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Introduction Graded free resolutions

Introduction
Graded free resolutions

Let k be a field and S := k[x1, . . . , xn] a polynomial ring over k.
For a ∈ Zn

≥0, we set xa :=
∏n

i=1 x
ai
i . Recall that

S has a structure of Zn-graded k-algebra as follows;

for a := (a1, . . . , an) ∈ Zn
≥0, the degree deg(xa) is a;

S =
⊕

a∈Zn
≥0

Sa as k-vector spaces, where Sa := k · xa;
Sa · Sb ⊆ Sa+b.

An S-module M is said to be Zn-graded if

M =
⊕

a∈Zn Ma as k-vector spaces;
Sa ·Mb ⊆ Ma+b.

For example, an ideal of S generated by some monomials xa is Zn-graded.
Recall that Zn can be regarded as a poset by

a ≥ b⇐⇒ ai ≥ bi ∀i .
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Introduction Graded free resolutions

Introduction
Graded free resolutions

Let M be a Zn-graded S-module. A complex of S-modules

F : · · · ∂3−→ F2
∂2−→ F1

∂1−→ F0 −→ 0

is said to be a Zn-graded free resolution of M if

Fi =
⊕

σ∈X (i) S · eσ, where X (i) is an index set, eσ is a S-free basis
with deg(eσ) ∈ Zn, and

∂ : Fi ∋ eσ 7→
∑

τ∈X (i−1)

deg(σ)≥deg(τ)

λτx
deg(σ)−deg(τ) · eτ ∈ Fi−1 (*)

for some λτ ∈ k.
Hi (F) = 0 for i ̸= 0 and H0(F) ∼= M.

F is said to be minimal if deg(σ) > deg(τ) for each σ, τ in (*).
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Introduction Graded free resolutions

Introduction
Graded free resolutions

A min. Zn-gr. free res. is very important in combinatorial
commutative algebra and the related field.

In general, it is hard to compute a minimal Zn-graded free resolution.
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Forman’s Morse theory for CW complex Forman’s discrete Morse theory

Forman’s Morse theory for CW complex
Forman’s discrete Morse theory

Example of CW complexes ( Definition? )
Cell decomposition of B2.

12

3

Figure: regular CW

1

Figure: non-regular CW
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Forman’s Morse theory for CW complex
Forman’s discrete Morse theory

For a CW complex X ,

set X (i) := {all the i-cells}, X (∗) :=
∪

i X
(i), and

X i :=
∪

j≤i X
(j), which is called i-skeleton of X .

Recall that we can construct a cellular chain complex C(X ;Z) of X (over
Z) as follows;

Cp(X ;Z) = Hi (X
p,X p−1;Z) ∼=

⊕
σ∈X (p) Z · eσ;

∂p : Cp(X ;Z)→ Cp−1(X ;Z) is given by

Hp(X
p,X p−1;Z)

αp−→ Hp−1(X
p−1;Z)

βp−1−→ Hp−1(X
p−1,X p−2;Z),

where αp denotes the connecting map and βp−1 is the natural map.

岡崎亮太 Discrete Morse theory and CCA Mar. 14th, 2012 6 / 34



Forman’s Morse theory for CW complex Forman’s discrete Morse theory

Forman’s Morse theory for CW complex
Forman’s discrete Morse theory

For a CW complex X ,

set X (i) := {all the i-cells}, X (∗) :=
∪

i X
(i), and

X i :=
∪

j≤i X
(j), which is called i-skeleton of X .

Recall that we can construct a cellular chain complex C(X ;Z) of X (over
Z) as follows;

Cp(X ;Z) = Hi (X
p,X p−1;Z) ∼=

⊕
σ∈X (p) Z · eσ;

∂p : Cp(X ;Z)→ Cp−1(X ;Z) is given by

Hp(X
p,X p−1;Z)

αp−→ Hp−1(X
p−1;Z)

βp−1−→ Hp−1(X
p−1,X p−2;Z),

where αp denotes the connecting map and βp−1 is the natural map.

岡崎亮太 Discrete Morse theory and CCA Mar. 14th, 2012 6 / 34



Forman’s Morse theory for CW complex Forman’s discrete Morse theory

Forman’s Morse theory for CW complex
Forman’s discrete Morse theory

For a CW complex X ,

set X (i) := {all the i-cells}, X (∗) :=
∪

i X
(i), and

X i :=
∪

j≤i X
(j), which is called i-skeleton of X .

Recall that we can construct a cellular chain complex C(X ;Z) of X (over
Z) as follows;

Cp(X ;Z) = Hi (X
p,X p−1;Z) ∼=

⊕
σ∈X (p) Z · eσ;

∂p : Cp(X ;Z)→ Cp−1(X ;Z) is given by

Hp(X
p,X p−1;Z)

αp−→ Hp−1(X
p−1;Z)

βp−1−→ Hp−1(X
p−1,X p−2;Z),

where αp denotes the connecting map and βp−1 is the natural map.

岡崎亮太 Discrete Morse theory and CCA Mar. 14th, 2012 6 / 34
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Forman’s Morse theory for CW complex
Forman’s discrete Morse theory

Definition

For σ ∈ X (p) and τ ∈ X (p−1), let [σ : τ ] denote the coefficients of ∂p(eσ)
in eτ . Thus ∂p(eσ) =

∑
τ∈X (p−1) [σ : τ ] · eτ

[σ : τ ] ∈ Z is called a incidence number of X .

X : CW cpx. The set of cells X (∗) can be ordered as follows;

σ ≥ τ ⇐⇒ σ̄ ⊇ τ.

Let GX be a directed graph associated with X such that

the vertices are the cells of X , and

the edges are { σ → τ | σ ≥ τ, dimσ = dim τ + 1, [σ : τ ] ̸= 0 }.
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Forman’s Morse theory for CW complex
Forman’s discrete Morse theory

Let A a set of some edges in GX . Then we set GA
X to be the directed

graph whose

vertices are those of GX ;

edges are (EX \ A) ∪ { τ → σ | σ → τ ∈ A },

where EX denotes the edge set of GX .

Definition

With the above notation, the set A is said to be a acyclic matching if

(1) each vertices appears at most one edge in A and

(2) there exists no directed cycle in GA
X .

A vertex σ which does not appear in any edge in A is called a critical cell.
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Forman’s Morse theory for CW complex
Forman’s discrete Morse theory

Theorem (Forman, 1998)

Let X be a fin. reg. CW cpx., and A an acyc. matching of X . Then there
exists a (not necessarily reg.) CW cpx XA such that

(1) X ≃ XA (homotopy equivalent), and

(2) {
σ ∈ X (i) | σ is critical

}
∋ σ

1:1←→ σA ∈ X
(i)
A .

Remark

Forman uses so-called Morse function X (∗) → R. The explanation here with
an acyclic matching is due to Chari.
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Discrete Morse theory for cellular resolutions
Graded CW complex and cellular resolutions

S := k[x1, . . . , xn], X : CW cpx. Recall that X (∗) can be ordered as follows

σ ≥ τ ⇐⇒ σ̄ ⊇ τ

Let gr : X (∗) → Zn be a map.

Definition

The pair (X , gr) is called a Zn-graded CW complex if gr is order-preserving,
i.e., gr(σ) ≥ gr(τ) if σ ≥ τ .
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Discrete Morse theory for cellular resolutions Graded CW complex and cellular resolutions

Discrete Morse theory for cellular resolutions
Graded CW complex and cellular resolutions

Example

S := k[x1, . . . , xn]: polynomial ring over a field k
M := {m1, . . . ,mr}: a set of monomials of S , X : (r − 1)-simplex.
Labeling each vertices by m1, . . . ,mr , X can be regarded as 2M.
Hence X (i) := { σ ⊆M | #σ = i + 1 }, and the order on X = 2M is
the one defined by inclusion.
Define gr : 2M → Zn by

gr(σ) := deg(lcm(σ))

Then gr is degree-preserving, and (X , gr) is Zn-graded.

Clearly, xgr(σ) = lcm(σ).
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Discrete Morse theory for cellular resolutions
Graded CW complex and cellular resolutions

Recall that S := k[x1, . . . , xn]. (X , gr): Zn-gr. CW.
Consider the chain complex

0 −→ FX
dimX −→ · · · −→ FX

1 −→ FX
0 −→ 0

such that

FX
i :=

⊕
σ∈X (i) S · eσ, where eσ denotes the basis with degree gr(σ).

the differential map FX
i → FX

i−1 is given by

FX
i ∋ eσ 7→

∑
τ∈X (i−1)

∃σ→τ∈EX

[σ : τ ]xgr(σ)−gr(τ)eτ ∈ FX
i−1
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Discrete Morse theory for cellular resolutions
Graded CW complex and cellular resolutions

Definition

For a Zn-gr. CW (X , gr), the chain complex FX , constructed above,
is called the cellular resolution (of Coker(FX

1 → FX
0 )) supported by X if

FX is acyclic.

By the definition, the following is clear.

Proposition

A cellular resolution FX is minimal if and only if for σ, τ ∈ X (∗) with σ ≥ τ
and dimσ = dim τ + 1, either gr(σ) ̸= gr(τ) or [σ : τ ] = 0.
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Discrete Morse theory for cellular resolutions
Graded CW complex and cellular resolutions

Example (Taylor resolution)

J := (m1, · · · ,mr ): monomial ideal, G (J) := {m1, . . . ,mr}
X : (r − 1)-simplex, identified with 2G(J).
Define gr(σ) := deg(lcm(σ)), and

FX
i :=

⊕
σ∈X (i) S · eσ

FX
i ∋ eσ 7→

∑
m∈σ ±

lcm(σ)
lcm(σ\m) · eσ\m ∈ F

X
i−1

It is well known that FX gives a Zn-gr. free res. of J.
FX is called the Taylor resolution of J.
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Discrete Morse theory for cellular resolutions
Graded CW complex and cellular resolutions

Remark

Taylor resolutions are cellular, but not minimal in general.

Bar resolutions are also cellular and not minimal in general.

For a ∈ Zn and Zn-gr. CW, set X≤a to be the subcomplex of X defined by

X
(∗)
≤a :=

{
σ ∈ X (∗) | gr σ ≤ a

}
.

Proposition

A Zn-gr. CW (X , gr) supports a free resolution of some graded S-module
if and only if X≤a is either empty or acyclic over k for all a ∈ Zn.
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Discrete Morse theory for cellular resolutions
Graded CW complex and cellular resolutions

Proof.

For a ∈ Zn, (
FX
i

)
a
=

⊕
σ∈X (i)

≤a

k · xa−gr σ · eσ.

Easy observation implies

FX
a
∼= C(X≤a; k).
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Discrete Morse theory for cellular resolutions
Batzies-Welker’s theory

Batzies-Welker’s idea

Let A be an acyclic mathching of GX .

fin. gr. CW X oo //

Discrete Morse Theory
��

cel. res. FX

��
gr. CW XA

with XA ≃ X
oo // cel. res. FXA

with FXA ≃ FX

Here ≃ denotes a homotopy equivalent.

rankFXA
i = #X

(i)
A ≤ #X (i) = rankFX

i for all i

⇝ We have a “smaller” (minimal in some cases) resolution FXA .
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Discrete Morse theory for cellular resolutions
Batzies-Welker’s theory

Definition

(X , gr): Zn-gr. CW, GX : associated graph.
An acyclic matching A of GX is called homogeneous if gr σ = gr τ whenever
σ → τ ∈ A.

Proposition

(X , gr): fin. Zn-gr. reg. CW, A: its homogeneous acyclic matching. Then

(1) XA has natural Zn-grading grA : X
(∗)
A → Zn induced by gr (i.e., for

σA ∈ X
(∗)
A corresponding to a critical σ ∈ X (∗), grA(cA) = gr(c)).

(2) With the above grading, X≤a ≃ (XA)≤a for any a ∈ Zn.
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Discrete Morse theory for cellular resolutions
Batzies-Welker’s theory

Theorem (Batzies-Welker, 2002)

(X , gr): fin. Zn-gr. reg. CW, A: homog. acyc. matching.
Assume FX is a cellular resolution of a Zn-graded S-module M. Then FXA

is also a cellular resolution of M.

Proof.

By the hypothesis, H i (FX ) = 0 for i ̸= 0 and H0(FX ) ∼= M. Since for any
integer i and any a ∈ Zn,

H i (FX )a ∼= H i (X≤a; k) ∼= H i ((XA)≤a; k) ∼= H i (FXA)a,

it follows that H i (FXA) = 0 for i ̸= 0 and H0(FXA) ∼= M.
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Discrete Morse theory for cellular resolutions
Batzies-Welker’s theory

Remark

Batzies-Welker showed the same assertion in more general situation
where S is an affine semigroup ring k[Λ] and (X , gr) is a compactly
(Zn,Λ)-graded CW complex, which is not necessarily finite.

Even if X is regular, XA is not necessarily regular.

There exists a minimal free resolution which is cellular but is not
supported by regular CW complex (Reiner-Welker, 2001, Velasco,
2008).

There also exists a minimal free resolution which is not supported by
CW complex (Velasco, 2008).
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Discrete Morse theory for cellular resolutions
Description of differential map (but hard to compute)

(X , gr): fin. Zn-gr. CW, A: its homog. acyc. matching, GA
X : associated

graph.

A directed path σ0 → σ1 → · · · → σr in GA
X is called gradient path.

For an edge σ → τ in GA
X , set

w(σ → τ) :=

{
−[τ : σ] if τ → σ ∈ A;

[σ : τ ] otherwise,

and for a grad. path P : σ0 → σ1 → · · · → σr , set

w(P) :=
r−1∏
i=0

w(σi → σi+1).

岡崎亮太 Discrete Morse theory and CCA Mar. 14th, 2012 21 / 34



Discrete Morse theory for cellular resolutions Description of differential map (but hard to compute)

Discrete Morse theory for cellular resolutions
Description of differential map (but hard to compute)

(X , gr): fin. Zn-gr. CW, A: its homog. acyc. matching, GA
X : associated

graph.

A directed path σ0 → σ1 → · · · → σr in GA
X is called gradient path.

For an edge σ → τ in GA
X , set

w(σ → τ) :=

{
−[τ : σ] if τ → σ ∈ A;

[σ : τ ] otherwise,

and for a grad. path P : σ0 → σ1 → · · · → σr , set

w(P) :=
r−1∏
i=0

w(σi → σi+1).

岡崎亮太 Discrete Morse theory and CCA Mar. 14th, 2012 21 / 34



Discrete Morse theory for cellular resolutions Description of differential map (but hard to compute)

Discrete Morse theory for cellular resolutions
Description of differential map (but hard to compute)

With the above notation, for σ, τ ∈ GA
X , set

PathGA
X
(σ, τ) := {grad. path from σ to τ} .

Proposition

The differential map ∂A of FXA is given as follows; let σ ∈ X (i) be an
A-critical cell, and σA the corresponding cell of XA; then

∂A
i (eσA

) =
∑

σ′
A∈X

(i−1)
A

 ∑
P∈Path

GA
X
(σ,σ′)

w(P)

 xgr(σ)−gr(σ′) · eσ′
A
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Batzies-Welker’s resolution for monomial ideals with linear
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Application to monomial ideals with linear quotients
Batzies-Welker’s resolution for monomial ideals with linear quotients

I : mon. ideal, G (I ) := {m1, . . . ,mr}: min. mon. generators.

Definition

I is said to have linear quotients if there exists a total order ⊑ on G (I )
satisfying for m,m′ ∈ G (I ) with m′ ⊏ m, ∃m′′ ∈ G (I ) such that

m′′ ⊏ m,

xim = lcm(m′′,m) for some i , and

lcm(m′′,m)| lcm(m′,m).

Remark

It is well-known that I has linear quotients if and only if ∃ ⊑: total order
on G (I ) such that (m1, . . . ,mk) : mk+1 is generated by some variables of S
for each k.
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Application to monomial ideals with linear quotients
Batzies-Welker’s resolution for monomial ideals with linear quotients

X (= 2G(I )): (t − 1)-simplex. Recall that the Tylor resolution FX

FX
i :=

⊕
σ∈X (i) S · eσ

FX
i ∋ eσ 7→

∑
m∈σ ±

lcm(σ)
lcm(σ\m) · eσ\m ∈ F

X
i−1

gives a not nessarily min. Zn-gr. free resolution of I .
Let GX be the graph associated with X .

Theorem (Batzies-Welker, 2002)

With the above notation, there exists an acycling matching A of GX such
that FXA

gives a min. Zn-gr. free res. of the monomial ideal I with linear
quotients.
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X (= 2G(I )): (t − 1)-simplex. Recall that the Tylor resolution FX

FX
i :=

⊕
σ∈X (i) S · eσ

FX
i ∋ eσ 7→

∑
m∈σ ±

lcm(σ)
lcm(σ\m) · eσ\m ∈ F

X
i−1

gives a not nessarily min. Zn-gr. free resolution of I .
Let GX be the graph associated with X .

Theorem (Batzies-Welker, 2002)

With the above notation, there exists an acycling matching A of GX such
that FXA

gives a min. Zn-gr. free res. of the monomial ideal I with linear
quotients.
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Construction of the acyclic matching
For m ∈ G (I ), set

Jm := { i | ∃nmi ∈ G (I ) s.t. nmi ⊏ m, lcm(nmi ,m) = xim },
Nm := { nmi | i ∈ Jm } (not unique!).

Let M be the set of all the monomials in I . Define

P := M 2, and

f : G (I )→M 2 by f (σ) := (lcm(σ),max⊑ σ).

For p ∈ P, define the total order ⪯p on G (I ) as follows;

Nm ≺p G (I ) \ Nm,

for nmi , n
m
j , n

m
i ≺p nmj ⇐⇒ i < j , and

≺p |G(I )\Nm
:=⊏ |G(I )\Nm

.
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How to construct an acyclic matching

For σ :=
{
m0 ≺f (σ) · · · ≺f (σ) mi

}
, define

v(σ) := sup

{
k ≥ 0 | ∃m ∈ G (I ) s.t.

m ≺f (σ) mi−k and
m| lcm(mi−k , . . . ,mi )

}
.

If v(σ) ̸= −∞, then set

m(σ) := min≺f (σ)

{
m ∈ G (I ) | m| lcm(mi−v(σ), . . . ,mi )

}
.

Let GX be the directed graph associated with X = 2G(I ). Now for each
p ∈ P , define the subset Ap,A of the edge sets of GX as follows.

Ap := { σ ∪ {m(σ)} −→ σ \ {m(σ)} | f (σ) = p, v(σ) ̸= −∞ },
A :=

∪
p∈P Ap.
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How to construct an acyclic matching

Sketch of the proof of A being matching
It is straightforward to show the following. For v(σ) ̸= −∞,

f (σ ∪ {m(σ)}) = f (σ) = f (σ \ {m(σ)});
v(σ ∪ {m(σ)}) = v(σ) = v(σ \ {m(σ)});
m(σ ∪ {m(σ)}) = m(σ) = m(σ \ {m(σ)})
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Application to monomial ideals with linear quotients
How to construct an acyclic matching

Example of discrete Morse theory

Let X be the reg. CW cpx as in
the right.

The associated graph GX is as
in the right.

Choose the red arrows as an
acyclic matching.

The right graph is the one with
the matching edges reversed.

The graph GXA is as in the
right.

Consequently, we get the
non-reg. CW cpx.

12

3
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Example of discrete Morse theory

Let X be the reg. CW cpx as in
the right.

The associated graph GX is as
in the right.

Choose the red arrows as an
acyclic matching.

The right graph is the one with
the matching edges reversed.

The graph GXA is as in the
right.

Consequently, we get the
non-reg. CW cpx.

{1, 2, 3}

{1, 2} {1}
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Example of discrete Morse theory

Let X be the reg. CW cpx as in
the right.

The associated graph GX is as
in the right.

Choose the red arrows as an
acyclic matching.

The right graph is the one with
the matching edges reversed.

The graph GXA is as in the
right.

Consequently, we get the
non-reg. CW cpx.

1
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Algebraic discrete Morse theory
Application of algebraic aspects of Forman’s theory

Let

R be (not necessarily commutative) ring, Z (R) the center of R, R×

the grp. of units, and let

C : · · · ∂3−→ C2
∂2−→ C1

∂1−→ C0 −→ 0 be a complex of free R-modules
such that Ci =

⊕
σ∈X (i) R · eσ,

where the eσ are R-basis and X (i) is just an index set.

For σ ∈ X (i) and τ ∈ X (i−1), define [σ : τ ] ∈ R to satisfy

∂(eσ) =
∑

τ∈X (i−1) [σ : τ ] · eτ .

With the cpx C , we associate the graph GX whose

vertices are X :=
∪

i≥0 X
(i) and

edges are
{
σ → τ | σ ∈ X (i), τ ∈ X (i−1), [σ : τ ] ̸= 0

}
.
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Application of algebraic aspects of Forman’s theory

Definition

A subset A of the set of edges in GX is said to be an acyclic matching if

(1) each vertices appears at most one edge in A,

(2) there exists no directed cycle in GA
X , and

(3) for each σ → τ ∈ A, [σ : τ ] ∈ Z (R) ∩ R×.

For an edge σ → τ in GA
X and a path P : σ1 → · · · → σr , define

w(σ → τ) :=

{
− 1

[τ :σ] if τ → σ ∈ A (then [τ : σ] ∈ Z (R) ∩ R×)

[σ : τ ] otherwise

w(P) =
∏r−1

i=1 w(σi → σi−1)
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Algebraic discrete Morse theory
Application of algebraic aspects of Forman’s theory

For an acyc. matching A, set X
(i)
A :=

{
σ ∈ X (i) | σ is critical

}
, and

define the complex

CA : · · · −→ CA
2

∂A
2−→ CA

1

∂A
1−→ CA

0

∂A
0−→ 0

as follows.

CA
i :=

⊕
σ∈X (i)

A

R · eσ

∂A
i (eσ) :=

∑
τ∈X (i−1)

A

(∑
P∈Path(σ,τ) w(P)

)
eτ

Theorem (Jòllenberg-Welker, 2005, Sköldberg, 2006)

CA is indeed a complex, and is homotopy equivalent to C .
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Algebraic discrete Morse theory
Application of algebraic aspects of Forman’s theory

Example of algebraic discrete Morse theory

Let X be the reg. CW cpx as in the
right. We regard X as a 2-simplex,
and hence as 2{1,2,3}. 12

3
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Algebraic discrete Morse theory
Application of algebraic aspects of Forman’s theory

Example of algebraic discrete Morse theory

Let C be the cellular chain complex
of X as follows;

Ci =
⊕

σ∈X (i) Z · eσ;
∂(eσ) :=

∑
i∈σ(−1)ε(i ;σ)eσ\{i},

where ε(i ;σ) := # { j ∈ σ | j < i }.
Then GX is as in the right.

1

−1

1

1

−1

1

−1

1

−1

{1, 2, 3}

{2, 3}

{1, 3}

{1, 2}

{3}

{2}

{1}
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Algebraic discrete Morse theory
Application of algebraic aspects of Forman’s theory

Example of algebraic discrete Morse theory

Choose the red arrows as an acyclic
matching.

1

−1

1

1

−1

1

−1

1

−1

{1, 2, 3}

{2, 3}

{1, 3}

{1, 2}

{3}

{2}

{1}
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Algebraic discrete Morse theory
Application of algebraic aspects of Forman’s theory

Example of algebraic discrete Morse theory

Reverse the red arrows, and change
the weights of

e{2} → e{2,3} to
−(1/(−1)) = 1,

e{3} → e{1,3} to −(1/1) = −1.

1

−1

1

1

1

−1

−1

1

−1

{1, 2, 3}

{2, 3}

{1, 3}

{1, 2}

{3}

{2}

{1}

岡崎亮太 Discrete Morse theory and CCA Mar. 14th, 2012 32 / 34



Algebraic discrete Morse theory Application of algebraic aspects of Forman’s theory

Algebraic discrete Morse theory
Application of algebraic aspects of Forman’s theory

Example of algebraic discrete Morse theory

Now let us compute the differential.
It is easy to check that
Path(e{1,2,3}, e{1,2}) =

{
e{1,2,3} → e{1,2}

}
.

Path(e{1,2}, e{1}) = {P,P ′},
where P is the green path and P ′ is
the blue one.
Easy computation shows

w(P) + w(P ′) = −1 + 1 = 0.

So, e{1,2} is mapped to 0 by the dif-
ferential map.

1

−1

1

1

1

−1

−1

1

−1

{1, 2, 3}

{2, 3}

{1, 3}

{1, 2}

{3}

{2}

{1}
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Algebraic discrete Morse theory
Application of algebraic aspects of Forman’s theory

Example of algebraic discrete Morse theory

Thus we obtain the complex CA.
This is just a cellular chain complex
of ...

1

0

{1, 2, 3}

{1, 2} {1}
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Algebraic discrete Morse theory
Application of algebraic aspects of Forman’s theory

Example of algebraic discrete Morse theory

the non-regular CW complex in the
right.

1
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Appendix Definition of CW complex

Appendix
Definition of CW complex

For a non-negative integer r , B r denotes a r -dimensional closed ball.

Definition

X : top. sp. A subset σ of X is said to be an (open) r -cell if there exists a
continuous map f : B r → X such that

f |Br\∂Br : B r \ ∂B r ∼=−→ σ.

In this case, the continuous map f is called the charcteristic map of σ.
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Appendix Definition of CW complex

Appendix
Definition of CW complex

Definition

A Housdorff top. sp. X together with a set of cells X (∗) is said to be
a CW complex if

(1) X =
∪

σ∈X (∗) σ and σ ∩ τ = ∅ for all σ, τ ∈ X (∗) with σ ̸= τ .

(2) For any r -cell σ ∈ X (∗) and its char. map fσ, fσ(∂B
r ) non-trivially

intersects only finitely many s-cells with s < r .

(3) A subset A of X is closed if and only if A ∩ σ̄ is closed in σ̄ for all
σ ∈ X (∗).

A CW complex X is said to be regular if for each cell σ, σ̄ is homeomorphic
to a closed ball.

Back to the main
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