Discrete Morse theory and combinatorial commutative algebra I

(非)可換代数とトポロジー

信州大学 松本キャンパス

岡崎亮太

大阪大学 / JST CREST

2012年3月14日

Discrete Morse theory and CCA

JIN NOR

Outline

Introduction

- Graded free resolutions
- (2) Forman's Morse theory for CW complex
 - Forman's discrete Morse theory

Discrete Morse theory for cellular resolutions

- Graded CW complex and cellular resolutions
- Batzies-Welker's theory
- Description of differential map (but hard to compute)
- Application to monomial ideals with linear quotients
 - Batzies-Welker's resolution for monomial ideals with linear quotients
 - How to construct an acyclic matching
- 6 Algebraic discrete Morse theory
 - Application of algebraic aspects of Forman's theory

Graded free resolutions

Let \Bbbk be a field and $S := \Bbbk[x_1, \ldots, x_n]$ a polynomial ring over \Bbbk . For $\underline{\mathbf{a}} \in \mathbb{Z}_{\geq 0}^n$, we set $x^{\underline{\mathbf{a}}} := \prod_{i=1}^n x_i^{\mathbf{a}_i}$. Recall that

Graded free resolutions

Let \Bbbk be a field and $S := \Bbbk[x_1, \ldots, x_n]$ a polynomial ring over \Bbbk . For $\underline{\mathbf{a}} \in \mathbb{Z}_{\geq 0}^n$, we set $x^{\underline{\mathbf{a}}} := \prod_{i=1}^n x_i^{\mathbf{a}_i}$. Recall that

- S has a structure of \mathbb{Z}^n -graded \Bbbk -algebra as follows;
 - for <u>a</u> := (a₁,..., a_n) ∈ Zⁿ_{≥0}, the degree deg(x^a) is <u>a</u>;
 S = ⊕_{<u>a</u>∈Zⁿ_{≥0}} S_{<u>a</u>} as k-vector spaces, where S_{<u>a</u>} := k ⋅ x^a;
 S_{<u>a</u>} ⋅ S_{<u>b</u>} ⊆ S<sub><u>a</u>+<u>b</u>.
 </sub>

Graded free resolutions

Let \Bbbk be a field and $S := \Bbbk[x_1, \ldots, x_n]$ a polynomial ring over \Bbbk . For $\underline{\mathbf{a}} \in \mathbb{Z}_{\geq 0}^n$, we set $x^{\underline{\mathbf{a}}} := \prod_{i=1}^n x_i^{\mathbf{a}_i}$. Recall that

- S has a structure of \mathbb{Z}^n -graded \Bbbk -algebra as follows;
 - for $\underline{\mathbf{a}} := (a_1, \dots, a_n) \in \mathbb{Z}_{\geq 0}^n$, the degree deg $(x^{\underline{\mathbf{a}}})$ is $\underline{\mathbf{a}}$; • $S = \bigoplus_{\underline{\mathbf{a}} \in \mathbb{Z}_{\geq 0}^n} S_{\underline{\mathbf{a}}}$ as \mathbb{k} -vector spaces, where $S_{\underline{\mathbf{a}}} := \mathbb{k} \cdot x^{\underline{\mathbf{a}}}$; • $S_{\underline{\mathbf{a}}} \cdot S_{\underline{\mathbf{b}}} \subseteq S_{\underline{\mathbf{a}}+\underline{\mathbf{b}}}$.
- An S-module M is said to be Zⁿ-graded if

•
$$M = \bigoplus_{\underline{a} \in \mathbb{Z}^n} M_{\underline{a}}$$
 as \Bbbk -vector spaces;
• $S_{\underline{a}} \cdot M_{\underline{b}} \subseteq M_{\underline{a}+\underline{b}}$.

Graded free resolutions

Let \Bbbk be a field and $S := \Bbbk[x_1, \ldots, x_n]$ a polynomial ring over \Bbbk . For $\underline{\mathbf{a}} \in \mathbb{Z}_{\geq 0}^n$, we set $x^{\underline{\mathbf{a}}} := \prod_{i=1}^n x_i^{a_i}$. Recall that

- S has a structure of \mathbb{Z}^n -graded \Bbbk -algebra as follows;
 - for $\underline{\mathbf{a}} := (a_1, \dots, a_n) \in \mathbb{Z}_{\geq 0}^n$, the degree deg $(x^{\underline{\mathbf{a}}})$ is $\underline{\mathbf{a}}$; • $S = \bigoplus_{\underline{\mathbf{a}} \in \mathbb{Z}_{\geq 0}^n} S_{\underline{\mathbf{a}}}$ as \mathbb{k} -vector spaces, where $S_{\underline{\mathbf{a}}} := \mathbb{k} \cdot x^{\underline{\mathbf{a}}}$; • $S_{\underline{\mathbf{a}}} \cdot S_{\underline{\mathbf{b}}} \subseteq S_{\underline{\mathbf{a}}+\underline{\mathbf{b}}}$.
- An S-module M is said to be Zⁿ-graded if

•
$$M = \bigoplus_{\underline{a} \in \mathbb{Z}^n} M_{\underline{a}}$$
 as k -vector spaces;
• $S_{\underline{a}} \cdot M_{\underline{b}} \subseteq M_{\underline{a}+\underline{b}}$.

For example, an ideal of S generated by some monomials $x^{\underline{a}}$ is \mathbb{Z}^n -graded. Recall that \mathbb{Z}^n can be regarded as a poset by

$$\underline{\mathbf{a}} \geq \underline{\mathbf{b}} \iff a_i \geq b_i \quad \forall i.$$

Let *M* be a \mathbb{Z}^n -graded *S*-module. A complex of *S*-modules

$$\mathcal{F}:\cdots\xrightarrow{\partial_3}\mathcal{F}_2\xrightarrow{\partial_2}\mathcal{F}_1\xrightarrow{\partial_1}\mathcal{F}_0\longrightarrow 0$$

is said to be a \mathbb{Z}^n -graded free resolution of M if

Let M be a \mathbb{Z}^n -graded S-module. A complex of S-modules

$$\mathcal{F}:\cdots \xrightarrow{\partial_3} \mathcal{F}_2 \xrightarrow{\partial_2} \mathcal{F}_1 \xrightarrow{\partial_1} \mathcal{F}_0 \longrightarrow 0$$

is said to be a \mathbb{Z}^n -graded free resolution of M if

• $\mathcal{F}_i = \bigoplus_{\sigma \in X^{(i)}} S \cdot e_{\sigma}$, where $X^{(i)}$ is an index set, e_{σ} is a S-free basis with deg $(e_{\sigma}) \in \mathbb{Z}^n$, and

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ■ ● ● ●

٥

Let *M* be a \mathbb{Z}^n -graded *S*-module. A complex of *S*-modules

$$\mathcal{F}:\cdots \xrightarrow{\partial_3} \mathcal{F}_2 \xrightarrow{\partial_2} \mathcal{F}_1 \xrightarrow{\partial_1} \mathcal{F}_0 \longrightarrow 0$$

is said to be a \mathbb{Z}^n -graded free resolution of M if

• $\mathcal{F}_i = \bigoplus_{\sigma \in X^{(i)}} S \cdot e_{\sigma}$, where $X^{(i)}$ is an index set, e_{σ} is a *S*-free basis with deg $(e_{\sigma}) \in \mathbb{Z}^n$, and

$$\partial: \mathcal{F}_i \ni e_{\sigma} \mapsto \sum_{\substack{\tau \in \boldsymbol{\chi}^{(i-1)} \\ \deg(\sigma) \ge \deg(\tau)}} \lambda_{\tau} \boldsymbol{\chi}^{\deg(\sigma) - \deg(\tau)} \cdot e_{\tau} \in \mathcal{F}_{i-1} \qquad (*)$$

for some $\lambda_{\tau} \in \Bbbk$.

Let M be a \mathbb{Z}^n -graded S-module. A complex of S-modules

$$\mathcal{F}:\cdots \xrightarrow{\partial_3} \mathcal{F}_2 \xrightarrow{\partial_2} \mathcal{F}_1 \xrightarrow{\partial_1} \mathcal{F}_0 \longrightarrow 0$$

is said to be a \mathbb{Z}^n -graded free resolution of M if

• $\mathcal{F}_i = \bigoplus_{\sigma \in X^{(i)}} S \cdot e_{\sigma}$, where $X^{(i)}$ is an index set, e_{σ} is a *S*-free basis with deg $(e_{\sigma}) \in \mathbb{Z}^n$, and

$$\partial: \mathcal{F}_i \ni e_{\sigma} \mapsto \sum_{\substack{\tau \in \chi^{(i-1)} \\ \deg(\sigma) \ge \deg(\tau)}} \lambda_{\tau} x^{\deg(\sigma) - \deg(\tau)} \cdot e_{\tau} \in \mathcal{F}_{i-1} \qquad (*)$$

for some $\lambda_{\tau} \in \mathbb{k}$.

• $H_i(\mathcal{F}) = 0$ for $i \neq 0$ and $H_0(\mathcal{F}) \cong M$.

Let *M* be a \mathbb{Z}^n -graded *S*-module. A complex of *S*-modules

$$\mathcal{F}:\cdots \xrightarrow{\partial_3} \mathcal{F}_2 \xrightarrow{\partial_2} \mathcal{F}_1 \xrightarrow{\partial_1} \mathcal{F}_0 \longrightarrow 0$$

is said to be a \mathbb{Z}^n -graded free resolution of M if

• $\mathcal{F}_i = \bigoplus_{\sigma \in X^{(i)}} S \cdot e_{\sigma}$, where $X^{(i)}$ is an index set, e_{σ} is a *S*-free basis with deg $(e_{\sigma}) \in \mathbb{Z}^n$, and

$$\partial: \mathcal{F}_i \ni e_{\sigma} \mapsto \sum_{\substack{\tau \in \chi^{(i-1)} \\ \deg(\sigma) \ge \deg(\tau)}} \lambda_{\tau} x^{\deg(\sigma) - \deg(\tau)} \cdot e_{\tau} \in \mathcal{F}_{i-1} \qquad (*)$$

for some $\lambda_{\tau} \in \mathbb{k}$.

• $H_i(\mathcal{F}) = 0$ for $i \neq 0$ and $H_0(\mathcal{F}) \cong M$.

 \mathcal{F} is said to be minimal if $\deg(\sigma) > \deg(\tau)$ for each σ, τ in (*).

岡崎亮太

- A min. Zⁿ-gr. free res. is very important in combinatorial commutative algebra and the related field.
- In general, it is hard to compute a minimal \mathbb{Z}^n -graded free resolution.

< 回 > < 三 > < 三 > 三 三 < つ Q (P)

Forman's discrete Morse theory

Example of CW complexes (Definition?) Cell decomposition of B^2 .

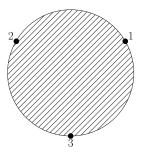


Figure: regular CW

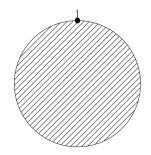


Figure: non-regular CW

Forman's discrete Morse theory

For a CW complex X.

- set $X^{(i)} := \{ \text{all the } i\text{-cells} \}, X^{(*)} := \bigcup_i X^{(i)}, \text{ and } \}$
- $X^i := \bigcup_{i \le i} X^{(j)}$, which is called *i*-skeleton of X.

Forman's discrete Morse theory

For a CW complex X.

- set $X^{(i)} := \{ \text{all the } i\text{-cells} \}, X^{(*)} := \bigcup_i X^{(i)}, \text{ and } \}$
- $X^i := \bigcup_{i \le i} X^{(j)}$, which is called *i*-skeleton of X.

Recall that we can construct a cellular chain complex $\mathcal{C}(X;\mathbb{Z})$ of X (over \mathbb{Z}) as follows;

• $\mathcal{C}_p(X;\mathbb{Z}) = H_i(X^p, X^{p-1};\mathbb{Z}) \cong \bigoplus_{\sigma \in X^{(p)}} \mathbb{Z} \cdot e_{\sigma};$

Forman's discrete Morse theory

For a CW complex X.

- set $X^{(i)} := \{ \text{all the } i\text{-cells} \}, X^{(*)} := \bigcup_i X^{(i)}, \text{ and } \}$
- $X^i := \bigcup_{i \le i} X^{(j)}$, which is called *i*-skeleton of X.

Recall that we can construct a cellular chain complex $\mathcal{C}(X;\mathbb{Z})$ of X (over \mathbb{Z}) as follows;

- $\mathcal{C}_p(X;\mathbb{Z}) = H_i(X^p, X^{p-1};\mathbb{Z}) \cong \bigoplus_{\sigma \in X^{(p)}} \mathbb{Z} \cdot e_{\sigma};$
- $\partial_{p}: \mathcal{C}_{p}(X;\mathbb{Z}) \to \mathcal{C}_{p-1}(X;\mathbb{Z})$ is given by

 $H_{\mathbf{p}}(X^{p}, X^{p-1}; \mathbb{Z}) \xrightarrow{\alpha_{p}} H_{\mathbf{p}-1}(X^{p-1}; \mathbb{Z}) \xrightarrow{\beta_{p-1}} H_{\mathbf{p}-1}(X^{p-1}, X^{p-2}; \mathbb{Z}),$

where α_p denotes the connecting map and β_{p-1} is the natural map.

Forman's discrete Morse theory

Definition

For $\sigma \in X^{(p)}$ and $\tau \in X^{(p-1)}$, let $[\sigma : \tau]$ denote the coefficients of $\partial_p(e_{\sigma})$ in e_{τ} . Thus $\partial_{\rho}(e_{\sigma}) = \sum_{\tau \in X^{(p-1)}} [\sigma : \tau] \cdot e_{\tau}$ $[\sigma:\tau] \in \mathbb{Z}$ is called a incidence number of X.

Forman's discrete Morse theory

Definition

For $\sigma \in X^{(p)}$ and $\tau \in X^{(p-1)}$, let $[\sigma : \tau]$ denote the coefficients of $\partial_p(e_{\sigma})$ in e_{τ} . Thus $\partial_{p}(e_{\sigma}) = \sum_{\tau \in X^{(p-1)}} [\sigma : \tau] \cdot e_{\tau}$ $[\sigma:\tau] \in \mathbb{Z}$ is called a incidence number of X.

X: CW cpx. The set of cells $X^{(*)}$ can be ordered as follows;

 $\sigma > \tau \iff \bar{\sigma} \supset \tau.$

Forman's discrete Morse theory

Definition

For $\sigma \in X^{(p)}$ and $\tau \in X^{(p-1)}$, let $[\sigma : \tau]$ denote the coefficients of $\partial_p(e_{\sigma})$ in e_{τ} . Thus $\partial_{p}(e_{\sigma}) = \sum_{\tau \in X^{(p-1)}} [\sigma : \tau] \cdot e_{\tau}$ $[\sigma:\tau] \in \mathbb{Z}$ is called a incidence number of X.

X: CW cpx. The set of cells $X^{(*)}$ can be ordered as follows;

 $\sigma > \tau \iff \bar{\sigma} \supset \tau.$

Let G_X be a directed graph associated with X such that

- the vertices are the cells of X. and
- the edges are $\{ \sigma \to \tau \mid \sigma > \tau, \dim \sigma = \dim \tau + 1, [\sigma : \tau] \neq 0 \}.$

Forman's discrete Morse theory

Let A a set of some edges in G_X . Then we set G_X^A to be the directed graph whose

• vertices are those of G_X ;

Forman's discrete Morse theory

Let A a set of some edges in G_X . Then we set G_X^A to be the directed graph whose

- vertices are those of G_X ;
- edges are $(E_X \setminus A) \cup \{ \tau \to \sigma \mid \sigma \to \tau \in A \}$,

Forman's discrete Morse theory

Let A a set of some edges in G_X . Then we set G_X^A to be the directed graph whose

- vertices are those of G_X ;
- edges are $(E_X \setminus A) \cup \{ \tau \to \sigma \mid \sigma \to \tau \in A \}$,

where E_X denotes the edge set of G_X .

Forman's discrete Morse theory

Let A a set of some edges in G_X . Then we set G_X^A to be the directed graph whose

- vertices are those of G_X ;
- edges are $(E_X \setminus A) \cup \{ \tau \to \sigma \mid \sigma \to \tau \in A \}$,

where E_X denotes the edge set of G_X .

Definition

With the above notation, the set A is said to be a acyclic matching if

Forman's discrete Morse theory

Let A a set of some edges in G_X . Then we set G_X^A to be the directed graph whose

- vertices are those of G_X ;
- edges are $(E_X \setminus A) \cup \{ \tau \to \sigma \mid \sigma \to \tau \in A \}$,

where E_X denotes the edge set of G_X .

Definition

With the above notation, the set A is said to be a acyclic matching if

(1) each vertices appears at most one edge in A and

Forman's discrete Morse theory

Let A a set of some edges in G_X . Then we set G_X^A to be the directed graph whose

- vertices are those of G_X ;
- edges are $(E_X \setminus A) \cup \{ \tau \to \sigma \mid \sigma \to \tau \in A \}$,

where E_X denotes the edge set of G_X .

Definition

With the above notation, the set A is said to be a acyclic matching if

- (1) each vertices appears at most one edge in A and
- (2) there exists no directed cycle in G_{x}^{A} .

Forman's discrete Morse theory

Let A a set of some edges in G_X . Then we set G_X^A to be the directed graph whose

- vertices are those of G_X ;
- edges are $(E_X \setminus A) \cup \{ \tau \to \sigma \mid \sigma \to \tau \in A \}$,

where E_X denotes the edge set of G_X .

Definition

With the above notation, the set A is said to be a acyclic matching if

- (1) each vertices appears at most one edge in A and
- (2) there exists no directed cycle in G_{x}^{A} .

A vertex σ which does not appear in any edge in A is called a critical cell.

Forman's discrete Morse theory

Theorem (Forman, 1998)

Let X be a fin. reg. CW cpx., and A an acyc. matching of X. Then there exists a (not necessarily reg.) CW cpx X_A such that

JIN NOR

Forman's discrete Morse theory

Theorem (Forman, 1998)

Let X be a fin. reg. CW cpx., and A an acyc. matching of X. Then there exists a (not necessarily reg.) CW cpx X_A such that

(1) $X \simeq X_A$ (homotopy equivalent), and

< 回 > < 三 > < 三 > 三 三 < つ Q (P)

Forman's discrete Morse theory

Theorem (Forman, 1998)

Let X be a fin. reg. CW cpx., and A an acyc. matching of X. Then there exists a (not necessarily reg.) CW cpx X_A such that (1) $X \simeq X_A$ (homotopy equivalent), and (2) $\left\{ \sigma \in X^{(i)} \mid \sigma \text{ is critical} \right\} \ni \sigma \xleftarrow{1:1} \sigma_A \in X_A^{(i)}.$

< 回 > < 三 > < 三 > 三 三 < つ Q (P)

Forman's discrete Morse theory

Theorem (Forman, 1998)

Let X be a fin. reg. CW cpx., and A an acyc. matching of X. Then there exists a (not necessarily reg.) CW cpx X_A such that (1) $X \simeq X_A$ (homotopy equivalent), and (2) $\left\{ \sigma \in X^{(i)} \mid \sigma \text{ is critical } \right\} \ni \sigma \stackrel{1:1}{\longleftrightarrow} \sigma_A \in X_A^{(i)}.$

Remark

Forman uses so-called Morse function $X^{(*)} \to \mathbb{R}$. The explanation here with an acyclic matching is due to Chari.

Discrete Morse theory for cellular resolutions Graded CW complex and cellular resolutions

 $S := \Bbbk[x_1, \ldots, x_n], X$: CW cpx. Recall that $X^{(*)}$ can be ordered as follows

$\sigma > \tau \iff \bar{\sigma} \supset \tau$

Let gr : $X^{(*)} \to \mathbb{Z}^n$ be a map.

Discrete Morse theory for cellular resolutions Graded CW complex and cellular resolutions

 $S := \Bbbk[x_1, \ldots, x_n], X$: CW cpx. Recall that $X^{(*)}$ can be ordered as follows

$\sigma > \tau \iff \bar{\sigma} \supset \tau$

Let gr : $X^{(*)} \to \mathbb{Z}^n$ be a map.

Definition

The pair (X, gr) is called a \mathbb{Z}^n -graded CW complex if gr is order-preserving. i.e., $gr(\sigma) \ge gr(\tau)$ if $\sigma \ge \tau$.

Discrete Morse theory for cellular resolutions

Graded CW complex and cellular resolutions

Example

- $S := \Bbbk[x_1, \dots, x_n]$: polynomial ring over a field \Bbbk
 - M := {m₁,..., m_r}: a set of monomials of S, X: (r − 1)-simplex. Labeling each vertices by m₁,..., m_r, X can be regarded as 2^M. Hence X⁽ⁱ⁾ := { σ ⊆ M | #σ = i + 1 }, and the order on X = 2^M is the one defined by inclusion. Define gr : 2^M → Zⁿ by

 $\operatorname{gr}(\sigma) := \operatorname{deg}(\operatorname{lcm}(\sigma))$

Then gr is degree-preserving, and (X, gr) is \mathbb{Z}^n -graded.

Discrete Morse theory for cellular resolutions

Graded CW complex and cellular resolutions

Example

- $S := \Bbbk[x_1, \dots, x_n]$: polynomial ring over a field \Bbbk
 - M := {m₁,...,m_r}: a set of monomials of S, X: (r − 1)-simplex. Labeling each vertices by m₁,...,m_r, X can be regarded as 2^M. Hence X⁽ⁱ⁾ := { σ ⊆ M | #σ = i + 1 }, and the order on X = 2^M is the one defined by inclusion. Define gr : 2^M → Zⁿ by

$\operatorname{gr}(\sigma) := \operatorname{deg}(\operatorname{lcm}(\sigma))$

Then gr is degree-preserving, and (X, gr) is \mathbb{Z}^n -graded.

• Clearly, $x^{\operatorname{gr}(\sigma)} = \operatorname{lcm}(\sigma)$.

Discrete Morse theory for cellular resolutions Graded CW complex and cellular resolutions

Recall that $S := \mathbb{k}[x_1, \ldots, x_n]$. (X, gr): \mathbb{Z}^n -gr. CW. Consider the chain complex

$$0 \longrightarrow \mathcal{F}^X_{\dim X} \longrightarrow \cdots \longrightarrow \mathcal{F}^X_1 \longrightarrow \mathcal{F}^X_0 \longrightarrow 0$$

such that

▲母 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の ○ ○

Discrete Morse theory for cellular resolutions Graded CW complex and cellular resolutions

Recall that $S := \mathbb{k}[x_1, \ldots, x_n]$. $(X, gr): \mathbb{Z}^n$ -gr. CW. Consider the chain complex

$$0 \longrightarrow \mathcal{F}^X_{\dim X} \longrightarrow \cdots \longrightarrow \mathcal{F}^X_1 \longrightarrow \mathcal{F}^X_0 \longrightarrow 0$$

such that

• $\mathcal{F}_i^X := \bigoplus_{\sigma \in \mathbf{X}^{(i)}} S \cdot e_{\sigma}$, where e_{σ} denotes the basis with degree $gr(\sigma)$.

Discrete Morse theory for cellular resolutions Graded CW complex and cellular resolutions

Recall that $S := \mathbb{k}[x_1, \ldots, x_n]$. $(X, gr): \mathbb{Z}^n$ -gr. CW. Consider the chain complex

$$0 \longrightarrow \mathcal{F}^{X}_{\dim X} \longrightarrow \cdots \longrightarrow \mathcal{F}^{X}_{1} \longrightarrow \mathcal{F}^{X}_{0} \longrightarrow 0$$

such that

- $\mathcal{F}_i^X := \bigoplus_{\sigma \in X^{(i)}} S \cdot e_{\sigma}$, where e_{σ} denotes the basis with degree $gr(\sigma)$.
- the differential map $\mathcal{F}_i^X \to \mathcal{F}_{i-1}^X$ is given by

$$\mathcal{F}_{i}^{X} \ni e_{\sigma} \mapsto \sum_{\substack{\tau \in X^{(i-1)} \\ \exists_{\sigma \to \tau \in E_{X}}}} [\sigma : \tau] x^{\operatorname{gr}(\sigma) - \operatorname{gr}(\tau)} e_{\tau} \in \mathcal{F}_{i-1}^{X}$$

Graded CW complex and cellular resolutions

Definition

For a \mathbb{Z}^{n} -gr. CW (X, gr), the chain complex \mathcal{F}^{X} , constructed above, is called the cellular resolution (of $\operatorname{Coker}(\mathcal{F}_{1}^{X} \to \mathcal{F}_{0}^{X})$) supported by X if \mathcal{F}^{X} is acyclic.

By the definition, the following is clear.

Graded CW complex and cellular resolutions

Definition

For a \mathbb{Z}^n -gr. CW (X, gr), the chain complex \mathcal{F}^X , constructed above, is called the cellular resolution (of $\text{Coker}(\mathcal{F}_1^X \to \mathcal{F}_0^X)$) supported by X if \mathcal{F}^X is acyclic.

By the definition, the following is clear.

Proposition

A cellular resolution \mathcal{F}^X is minimal if and only if for $\sigma, \tau \in X^{(*)}$ with $\sigma \geq \tau$ and dim $\sigma = \dim \tau + 1$, either $gr(\sigma) \neq gr(\tau)$ or $[\sigma : \tau] = 0$.

Graded CW complex and cellular resolutions

Example (Taylor resolution)

 $J := (m_1, \dots, m_r): \text{ monomial ideal, } G(J) := \{m_1, \dots, m_r\}$ X: (r - 1)-simplex, identified with $2^{G(J)}$. Define $gr(\sigma) := deg(lcm(\sigma))$, and

•
$$\mathcal{F}_i^X := \bigoplus_{\sigma \in X^{(i)}} S \cdot e_{\sigma}$$

Graded CW complex and cellular resolutions

Example (Taylor resolution)

 $J := (m_1, \dots, m_r): \text{ monomial ideal, } G(J) := \{m_1, \dots, m_r\}$ X: (r-1)-simplex, identified with $2^{G(J)}$. Define $gr(\sigma) := deg(lcm(\sigma))$, and

•
$$\mathcal{F}_{i}^{\wedge} := \bigoplus_{\sigma \in X^{(i)}} S \cdot e_{\sigma}$$

• $\mathcal{F}_{i}^{X} \ni e_{\sigma} \mapsto \sum_{\mathsf{m} \in \sigma} \pm \frac{\mathsf{lcm}(\sigma)}{\mathsf{lcm}(\sigma \setminus \mathsf{m})} \cdot e_{\sigma \setminus \mathsf{m}} \in \mathcal{F}_{i-1}^{X}$

Graded CW complex and cellular resolutions

Example (Taylor resolution)

$$\begin{split} J &:= (\mathsf{m}_1, \cdots, \mathsf{m}_r): \text{ monomial ideal, } G(J) &:= \{\mathsf{m}_1, \ldots, \mathsf{m}_r\} \\ X &: (r-1)\text{-simplex, identified with } 2^{G(J)}. \\ \text{Define } \mathsf{gr}(\sigma) &:= \mathsf{deg}(\mathsf{lcm}(\sigma)), \text{ and} \end{split}$$

•
$$\mathcal{F}_{i}^{X} := \bigoplus_{\sigma \in X^{(i)}} S \cdot e_{\sigma}$$

• $\mathcal{F}_{i}^{X} \ni e_{\sigma} \mapsto \sum_{\mathsf{m} \in \sigma} \pm \frac{\mathsf{lcm}(\sigma)}{\mathsf{lcm}(\sigma \setminus \mathsf{m})} \cdot e_{\sigma \setminus \mathsf{m}} \in \mathcal{F}_{i-1}^{X}$

It is well known that \mathcal{F}^X gives a \mathbb{Z}^n -gr. free res. of J. \mathcal{F}^X is called the Taylor resolution of J.

Graded CW complex and cellular resolutions

Remark

• Taylor resolutions are cellular, but not minimal in general.

ELE NOR

Graded CW complex and cellular resolutions

Remark

- Taylor resolutions are cellular, but not minimal in general.
- Bar resolutions are also cellular and not minimal in general.

Graded CW complex and cellular resolutions

Remark

- Taylor resolutions are cellular, but not minimal in general.
- Bar resolutions are also cellular and not minimal in general.

For $\underline{\mathbf{a}} \in \mathbb{Z}^n$ and \mathbb{Z}^n -gr. CW, set $X_{\leq \mathbf{a}}$ to be the subcomplex of X defined by

$$X_{\leq \underline{\mathbf{a}}}^{(*)} := \left\{ \sigma \in X^{(*)} \mid \operatorname{gr} \sigma \leq \underline{\mathbf{a}} \right\}.$$

Graded CW complex and cellular resolutions

Remark

- Taylor resolutions are cellular, but not minimal in general.
- Bar resolutions are also cellular and not minimal in general.

For $\underline{\mathbf{a}} \in \mathbb{Z}^n$ and \mathbb{Z}^n -gr. CW, set $X_{\leq \mathbf{a}}$ to be the subcomplex of X defined by

$$X_{\leq \underline{\mathbf{a}}}^{(*)} := \left\{ \sigma \in X^{(*)} \mid \operatorname{gr} \sigma \leq \underline{\mathbf{a}} \right\}.$$

Proposition

A \mathbb{Z}^n -gr. CW (X, gr) supports a free resolution of some graded *S*-module if and only if $X_{\leq \mathbf{a}}$ is either empty or acyclic over \Bbbk for all $\mathbf{a} \in \mathbb{Z}^n$.

Graded CW complex and cellular resolutions

Proof.

For $\underline{\mathbf{a}} \in \mathbb{Z}^n$,

$$\left(\mathcal{F}_{i}^{X}\right)_{\underline{\mathbf{a}}} = \bigoplus_{\sigma \in X_{<\mathbf{a}}^{(i)}} \mathbb{k} \cdot x^{\underline{\mathbf{a}} - \operatorname{gr} \sigma} \cdot e_{\sigma}.$$

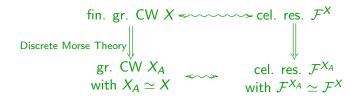
Easy observation implies

 $\mathcal{F}_{\underline{\mathbf{a}}}^{X} \cong \mathcal{C}(X_{\leq \underline{\mathbf{a}}}; \mathbb{k}).$

・同ト (ヨト (ヨト ヨヨ) の()

Batzies-Welker's idea

• Let A be an acyclic mathching of G_X .

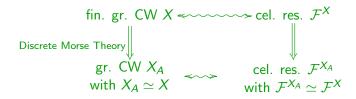


Here \simeq denotes a homotopy equivalent.

・同ト (ヨト (ヨト ヨヨ) の()

Batzies-Welker's idea

• Let A be an acyclic mathching of G_X .

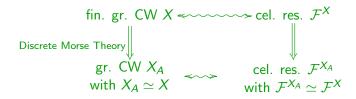


Here \simeq denotes a homotopy equivalent.

• rank $\mathcal{F}_i^{X_A} = \# X_A^{(i)} \le \# X^{(i)} = \operatorname{rank} \mathcal{F}_i^X$ for all i

Batzies-Welker's idea

• Let A be an acyclic mathching of G_X .



Here \simeq denotes a homotopy equivalent.

• rank $\mathcal{F}_i^{X_A} = \# X_A^{(i)} \le \# X^{(i)} = \operatorname{rank} \mathcal{F}_i^X$ for all i

 \rightsquigarrow We have a "smaller" (minimal in some cases) resolution \mathcal{F}^{X_A} .

Definition

(X, gr): \mathbb{Z}^n -gr. CW, G_X : associated graph. An acyclic matching A of G_X is called homogeneous if $\operatorname{gr} \sigma = \operatorname{gr} \tau$ whenever $\sigma \rightarrow \tau \in A$.

・同ト (ヨト (ヨト ヨヨ) の()

Definition

 (X, gr) : \mathbb{Z}^n -gr. CW, G_X : associated graph. An acyclic matching A of G_X is called homogeneous if $\operatorname{gr} \sigma = \operatorname{gr} \tau$ whenever $\sigma \to \tau \in A$.

Proposition

(X, gr): fin. \mathbb{Z}^{n} -gr. reg. CW, A: its homogeneous acyclic matching. Then

(1) X_A has natural \mathbb{Z}^n -grading $\operatorname{gr}_A : X_A^{(*)} \to \mathbb{Z}^n$ induced by gr (i.e., for $\sigma_A \in X_A^{(*)}$ corresponding to a critical $\sigma \in X^{(*)}$, $\operatorname{gr}_A(c_A) = \operatorname{gr}(c)$).

Definition

(X, gr): \mathbb{Z}^n -gr. CW, G_X : associated graph. An acyclic matching A of G_X is called homogeneous if $\operatorname{gr} \sigma = \operatorname{gr} \tau$ whenever $\sigma \rightarrow \tau \in A$.

Proposition

(X, gr): fin. \mathbb{Z}^n -gr. reg. CW, A: its homogeneous acyclic matching. Then

(1) X_A has natural \mathbb{Z}^n -grading $\operatorname{gr}_A : X_A^{(*)} \to \mathbb{Z}^n$ induced by gr (i.e., for $\sigma_A \in X_A^{(*)}$ corresponding to a critical $\sigma \in X^{(*)}$, $\operatorname{gr}_A(c_A) = \operatorname{gr}(c)$). (2) With the above grading, $X_{\leq a} \simeq (X_A)_{\leq a}$ for any $\underline{a} \in \mathbb{Z}^n$.

Theorem (Batzies-Welker, 2002)

 (X, gr) : fin. \mathbb{Z}^n -gr. reg. CW, A: homog. acyc. matching. Assume \mathcal{F}^X is a cellular resolution of a \mathbb{Z}^n -graded S-module M. Then \mathcal{F}^{X_A} is also a cellular resolution of M.

< 回 > < 三 > < 三 > 三 三 < つ Q (P)

Theorem (Batzies-Welker, 2002)

 (X, gr) : fin. \mathbb{Z}^n -gr. reg. CW, A: homog. acyc. matching. Assume \mathcal{F}^X is a cellular resolution of a \mathbb{Z}^n -graded S-module M. Then \mathcal{F}^{X_A} is also a cellular resolution of M.

Proof.

By the hypothesis, $H^i(\mathcal{F}^X) = 0$ for $i \neq 0$ and $H^0(\mathcal{F}^X) \cong M$. Since for any integer *i* and any $\underline{a} \in \mathbb{Z}^n$,

$$H^{i}(\mathcal{F}^{X})_{\underline{a}} \cong H^{i}(X_{\leq \underline{a}}; \Bbbk) \cong H^{i}((X_{A})_{\leq \underline{a}}; \Bbbk) \cong H^{i}(\mathcal{F}^{X_{A}})_{\underline{a}},$$

it follows that $H^i(\mathcal{F}^{X_A}) = 0$ for $i \neq 0$ and $H^0(\mathcal{F}^{X_A}) \cong M$.

Remark

 Batzies-Welker showed the same assertion in more general situation where S is an affine semigroup ring k[Λ] and (X, gr) is a compactly (Zⁿ, Λ)-graded CW complex, which is not necessarily finite.

Remark

- Batzies-Welker showed the same assertion in more general situation where S is an affine semigroup ring k[Λ] and (X, gr) is a compactly (Zⁿ, Λ)-graded CW complex, which is not necessarily finite.
- Even if X is regular, X_A is not necessarily regular.

岡崎亮太

< ≣ >

Remark

- Batzies-Welker showed the same assertion in more general situation where S is an affine semigroup ring k[Λ] and (X, gr) is a compactly (Zⁿ, Λ)-graded CW complex, which is not necessarily finite.
- Even if X is regular, X_A is not necessarily regular.
- There exists a minimal free resolution which is cellular but is not supported by regular CW complex (Reiner-Welker, 2001, Velasco, 2008).

・同ト (ヨト (ヨト ヨヨ) の()

Remark

- Batzies-Welker showed the same assertion in more general situation where S is an affine semigroup ring k[Λ] and (X, gr) is a compactly (Zⁿ, Λ)-graded CW complex, which is not necessarily finite.
- Even if X is regular, X_A is not necessarily regular.
- There exists a minimal free resolution which is cellular but is not supported by regular CW complex (Reiner-Welker, 2001, Velasco, 2008).
- There also exists a minimal free resolution which is not supported by CW complex (Velasco, 2008).

(X, gr): fin. \mathbb{Z}^{n} -gr. CW, A: its homog. acyc. matching, G_{X}^{A} : associated graph.

• A directed path $\sigma_0 \rightarrow \sigma_1 \rightarrow \cdots \rightarrow \sigma_r$ in G_{χ}^A is called gradient path.

(X, gr): fin. \mathbb{Z}^n -gr. CW, A: its homog. acyc. matching, G_X^A : associated graph.

- A directed path $\sigma_0 \rightarrow \sigma_1 \rightarrow \cdots \rightarrow \sigma_r$ in G_X^A is called gradient path.
- For an edge $\sigma \to \tau$ in G_X^A , set

$$w(\sigma
ightarrow au) := egin{cases} -[au:\sigma] & ext{if } au
ightarrow \sigma \in A; \ [\sigma: au] & ext{otherwise,} \end{cases}$$

and for a grad. path $\mathcal{P}: \sigma_0 \to \sigma_1 \to \cdots \to \sigma_r$. set

$$w(\mathcal{P}) := \prod_{i=0}^{r-1} w(\sigma_i \to \sigma_{i+1}).$$

With the above notation, for $\sigma, \tau \in G_X^A$, set

 $\operatorname{Path}_{G^A_{\operatorname{v}}}(\sigma,\tau) := \{ \operatorname{grad. path from } \sigma \text{ to } \tau \}.$

$$\partial_i^A(e_{\sigma_A}) = \sum_{\sigma'_A \in X_A^{(i-1)}} \left(\sum_{\mathcal{P} \in \mathsf{Path}_{\mathcal{G}_X^A}(\sigma, \sigma')} w(\mathcal{P}) \right) x^{\mathsf{gr}(\sigma) - \mathsf{gr}(\sigma')} \cdot e_{\sigma'_A}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへの

With the above notation, for $\sigma, \tau \in G_x^A$, set

Path_{*G*}(σ, τ) := {grad. path from σ to τ }.

Proposition

The differential map ∂^A of \mathcal{F}^{X_A} is given as follows; let $\sigma \in X^{(i)}$ be an A-critical cell, and σ_A the corresponding cell of X_A ; then

With the above notation, for $\sigma, \tau \in G_X^A$, set

 $\operatorname{Path}_{\mathcal{G}_{\mathbf{v}}^{\mathcal{A}}}(\sigma, \tau) := \{\operatorname{grad. path from } \sigma \text{ to } \tau\}.$

Proposition

The differential map ∂^A of \mathcal{F}^{X_A} is given as follows; let $\sigma \in X^{(i)}$ be an *A*-critical cell, and σ_A the corresponding cell of X_A ; then

$$\partial_i^A(e_{\sigma_A}) = \sum_{\sigma'_A \in X_A^{(i-1)}} \left(\sum_{\mathcal{P} \in \mathsf{Path}_{G_X^A}(\sigma, \sigma')} w(\mathcal{P}) \right) x^{\mathsf{gr}(\sigma) - \mathsf{gr}(\sigma')} \cdot e_{\sigma'_A}$$

I: mon. ideal, $G(I) := \{m_1, \ldots, m_r\}$: min. mon. generators.

Definition

I is said to have linear quotients if there exists a total order \Box on G(I)satisfying for m, m' $\in G(I)$ with m' \sqsubset m, \exists m'' $\in G(I)$ such that

• $m'' \sqsubset m$.

I: mon. ideal, $G(I) := \{m_1, \ldots, m_r\}$: min. mon. generators.

Definition

I is said to have linear quotients if there exists a total order \Box on G(I)satisfying for m, m' $\in G(I)$ with m' \sqsubset m, \exists m'' $\in G(I)$ such that

•
$$x_i m = lcm(m'', m)$$
 for some *i*, and

I: mon. ideal, $G(I) := \{m_1, \ldots, m_r\}$: min. mon. generators.

Definition

I is said to have linear quotients if there exists a total order \Box on G(I)satisfying for m, m' $\in G(I)$ with m' \sqsubset m, \exists m'' $\in G(I)$ such that

- $m'' \sqsubset m$.
- $x_i m = lcm(m'', m)$ for some i, and
- $\operatorname{lcm}(m'',m)|\operatorname{lcm}(m',m).$

I: mon. ideal, $G(I) := \{m_1, \ldots, m_r\}$: min. mon. generators.

Definition

I is said to have linear quotients if there exists a total order \Box on G(I)satisfying for m, m' $\in G(I)$ with m' \sqsubset m, \exists m'' $\in G(I)$ such that

• $\operatorname{lcm}(m'',m)|\operatorname{lcm}(m',m).$

It is well-known that / has linear quotients if and only if $\exists \Box$: total order on G(I) such that (m_1, \ldots, m_k) : m_{k+1} is generated by some variables of S for each k.

< ∃ >

< 67 ▶

 $X(=2^{G(l)})$: (t-1)-simplex. Recall that the Tylor resolution \mathcal{F}^{X} • $\mathcal{F}_i^X := \bigoplus_{\sigma \in X^{(i)}} S \cdot e_{\sigma}$ • $\mathcal{F}_{i}^{X} \ni e_{\sigma} \mapsto \sum_{\mathsf{m} \in \sigma} \pm \frac{\mathsf{lcm}(\sigma)}{\mathsf{lcm}(\sigma \setminus \mathsf{m})} \cdot e_{\sigma \setminus \mathsf{m}} \in \mathcal{F}_{i-1}^{X}$ gives a not nessarily min. \mathbb{Z}^n -gr. free resolution of *I*. Let G_X be the graph associated with X.

< 回 > < 三 > < 三 > 三 三 < つ Q (P)

 $X(=2^{G(I)})$: (t-1)-simplex. Recall that the Tylor resolution \mathcal{F}^X

• $\mathcal{F}_i^X := \bigoplus_{\sigma \in X(i)} S \cdot e_{\sigma}$

• $\mathcal{F}_{i}^{X} \ni e_{\sigma} \mapsto \sum_{\mathsf{m} \in \sigma} \pm \frac{\mathsf{lcm}(\sigma)}{\mathsf{lcm}(\sigma \setminus \mathsf{m})} \cdot e_{\sigma \setminus \mathsf{m}} \in \mathcal{F}_{i-1}^{X}$ gives a not nessarily min. \mathbb{Z}^n -gr. free resolution of *I*.

Let G_X be the graph associated with X.

Theorem (Batzies-Welker, 2002)

With the above notation, there exists an acycling matching A of G_X such that \mathcal{F}^{X^A} gives a min. \mathbb{Z}^n -gr. free res. of the monomial ideal I with linear quotients.

Application to monomial ideals with linear quotients How to construct an acyclic matching

Construction of the acyclic matching For $m \in G(I)$, set

• $J_{\mathsf{m}} := \{ i \mid \exists \mathsf{n}_i^\mathsf{m} \in G(I) \text{ s.t. } \mathsf{n}_i^\mathsf{m} \sqsubset \mathsf{m}, \mathsf{lcm}(\mathsf{n}_i^\mathsf{m}, \mathsf{m}) = x_i \mathsf{m} \},\$

Application to monomial ideals with linear quotients How to construct an acyclic matching

Construction of the acyclic matching For $m \in G(I)$, set

- $J_{\mathsf{m}} := \{ i \mid \exists \mathsf{n}_i^{\mathsf{m}} \in G(I) \text{ s.t. } \mathsf{n}_i^{\mathsf{m}} \sqsubset \mathsf{m}, \mathsf{lcm}(\mathsf{n}_i^{\mathsf{m}}, \mathsf{m}) = x_i \mathsf{m} \},$
- $N_{\mathrm{m}} := \{ \mathbf{n}_{i}^{\mathrm{m}} \mid i \in J_{\mathrm{m}} \}$ (not unique!).

Construction of the acyclic matching For $m \in G(I)$, set

- $J_{\mathsf{m}} := \{ i \mid \exists \mathsf{n}_i^{\mathsf{m}} \in G(I) \text{ s.t. } \mathsf{n}_i^{\mathsf{m}} \sqsubset \mathsf{m}, \mathsf{lcm}(\mathsf{n}_i^{\mathsf{m}}, \mathsf{m}) = x_i \mathsf{m} \},$
- $N_{\mathrm{m}} := \{ n_i^{\mathrm{m}} \mid i \in J_{\mathrm{m}} \}$ (not unique!).

Let \mathscr{M} be the set of all the monomials in I. Define

Construction of the acyclic matching For $m \in G(I)$, set

- $J_{\mathsf{m}} := \{ i \mid \exists \mathsf{n}_i^\mathsf{m} \in G(I) \text{ s.t. } \mathsf{n}_i^\mathsf{m} \sqsubset \mathsf{m}, \mathsf{lcm}(\mathsf{n}_i^\mathsf{m}, \mathsf{m}) = x_i \mathsf{m} \},$
- $N_{\mathrm{m}} := \{ \mathsf{n}_i^{\mathrm{m}} \mid i \in J_{\mathrm{m}} \}$ (not unique!).

Let \mathscr{M} be the set of all the monomials in I. Define

• $P := \mathcal{M}^2$, and

Construction of the acyclic matching For $m \in G(I)$, set

- $J_{\mathsf{m}} := \{ i \mid \exists \mathsf{n}_i^\mathsf{m} \in G(I) \text{ s.t. } \mathsf{n}_i^\mathsf{m} \sqsubset \mathsf{m}, \mathsf{lcm}(\mathsf{n}_i^\mathsf{m}, \mathsf{m}) = x_i \mathsf{m} \},$
- $N_{\mathrm{m}} := \{ \mathsf{n}_i^{\mathrm{m}} \mid i \in J_{\mathrm{m}} \}$ (not unique!).

Let \mathscr{M} be the set of all the monomials in I. Define

- $P := \mathcal{M}^2$, and
- $f: G(I) \to \mathscr{M}^2$ by $f(\sigma) := (\operatorname{lcm}(\sigma), \max_{\sqsubseteq} \sigma)$.

Construction of the acyclic matching For $m \in G(I)$, set

- $J_{\mathsf{m}} := \{ i \mid \exists \mathsf{n}_i^\mathsf{m} \in G(I) \text{ s.t. } \mathsf{n}_i^\mathsf{m} \sqsubset \mathsf{m}, \mathsf{lcm}(\mathsf{n}_i^\mathsf{m}, \mathsf{m}) = x_i \mathsf{m} \},$
- $N_{\mathrm{m}} := \{ \mathsf{n}_{i}^{\mathrm{m}} \mid i \in J_{\mathrm{m}} \}$ (not unique!).

Let \mathscr{M} be the set of all the monomials in I. Define

- $P := \mathcal{M}^2$, and
- $f: G(I) \to \mathscr{M}^2$ by $f(\sigma) := (\operatorname{lcm}(\sigma), \max_{\sqsubseteq} \sigma)$.

For $p \in P$, define the total order \leq_p on G(I) as follows;

Construction of the acyclic matching For $m \in G(I)$, set

- $J_{\mathsf{m}} := \{ i \mid \exists \mathsf{n}_i^\mathsf{m} \in G(I) \text{ s.t. } \mathsf{n}_i^\mathsf{m} \sqsubset \mathsf{m}, \mathsf{lcm}(\mathsf{n}_i^\mathsf{m}, \mathsf{m}) = x_i \mathsf{m} \},$
- $N_{\mathrm{m}} := \{ \mathsf{n}_i^{\mathrm{m}} \mid i \in J_{\mathrm{m}} \}$ (not unique!).

Let \mathscr{M} be the set of all the monomials in I. Define

- $P := \mathcal{M}^2$, and
- $f: G(I) \to \mathscr{M}^2$ by $f(\sigma) := (\operatorname{lcm}(\sigma), \max_{\sqsubseteq} \sigma)$.

For $p \in P$, define the total order \leq_p on G(I) as follows;

• $N_{\mathsf{m}} \prec_{p} G(I) \setminus N_{\mathsf{m}}$,

Construction of the acyclic matching For $m \in G(I)$, set

- $J_{\mathsf{m}} := \{ i \mid \exists \mathsf{n}_i^{\mathsf{m}} \in G(I) \text{ s.t. } \mathsf{n}_i^{\mathsf{m}} \sqsubset \mathsf{m}, \mathsf{lcm}(\mathsf{n}_i^{\mathsf{m}}, \mathsf{m}) = x_i \mathsf{m} \},$
- $N_{\mathrm{m}} := \{ \mathsf{n}_i^{\mathrm{m}} \mid i \in J_{\mathrm{m}} \}$ (not unique!).

Let \mathscr{M} be the set of all the monomials in I. Define

- $P := \mathcal{M}^2$, and
- $f: G(I) \to \mathscr{M}^2$ by $f(\sigma) := (\operatorname{lcm}(\sigma), \max_{\sqsubseteq} \sigma)$.

For $p \in P$, define the total order \leq_p on G(I) as follows;

•
$$N_{\mathsf{m}} \prec_{p} G(I) \setminus N_{\mathsf{m}}$$
,

• for
$$n_i^m, n_j^m, n_i^m \prec_p n_j^m \iff i < j$$
, and

Construction of the acyclic matching For $m \in G(I)$, set

- $J_{\mathsf{m}} := \{ i \mid \exists \mathsf{n}_i^\mathsf{m} \in G(I) \text{ s.t. } \mathsf{n}_i^\mathsf{m} \sqsubset \mathsf{m}, \mathsf{lcm}(\mathsf{n}_i^\mathsf{m}, \mathsf{m}) = x_i \mathsf{m} \},$
- $N_{\mathrm{m}} := \{ \mathsf{n}_{i}^{\mathrm{m}} \mid i \in J_{\mathrm{m}} \}$ (not unique!).

Let \mathscr{M} be the set of all the monomials in I. Define

- $P := \mathcal{M}^2$, and
- $f: G(I) \to \mathscr{M}^2$ by $f(\sigma) := (\operatorname{lcm}(\sigma), \max_{\sqsubseteq} \sigma)$.

For $p \in P$, define the total order \leq_p on G(I) as follows;

- $N_{\rm m} \prec_{p} G(I) \setminus N_{\rm m}$,
- for $n_i^m, n_j^m, n_i^m \prec_p n_j^m \iff i < j$, and
- $\prec_p |_{G(I) \setminus N_m} := \Box |_{G(I) \setminus N_m}.$

For
$$\sigma := \left\{ m_0 \prec_{f(\sigma)} \cdots \prec_{f(\sigma)} m_i \right\}$$
, define
• $v(\sigma) := \sup \left\{ k \ge 0 \mid \exists m \in G(I) \text{ s.t. } \frac{m \prec_{f(\sigma)} m_{i-k} \text{ and}}{m \mid \operatorname{lcm}(m_{i-k}, \dots, m_i)} \right\}$.

EL OQO

For
$$\sigma := \left\{ m_0 \prec_{f(\sigma)} \cdots \prec_{f(\sigma)} m_i \right\}$$
, define
• $v(\sigma) := \sup \left\{ k \ge 0 \mid \exists m \in G(I) \text{ s.t. } \frac{m \prec_{f(\sigma)} m_{i-k} \text{ and}}{m \mid \operatorname{lcm}(m_{i-k}, \dots, m_i)} \right\}$.
If $v(\sigma) \ne -\infty$, then set

EL OQO

For
$$\sigma := \left\{ m_0 \prec_{f(\sigma)} \cdots \prec_{f(\sigma)} m_i \right\}$$
, define
• $v(\sigma) := \sup \left\{ k \ge 0 \mid \exists m \in G(I) \text{ s.t. } \frac{m \prec_{f(\sigma)} m_{i-k} \text{ and}}{m \mid \operatorname{lcm}(m_{i-k}, \dots, m_i)} \right\}$.
If $v(\sigma) \ne -\infty$, then set
• $m(\sigma) := \min_{\prec_{f(\sigma)}} \left\{ m \in G(I) \mid m \mid \operatorname{lcm}(m_{i-v(\sigma)}, \dots, m_i) \right\}$.

EL OQO

For
$$\sigma := \{ m_0 \prec_{f(\sigma)} \cdots \prec_{f(\sigma)} m_i \}$$
, define
• $v(\sigma) := \sup \left\{ k \ge 0 \mid \exists m \in G(I) \text{ s.t. } \frac{m \prec_{f(\sigma)} m_{i-k} \text{ and}}{m \mid \operatorname{lcm}(m_{i-k}, \dots, m_i)} \right\}$.
If $v(\sigma) \ne -\infty$, then set
• $m(\sigma) := \min_{\prec_{f(\sigma)}} \{ m \in G(I) \mid m \mid \operatorname{lcm}(m_{i-v(\sigma)}, \dots, m_i) \}$.
Let G_X be the directed graph associated with $X = 2^{G(I)}$. Now for each $p \in P$, define the subset A_p , A of the edge sets of G_X as follows.

(日) (周) (日) (日) (日) (日) (000)

For
$$\sigma := \{ m_0 \prec_{f(\sigma)} \cdots \prec_{f(\sigma)} m_i \}$$
, define
• $v(\sigma) := \sup \left\{ k \ge 0 \mid \exists m \in G(I) \text{ s.t. } \frac{m \prec_{f(\sigma)} m_{i-k} \text{ and}}{m \mid \operatorname{lcm}(m_{i-k}, \dots, m_i)} \right\}$.
If $v(\sigma) \ne -\infty$, then set
• $m(\sigma) := \min_{\prec_{f(\sigma)}} \{ m \in G(I) \mid m \mid \operatorname{lcm}(m_{i-v(\sigma)}, \dots, m_i) \}$.
Let G_X be the directed graph associated with $X = 2^{G(I)}$. Now for each $p \in P$, define the subset A_p, A of the edge sets of G_X as follows.
• $A_p := \{ \sigma \cup \{m(\sigma)\} \longrightarrow \sigma \setminus \{m(\sigma)\} \mid f(\sigma) = p, v(\sigma) \ne -\infty \}$,

EL OQO

イロト 不得下 イヨト イヨト

For
$$\sigma := \{ m_0 \prec_{f(\sigma)} \cdots \prec_{f(\sigma)} m_i \}$$
, define
• $v(\sigma) := \sup \{ k \ge 0 \mid \exists m \in G(I) \text{ s.t. } \frac{m \prec_{f(\sigma)} m_{i-k} \text{ and}}{m \mid \operatorname{lcm}(m_{i-k}, \dots, m_i)} \}$.
If $v(\sigma) \ne -\infty$, then set
• $m(\sigma) := \min_{\prec_{f(\sigma)}} \{ m \in G(I) \mid m \mid \operatorname{lcm}(m_{i-v(\sigma)}, \dots, m_i) \}$.
Let G_X be the directed graph associated with $X = 2^{G(I)}$. Now for each $p \in P$, define the subset A_p, A of the edge sets of G_X as follows.
• $A_p := \{ \sigma \cup \{m(\sigma)\} \longrightarrow \sigma \setminus \{m(\sigma)\} \mid f(\sigma) = p, v(\sigma) \ne -\infty \}$,
• $A := \bigcup_{p \in P} A_p$.

EL OQO

Sketch of the proof of A being matching

It is straightforward to show the following. For $v(\sigma)
eq -\infty$,

• $f(\sigma \cup \{m(\sigma)\}) = f(\sigma) = f(\sigma \setminus \{m(\sigma)\});$

Sketch of the proof of A being matching

It is straightforward to show the following. For $v(\sigma) \neq -\infty$,

- $f(\sigma \cup \{m(\sigma)\}) = f(\sigma) = f(\sigma \setminus \{m(\sigma)\});$
- $v(\sigma \cup \{m(\sigma)\}) = v(\sigma) = v(\sigma \setminus \{m(\sigma)\});$

Sketch of the proof of A being matching

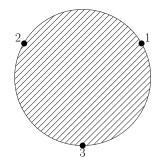
It is straightforward to show the following. For $v(\sigma) \neq -\infty$,

- $f(\sigma \cup \{m(\sigma)\}) = f(\sigma) = f(\sigma \setminus \{m(\sigma)\});$
- $v(\sigma \cup \{m(\sigma)\}) = v(\sigma) = v(\sigma \setminus \{m(\sigma)\});$
- $m(\sigma \cup \{m(\sigma)\}) = m(\sigma) = m(\sigma \setminus \{m(\sigma)\})$

・同ト (ヨト (ヨト ヨヨ) の()

Example of discrete Morse theory

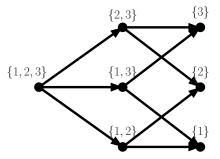
• Let X be the reg. CW cpx as in the right.



EL OQO

Example of discrete Morse theory

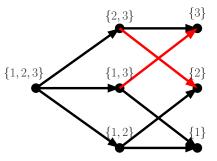
- Let X be the reg. CW cpx as in the right.
- The associated graph *G_X* is as in the right.



ELE NOR

Example of discrete Morse theory

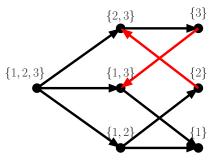
- Let X be the reg. CW cpx as in the right.
- The associated graph *G_X* is as in the right.
- Choose the red arrows as an acyclic matching.



ELE NOR

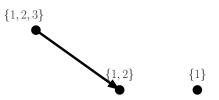
Example of discrete Morse theory

- Let X be the reg. CW cpx as in the right.
- The associated graph *G_X* is as in the right.
- Choose the red arrows as an acyclic matching.
- The right graph is the one with the matching edges reversed.



Example of discrete Morse theory

- Let X be the reg. CW cpx as in the right.
- The associated graph *G_X* is as in the right.
- Choose the red arrows as an acyclic matching.
- The right graph is the one with the matching edges reversed.
- The graph G_{X^A} is as in the right.

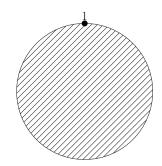


JIN NOR

→

Example of discrete Morse theory

- Let X be the reg. CW cpx as in the right.
- The associated graph *G_X* is as in the right.
- Choose the red arrows as an acyclic matching.
- The right graph is the one with the matching edges reversed.
- The graph G_{X^A} is as in the right.
- Consequently, we get the non-reg. CW cpx.



Application of algebraic aspects of Forman's theory

Let

• R be (not necessarily commutative) ring, Z(R) the center of R, R^{\times} the grp. of units, and let

ELE SOC

Application of algebraic aspects of Forman's theory

Let

- R be (not necessarily commutative) ring, Z(R) the center of R, R^{\times} the grp. of units, and let
- $C : \cdots \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0$ be a complex of free *R*-modules such that $C_i = \bigoplus_{\sigma \in X^{(i)}} R \cdot e_{\sigma}$, where the e_{σ} are *R*-basis and $X^{(i)}$ is just an index set.

(日本)
(日本)<

Application of algebraic aspects of Forman's theory

Let

- R be (not necessarily commutative) ring, Z(R) the center of R, R^{\times} the grp. of units, and let
- $C : \cdots \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0$ be a complex of free *R*-modules such that $C_i = \bigoplus_{\sigma \in X^{(i)}} R \cdot e_{\sigma}$, where the e_{σ} are *R*-basis and $X^{(i)}$ is just an index set.
- For $\sigma \in X^{(i)}$ and $\tau \in X^{(i-1)}$, define $[\sigma : \tau] \in R$ to satisfy
 - $\partial(e_{\sigma}) = \sum_{\tau \in X^{(i-1)}} [\sigma : \tau] \cdot e_{\tau}.$

Application of algebraic aspects of Forman's theory

Let

- R be (not necessarily commutative) ring, Z(R) the center of R, R^{\times} the grp. of units, and let
- $C : \cdots \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0$ be a complex of free *R*-modules such that $C_i = \bigoplus_{\sigma \in X^{(i)}} R \cdot e_{\sigma}$, where the e_{σ} are *R*-basis and $X^{(i)}$ is just an index set.
- For $\sigma \in X^{(i)}$ and $\tau \in X^{(i-1)}$, define $[\sigma : \tau] \in R$ to satisfy
 - $\partial(e_{\sigma}) = \sum_{\tau \in X^{(i-1)}} [\sigma : \tau] \cdot e_{\tau}.$

With the cpx C, we associate the graph G_X whose

- vertices are $X := \bigcup_{i \ge 0} X^{(i)}$ and
- edges are $\{ \sigma \to \tau \mid \sigma \in X^{(i)}, \tau \in X^{(i-1)}, [\sigma : \tau] \neq 0 \}.$

Application of algebraic aspects of Forman's theory

Definition

A subset A of the set of edges in G_X is said to be an acyclic matching if

(1) each vertices appears at most one edge in A,

ELE SOC

3 > 4 3 >

Application of algebraic aspects of Forman's theory

Definition

A subset A of the set of edges in G_X is said to be an acyclic matching if

- (1) each vertices appears at most one edge in A,
- (2) there exists no directed cycle in G_X^A , and

(日本)
(日本)<

Application of algebraic aspects of Forman's theory

Definition

A subset A of the set of edges in G_X is said to be an acyclic matching if

- (1) each vertices appears at most one edge in A,
- (2) there exists no directed cycle in G_X^A , and
- (3) for each $\sigma \to \tau \in A$, $[\sigma : \tau] \in Z(R) \cap R^{\times}$.

< 回 > < 三 > < 三 > 三 三 < つ Q (P)

Application of algebraic aspects of Forman's theory

Definition

A subset A of the set of edges in G_X is said to be an acyclic matching if

- (1) each vertices appears at most one edge in A,
- (2) there exists no directed cycle in G_X^A , and
- (3) for each $\sigma \to \tau \in A$, $[\sigma : \tau] \in Z(R) \cap R^{\times}$.

For an edge $\sigma \to \tau$ in G_X^A and a path $\mathcal{P} : \sigma_1 \to \cdots \to \sigma_r$, define

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Application of algebraic aspects of Forman's theory

Definition

A subset A of the set of edges in G_X is said to be an acyclic matching if

- (1) each vertices appears at most one edge in A,
- (2) there exists no directed cycle in G_X^A , and
- (3) for each $\sigma \to \tau \in A$, $[\sigma : \tau] \in Z(R) \cap R^{\times}$.

For an edge $\sigma \to \tau$ in G_X^A and a path $\mathcal{P} : \sigma_1 \to \cdots \to \sigma_r$, define

•
$$w(\sigma \to \tau) := \begin{cases} -\frac{1}{[\tau:\sigma]} & \text{if } \tau \to \sigma \in A \text{ (then } [\tau:\sigma] \in Z(R) \cap R^{\times}) \\ [\sigma:\tau] & \text{otherwise} \end{cases}$$

• $w(\mathcal{P}) = \prod_{i=1}^{r-1} w(\sigma_i \to \sigma_{i-1})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Application of algebraic aspects of Forman's theory

For an acyc. matching A, set $X_A^{(i)} := \{ \sigma \in X^{(i)} \mid \sigma \text{ is critical } \}$, and define the complex

$$C^A: \dots \longrightarrow C_2^A \xrightarrow{\partial_2^A} C_1^A \xrightarrow{\partial_1^A} C_0^A \xrightarrow{\partial_0^A} 0$$

as follows.

• $C_i^A := \bigoplus_{\sigma \in X_A^{(i)}} R \cdot e_{\sigma}$

Application of algebraic aspects of Forman's theory

For an acyc. matching A, set $X_{\Delta}^{(i)} := \{ \sigma \in X^{(i)} \mid \sigma \text{ is critical } \}$, and define the complex

$$C^A: \dots \longrightarrow C_2^A \xrightarrow{\partial_2^A} C_1^A \xrightarrow{\partial_1^A} C_0^A \xrightarrow{\partial_0^A} 0$$

as follows.

•
$$C_i^A := \bigoplus_{\sigma \in X_A^{(i)}} R \cdot e_{\sigma}$$

• $\partial_i^A(e_{\sigma}) := \sum_{\tau \in X_A^{(i-1)}} \left(\sum_{\mathcal{P} \in \mathsf{Path}(\sigma, \tau)} w(\mathcal{P}) \right) e_{\tau}$

(日本)

Application of algebraic aspects of Forman's theory

For an acyc. matching A, set $X_A^{(i)} := \{ \sigma \in X^{(i)} \mid \sigma \text{ is critical } \}$, and define the complex

$$C^A: \dots \longrightarrow C_2^A \xrightarrow{\partial_2^A} C_1^A \xrightarrow{\partial_1^A} C_0^A \xrightarrow{\partial_0^A} 0$$

as follows.

•
$$C_i^A := \bigoplus_{\sigma \in X_A^{(i)}} R \cdot e_{\sigma}$$

• $\partial_i^A(e_{\sigma}) := \sum_{\tau \in X_A^{(i-1)}} \left(\sum_{\mathcal{P} \in \mathsf{Path}(\sigma, \tau)} w(\mathcal{P}) \right) e_{\tau}$

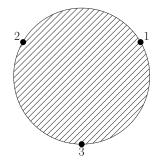
Theorem (Jollenberg-Welker, 2005, Sköldberg, 2006)

 C^A is indeed a complex, and is homotopy equivalent to C.

Application of algebraic aspects of Forman's theory

Example of algebraic discrete Morse theory

Let X be the reg. CW cpx as in the right. We regard X as a 2-simplex, and hence as $2^{\{1,2,3\}}$.



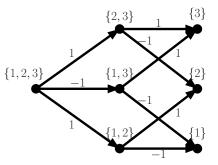
Application of algebraic aspects of Forman's theory

Example of algebraic discrete Morse theory

Let C be the cellular chain complex of X as follows;

- $C_i = \bigoplus_{\sigma \in X^{(i)}} \mathbb{Z} \cdot e_{\sigma};$
- $\partial(e_{\sigma}):=\sum_{i\in\sigma}(-1)^{arepsilon(i;\sigma)}e_{\sigma\setminus\{i\}}$,

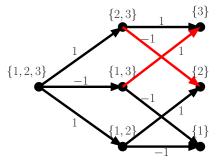
where $\varepsilon(i; \sigma) := \# \{ j \in \sigma \mid j < i \}$. Then G_X is as in the right.



Application of algebraic aspects of Forman's theory

Example of algebraic discrete Morse theory

Choose the red arrows as an acyclic matching.



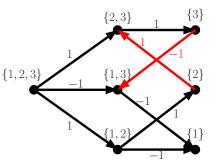
ELE NOR

Application of algebraic aspects of Forman's theory

Example of algebraic discrete Morse theory

Reverse the red arrows, and change the weights of

- $e_{\{2\}} o e_{\{2,3\}}$ to -(1/(-1))=1,
- $e_{\{3\}} o e_{\{1,3\}}$ to -(1/1) = -1.



Application of algebraic aspects of Forman's theory

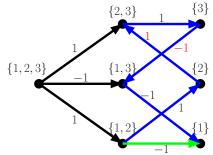
Example of algebraic discrete Morse theory

Now let us compute the differential. It is easy to check that $Path(e_{\{1,2,3\}}, e_{\{1,2\}}) = \{e_{\{1,2,3\}} \rightarrow e_{\{1,2\}}\}.$ $Path(e_{\{1,2\}}, e_{\{1\}}) = \{\mathcal{P}, \mathcal{P}'\},$ where \mathcal{P} is the green path and \mathcal{P}' is $\{$ the blue one.

Easy computation shows

 $w(\mathcal{P}) + w(\mathcal{P}') = -1 + 1 = 0.$

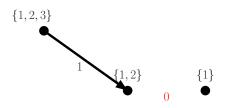
So, $e_{\{1,2\}}$ is mapped to 0 by the differential map.



Application of algebraic aspects of Forman's theory

Example of algebraic discrete Morse theory

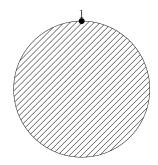
Thus we obtain the complex C^A . This is just a cellular chain complex of ...



Application of algebraic aspects of Forman's theory

Example of algebraic discrete Morse theory

the non-regular CW complex in the right.



EL OQO

Appendix Definition of CW complex

For a non-negative integer r, B^r denotes a r-dimensional closed ball.

Appendix Definition of CW complex

For a non-negative integer r, B^r denotes a r-dimensional closed ball.

Definition

X: top. sp. A subset σ of X is said to be an (open) r-cell if there exists a continuous map $f : B^r \to X$ such that

$$f|_{B^r\setminus\partial B^r}:B^r\setminus\partial B^r\xrightarrow{\cong}\sigma.$$

In this case, the continuous map f is called the charcteristic map of σ .

- ▲■ ▶ ▲ ■ ▶ ▲ ■ ■ ■ ● ● ●

Appendix Definition of CW complex

Definition

A Housdorff top. sp. X together with a set of cells $X^{(*)}$ is said to be a CW complex if

(1) $X = \bigcup_{\sigma \in X^{(*)}} \sigma$ and $\sigma \cap \tau = \emptyset$ for all $\sigma, \tau \in X^{(*)}$ with $\sigma \neq \tau$.

Appendix Definition of CW complex

Definition

A Housdorff top. sp. X together with a set of cells $X^{(*)}$ is said to be a CW complex if

- (1) $X = \bigcup_{\sigma \in X^{(*)}} \sigma$ and $\sigma \cap \tau = \emptyset$ for all $\sigma, \tau \in X^{(*)}$ with $\sigma \neq \tau$.
- (2) For any *r*-cell $\sigma \in X^{(*)}$ and its char. map f_{σ} , $f_{\sigma}(\partial B^r)$ non-trivially intersects only finitely many *s*-cells with s < r.

▲□ ▲ □ ▲ □ ▲ □ ▲ □ ■ □

Appendix Definition of CW complex

Definition

A Housdorff top. sp. X together with a set of cells $X^{(*)}$ is said to be a CW complex if

- (1) $X = \bigcup_{\sigma \in X^{(*)}} \sigma$ and $\sigma \cap \tau = \emptyset$ for all $\sigma, \tau \in X^{(*)}$ with $\sigma \neq \tau$.
- (2) For any *r*-cell $\sigma \in X^{(*)}$ and its char. map f_{σ} , $f_{\sigma}(\partial B^r)$ non-trivially intersects only finitely many *s*-cells with s < r.
- (3) A subset A of X is closed if and only if $A \cap \overline{\sigma}$ is closed in $\overline{\sigma}$ for all $\sigma \in X^{(*)}$.

(日) (周) (日) (日) (日) (日) (000)

Appendix Definition of CW complex

Definition

A Housdorff top. sp. X together with a set of cells $X^{(*)}$ is said to be a CW complex if

- (1) $X = \bigcup_{\sigma \in X^{(*)}} \sigma$ and $\sigma \cap \tau = \emptyset$ for all $\sigma, \tau \in X^{(*)}$ with $\sigma \neq \tau$.
- (2) For any *r*-cell $\sigma \in X^{(*)}$ and its char. map f_{σ} , $f_{\sigma}(\partial B^r)$ non-trivially intersects only finitely many *s*-cells with s < r.
- (3) A subset A of X is closed if and only if $A \cap \overline{\sigma}$ is closed in $\overline{\sigma}$ for all $\sigma \in X^{(*)}$.

A CW complex X is said to be regular if for each cell σ , $\bar{\sigma}$ is homeomorphic to a closed ball.

▲ Back to the main