complex K we define its geometrical realization
denoted by |K | as follows. Let V = {v1, · · · , vm} be the vertex set of
K and {e1, · · · , em} be the canonical basis of Rm. For a simplex
σ = {vi1 , · · · , vik} of K we define a subspace |σ| ⊂ Rm as the convex
hull of the points {ei1 , · · · , eik}.

That is,

|σ| = {λi1ei1 + · · ·+ λikeik |
k∑

j=1

λij = 1, λij ≥ 0 for j = 1, · · · , k}

Then we define
|K | =

∪
σ∈K

|σ| ⊂ Rm.

All polyhedron are also called geometrical realization of K if they are
homeomorphic to |K |.
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Let K be a simplicial complex on the vertex set V . For a subset I ⊂ V
we define the full subcomplex KI as

KI = {σ ⊂ I | I ∈ K}.

For a simplex σ ∈ K we define the link linkK (σ) and face-deletion
fdelK (σ) as

linkK (σ) = {τ ∈ K | σ ∩ τ = ∅, σ ∪ τ ∈ K},
fdelK (σ) = {τ ∈ K | σ ̸⊂ τ}.

In particular, linkK (σ) = K for σ = ∅.
If σ is a vertex, say {v}, then fdelK ({v}) is simply written as

delK (v) or K − v .
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Let K be a simplicial complex on the vertex set [m] and k be a ring,
that is, a commutative ring with unit. The Stanley-Reisner ring or face
ring of K over k is

k[K ] = k[v1, · · · , vm]/I (K )

where k[v1, · · · , vm] is the polynomial ring and I (K ) is the ideal
generated by square free monomials

vi1 · · · vik , {i1, · · · , ik} ̸∈ K .

The Stanley-Reisner ring k[K ] is a graded ring with deg vi = 2.

Recall that an algebra A over k is called Cohen-Macaulay if it is a free
and finitely generated module over its polynomial subring.
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.
Definition (2.2)
..

.

. ..

.

.

A simplicial set K is called Cohen-Macaulay over k (simply CM/k) if so
is its Stanley-Reisner ring.

A simplicial complex K is s-acyclic over k if

H̃i (K ; k) = 0 for all 0 ≤ i ≤ s,

where H̃i (K ; k) denotes the reduced i-th homology group of K with
coefficient k.

.
Theorem (Reisner ’76)
..

.

. ..

.

.

A simplicial complex K is CM/k if and only if linkK (σ) is
(dim linkK (σ)− 1)-acyclic for any face σ of K.
In particular, K itself dimK − 1-acyclic and pure.
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Define the pure d-skeleton K [d ] of K as the subcomplex of K
generated by all d-dimensional faces of K . Stanley extended the
concept of Cohen-Macaulayness to nonpure complexes:

.
Definition (2.3, Stanley ’96)
..

.

. ..

.

.

A simplicial complex K is sequentially Cohen-Macauley over k (SCM/k
for short) if the pure d-skeleton K [d ] is CM/k for every d ≥ 0.
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A class of shellable complexes is the most well-studied class of
sequentially Cohen-Macauley complexes.

.
Definition (2.4, Björner and Wachs, ’96)
..

.

. ..

.

.

A simplicial complex K is shellable if there is an ordering F1, · · · ,Fk of
facets of K such that the complex

Gi = ⟨F1, . . . ,Fi−1⟩ ∩ ⟨Fi ⟩

is pure and dimFi − 1-dimensional for all i = 2, · · · , k. If Gi is the
entire boundary of Fi , then Fi is called a spanning facet. Here
⟨F1, . . . ,Fi−1⟩ denotes the subcomplex generated by the facets
F1, . . . ,Fi−1.
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.
Definition (2.5)
..

.

. ..

.

.

Let K be a simplicial complex on the vertex set V ⊂ X . The Alexander
dual of K with respect to X is the simplicial complex

K ∗
X = {σ ⊂ X | X \ σ ̸∈ K}.

If there is no reference to any underlying set X , it is assumed that
X = V .

It is easy to see that (K ∗
X )

∗
X = K .

For a simplicial complex K on V , σ ⊂ V is called minimal non-face if σ
is not a face of K but all its boundary are faces of K .

σ is a facet of K ⇐⇒ σc = X \ σ is a minimal non-face of K ∗
X
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.
Theorem (Combinatorial Alexander Duality)
..

.

. ..

.

.

For a simplicial complex K ̸= ∆[m] on the vertex set V ⊂ [m] it holds
that H̃i (K

∗
[m]; k)

∼= H̃m−3−i (K ; k). Here as a convention

H̃−1({∅}; k) = H̃−1({∅}; k) = k.

There is a simple proof of this theorem in ”A. Björner and M. Tancer,
Note: Combinatorial Alexander duality - short and elementary proof,
Discrete & Computational Geometry, Vol. 42(2009), 586–593.”

Let Ci (K ) be a free k-module with the free basis {σ ∈ K | dimσ = i}.
The reduced chain complex of K over k is the complex C̃∗(K ):

· · · → Ci+1(K )
∂i+1−−→ Ci (K )

∂i−→ Ci−1(K ) → · · ·C0(K ) → C−1(K ) → 0,

whose boundary operator ∂i defined as

∂i (σ) =
∑
j∈σ

sgn(j , σ)σ \ {j},

where sgn(j , σ) = (−1)♯{s∈σ | s<j}.
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The n-th reduced homology group of K over k is defined as

H̃n(K ) = H̃n(K ; k) = Ker ∂n/Im ∂n+1.

The dual cochain complex C̃ ∗(K ) is the reduced cochain complex of K
over k, where

C i (K ) = Homk(Ci (K ), k)

which has the dual free basis {σ∗ | σ ∈ K , dimσ = i} and whose
coboundary operator δi = (∂i )

∗ is given by

δi (σ∗) =
∑

j ̸∈σ, σ∪{j}∈K

sgn(j , σ ∪ {j})(σ ∪ {j})∗.

The n-th reduced cohomology group of K over k is defined as

H̃n(K ) = H̃n(K ; k) = Ker δn/Im δn−1.
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.
Lemma (2.6.)
..

.

. ..

.

.

Let K be a simplicial complex on the vertex set [m]. Then

H̃i (K ) ∼= H̃i+1(∆
[m],K ).

.
Proof.
..

.

. ..

.

.

There is the long exact sequence of the pair (∆[m],K ):

· · · → H̃i+1(∆
[m]) → H̃i+1(∆

[m],K ) → H̃i (K ) → H̃i (∆
[m]) → · · ·

Since H̃i+1(∆
[m]) = H̃i (∆

[m]) = 0, the long exact sequence implies
that H̃i (K ) ∼= H̃i+1(∆

[m],K ).

.
Lemma (2.7.)
..

.

. ..

.

.

Let K be a simplicial complex on the vertex set [m]. Then

H̃i+1(∆
[m],K ) ∼= H̃m−i−3(K ∗).
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.
Sketch of Proof.
..

.

. ..

.

.

(i + 1)-st reduced chain complex Ci+1(∆
[m],K ) has a free basis

{σ ⊂ [m] | σ ̸∈ K , dimσ = i + 1} = {σ ⊂ [m] | σ ̸∈ K , |σ| = i + 2}.

On the other hand (m − i − 3)-rd reduced cochain complex
Cm−i−3(K ∗) has a free basis

{σ∗ | σ ∈ K ∗, dimσ = m − i − 3}
= {σ∗ | σ ⊂ [m], σc ̸∈ K , |σ| = m − i − 2}.

Therefore, the correspondence σ 7→ p(σ)(σc)∗ induces an isomorphism
Ci+1(∆

[m],K ) → Cm−i−3(K ∗) of modules, where
p(σ) =

∏
i∈σ(−1)i−1.

Now what we have to do is to check that these isomorphisms commute
with (co)boundary maps.

Lemmas 2.6 and 2.7 imply the combinatorial Alexander duality
theorem.
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Let Ki be a simplicial complex on the vertex set Vi for i = 1, 2 with
V1 ∩ V2 = ∅. Then we define the simplicial join as

K1 ∗ K2 = {σ1 ⊔ σ2 | σi ∈ Ki}.

As a special case we have the simplicial cone CK and simplicial
suspension ΣK of a simplicial complex K .

CK = ∆[1] ∗ K ,

ΣK = ∂∆[2] ∗ K = CK+ ∪ CK−,

where CK± is a copy of CK with CK+ ∩ CK− = K .
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As a special case we have the simplicial cone CK and simplicial
suspension ΣK of a simplicial complex K .
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It is well-know that

|K1 ∗ K2| ≈ |K1| ∗ |K2| ≃ Σ|K1| ∧ |K2|,
|CK | ≈ C |K |,
|ΣK | ≈ Σ|K |.

Here X1 ∗ X2 = {(x1, t, x2) ∈ X1 × [0, 1]× X2}/ ∼, where
(x1, 0, x2) ∼ (x ′1, 0, x2) for all x1, x

′
1 ∈ X1 and (x1, 1, x2) ∼ (x1, 1, x

′
2, )

for all x2, x
′
2 ∈ X2.

CX = X × [0, 1]/X × {0}(or X × [0, 1]/(X × {0} ∪ {∗} × [0, 1]),

ΣX = CX/X × {1}(or CX/(X × {1} ∪ {∗} × [0, 1]),

X ∧ Y = X × Y /(X × {∗} ∪ {∗} × Y ),

where in the last definition X and Y have the base-point ∗. We will
use the following well-known facts freely: Sn ∧ Sm ≈ Sn+m.
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Polyhedral Product

Let K be a simplicial complex on the vertex set [m] = {1, . . . ,m}.
Let (X ,A) = {(Xi ,Ai )}i∈[m] be a sequence of pairs of spaces.

.
Definition (3.1)
..

.

. ..

.

.

The polyhedral product ZK (X ,A) is defined as

ZK (X ,A) =
∪
σ∈K

D(σ) (⊂ X1 × · · · × Xm)

where D(σ) = Y1 × · · · × Ym for Yi =

{
Xi i ∈ σ

Ai i ̸∈ σ.

If (Xi ,Ai ) = (X ,A), then we write simply as ZK (X ,A).
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Here are some examples of polyhedral products.

Let K = {{1}, {2}, ∅} be the discrete simplicial complex on [2]
and (Xi ,Ai ) = (Dni , Sni−1) for i = 1, 2. Then

ZK (X ,A) = Dn1 × Sn2−1 ∪ Sn1−1 × Dn2

= ∂Dn1+n2 = Sn1+n2−1.

Let (X ,A) = (D2, S1), then

ZK (D
2, S1) ⊂ (D2)m ⊂ (C)m

is the moment-angle complex introduced by Davis-Januskiewicz
’91.
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Let K = ∂∆[m] and (X ,A) = {(Xi , ∗)}mi=1.

ZK (X , ∗) = ∗ × X2 × · · · × Xm ∪ · · · ∪ X1 × · · · × Xm−1 × ∗,

which is known as a fat wedge.

Let K = ∂∆[m] and (X ,A) = {(CXi ,Xi )}mi=1. Then

ZK (X ,A) = X1 × CX2 × · · · × CXm ∪ . . .

∪CX1 × · · · × CXm−1 × Xm

≃ X1 ∗ · · · ∗ Xm ≃ Σm−1X1 ∧ · · · ∧ Xm

This example is due to Porter ’65. Porter defined this special
polyhedral product to introduce higher order Whitehead products.
Our results can be considered a generalization of his result.
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.
Theorem (Bahri, Bendersky, Cohen and Gitler, ’10)
..

.

. ..

.

.

Let X = {Xi}mi=1 be a collection of based CW-complex. Then there is a
homotopy equivalence

ΣZK (CX ,X ) ≃ Σ

 ∨
I⊂[m]

Σ|KI | ∧ X̂ I

 ,

where X̂ I = ∧i∈IXi and X ∨ Y is the one-point union of X and Y .

This theorem is a generalization of the well-known decomposition

Σ(X1 × · · · × Xm) ≃ Σ

 ∨
I⊂[m]

X̂ I

 .
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As a special case we have the following homotopy equivalence

ΣZK (D
2, S1) ≃ Σ

 ∨
I⊂[m]

Σ|KI | ∧

|I |︷ ︸︸ ︷
S1 ∧ · · · ∧ S1

 =
∨

I⊂[m]

Σ|I |+2|KI |.

Thus by using Bahri, Bendersky, Cohen and Gitler’s theorem we obtain
the following Hochster’s theorem. This is an example of application of
topology to algebra.

.
Theorem (Hochster)
..

.

. ..

.

.

TorZ[v1,··· ,vm](Z[K ],Z) ∼= H∗(ZK (D
2, S1);Z)

∼=
⊕
I⊂[m]

H̃∗(KI ;Z)

where H−1(∅;Z) = Z.
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.
Question
..

.

. ..

.

.

When is the homotopy equivalence given by Bahri, Bendersky, Cohen
and Gitler desuspended ?

We have

Z�(D
2, S1) = ZK1(D

2, S1)× ZK2(D
2, S1) = S3 × S3,

where K1 and K2 are the discrete simplicial complex with 2-vertexes.
This example is a special case of the following example, and shows that
there might be a class of simplicial complexes whose moment-angle
complex decomposes as a wedge of suspension spaces.
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Let K1 be a simplicial complex on [m1] and K2 be a simplicial complex
on [m1 + 1,m1 +m2] = {m1 + 1, · · · ,m1 +m2}. Then

ZK1∗K2(X ,A) =
∪

(σ1,σ2)∈K1∗K2

D(σ1 ⊔ σ2)

=
∪

(σ1,σ2)∈K1∗K2

D(σ1)× D(σ2)

= (
∪

σ1∈K1

D(σ1))× (
∪

σ2∈K2

D(σ2))

= ZK1(X ,A)× ZK2(X ,A),

in the last equation (X ,A) = {(Xi ,Ai )}m1
i=1 in the first summand and

(X ,A) = {(Xi ,Ai )}m1+m2
i=m1+1 in the second.
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If
ZK (D

2, S1) ≃
∨

I⊂[m]

Σ|KI | ∧ Ŝ1
I
=

∨
I⊂[m]

Σ|I |+1|KI |,

ZK (D
2, S1) is homotopy equivalent to a suspension space. Then the

cohomology ring H∗(ZK (D
2, S1); k) has the trivial product.

.
Definition (3.2)
..

.

. ..

.

.

A simplicial complex K is called Golod over k if the cohomology ring
H∗(ZK (D

2,S1); k) has the trivial product, that is, for
α, β ∈ H̃∗(ZK (D

2, S1); k) we have αβ = 0. In particular, if the
moment-angle complex ZK (D

2, S1) is a suspension, K is Golod.

Golodness condition on a simplicial complex K is a necessary condition
for the moment-angle complex ZK (D

2, S1) being homotopy equivalent
to a wedge of suspension spaces.
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.
Question
..

.

. ..

.

.

For a Golod simplicial complex K, is there a homotopy equivalence
ZK (D

2, S1) ≃
∨

I⊂[m]Σ
|I |+1|KI |?

.
Definition (3.3, Jöllenbeck, ’06)
..

.

. ..

.

.

A simplicial complex K is said to satisfy the strong gcd-condition if the
set of minimal non-faces of K admits a strong gcd-order. A strong
gcd-order is a linear order, M1, · · · ,Mr , of the minimal non-faces of K
such that whenever 1 ≤ i < j ≤ r and Mi ∩Mj = ∅, there is a k with
i < k ̸= j such that Mk ⊂ Mi ∪Mj .

.
Theorem (Berglund and Jöllenbeck, ’07)
..
.
. ..

.

.

A simplicial complex satisfying the strong gcd-condition is Golod.
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Coordinate subspace arrangements

A coordinate subspace in Cm is

Lω = {(z1, . . . , zm) ∈ Cm | zi1 = · · · = zik = 0}

for some subset ω = {i1, . . . , ik} ⊂ [m]. Given a simplicial set K , we
may define the corresponding coordinate subspace arrangement
{Lω | ω ̸∈ K} and its complement

U(K ) = Cm \
∪
ω ̸∈K

Lω.

By definition ZK (D
2, S1) ⊂ U(K ).

.
Theorem (Buchstaber-Panov)
..

.

. ..

.

.

There is a Tm-equivariant deformation retraction U(K ) ≃ ZK (D
2,S1).
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.
Proof.
..

.

. ..

.

.

For σ ⊂ [m] we put

Uσ = {(z1, . . . , zm) ∈ Cm | zi ̸= 0 for i ̸∈ σ}

Then
U(K ) =

∪
σ∈K

Uσ.

There are obvious Tm-equivariant deformation retractions

Uσ ≈ Cσ × (C \ {0})[m]\σ ≃−→ (D2)σ × (S1)[m]\σ ≈ (D2, S1)σ.

These patch together to get the required map
U(K ) → ZK (D

2, S1).
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