Mapping spaces from projective spaces

Mitsunobu Tsutaya

Kyoto University

Algebraic and Geometric Models for Spaces and Related Topics 2015
Shinshu University
August 19, 2015

1. Introduction

- \boldsymbol{A}_{n}-map
> Main theorem

2. Recognitions of $\boldsymbol{A}_{\boldsymbol{n}}$-map

- Projective spaces
> Recognitions of $\boldsymbol{A}_{\boldsymbol{n}}$-map

3. Main theorem

- Main theorem
- Adjointness of \boldsymbol{B}_{n} and $\boldsymbol{\Omega}$

4. Related topics

- Evaluation fiber sequence
> Higher homotopy commutativity
- Gottlieb-type filtration on $\pi_{*}(X)$

1. Introduction

- \boldsymbol{A}_{n}-map
- Main theorem

A_{n}-map

$\boldsymbol{G}, \boldsymbol{G}^{\prime}, \boldsymbol{G}^{\prime \prime}$: topological monoids

$$
A_{n}-\operatorname{map}(n=1,2, \ldots, \infty)
$$

A family of maps $\left\{f_{i}:[0,1]^{i-1} \times \boldsymbol{G}^{i} \rightarrow \boldsymbol{G}^{\prime}\right\}_{i=1}^{n}$ is called an A_{n}-form of f if

1. $f_{1}=f$,
2. $f_{i}\left(t_{1}, \ldots, t_{i-1} ; g_{1}, \ldots, g_{i}\right)$

$$
=\left\{\begin{array}{rr}
f_{i-1}\left(t_{1}, \ldots, t_{k}, \ldots, t_{i-1} ; g_{1}, \ldots, g_{k} g_{k+1}, \ldots, g_{i}\right) & \text { for } t_{k}=0 \\
f_{k}\left(t_{1}, \ldots, t_{k-1} ; g_{1}, \ldots, g_{k}\right) f_{i-k}\left(t_{k+1}, \ldots, t_{i-1} ; g_{k+1}, \ldots, g_{i}\right) \\
\text { for } t_{k}=1
\end{array}\right.
$$

$$
\begin{aligned}
& \text { 3. } f_{i}\left(t_{1}, \ldots, t_{i-1} ; g_{1}, \ldots, \stackrel{k}{*}, \ldots, g_{i}\right)= \\
& f_{i-1}\left(t_{1}, \ldots, \max \left\{t_{k-1}, t_{k}\right\}, \ldots, t_{i-1} ; g_{1}, \ldots, \hat{g}_{k}, \ldots, g_{i}\right) \text {. }
\end{aligned}
$$

A triple $\left(f,\left\{f_{i}\right\}, \ell\right)$ is called an A_{n}-map. We denote the space of \boldsymbol{A}_{n}-maps from \boldsymbol{G} to \boldsymbol{G}^{\prime} by $\mathcal{A}_{n}\left(\boldsymbol{G}, \boldsymbol{G}^{\prime}\right)$.

There is a composition of A_{n}-maps

$$
\mathcal{A}_{n}\left(G^{\prime}, G^{\prime \prime}\right) \times \mathcal{A}_{n}\left(G, G^{\prime}\right) \rightarrow \mathcal{A}_{n}\left(G, G^{\prime \prime}\right)
$$

$$
\begin{array}{lccc}
f(x) & f(x y) & f(x y z) & f(x) f(y z) \\
& & & \\
& f(x) f(y) & f(x y) f(z) & f(x) f(y) f(z)
\end{array}
$$

$$
\begin{array}{|l|lll}
& g f(x y z) & g(f(x) f(y z)) & g f(x) g f(y z) \\
g f(x y) & & & \\
g(f(x y) f(z)) & g(f(x) f(y) f(z)) & g f(x) g(f(y) f(z)) \\
g f(x) g f(y) & g f(x y) g f(z) & g(f(x) f(y)) g f(z) & g f(x) g f(y) g f(z)
\end{array}
$$

Main theorem

\boldsymbol{G} : topological monoid, \boldsymbol{G}^{\prime} : grouplike topological monoid. Both of them are CW complex.

Main Theorem (recognition theorem for $\boldsymbol{A}_{\boldsymbol{n}}$-maps) (T)
The composition

$$
\mathcal{A}_{n}\left(\boldsymbol{G}, \boldsymbol{G}^{\prime}\right) \xrightarrow{\boldsymbol{B}_{n}} \operatorname{Map}_{0}\left(\boldsymbol{B}_{n} \boldsymbol{G}, \boldsymbol{B}_{n} \boldsymbol{G}^{\prime}\right) \xrightarrow{\left(i_{n}\right)_{4}} \operatorname{Map}_{0}\left(\boldsymbol{B}_{n} \boldsymbol{G}, \boldsymbol{B} \boldsymbol{G}^{\prime}\right)
$$

is a natural weak equivalence, where $\boldsymbol{i}_{n}: \boldsymbol{B}_{n} \boldsymbol{G}^{\prime} \rightarrow \boldsymbol{B} \boldsymbol{G}^{\prime}$ is the natural inclusion.
2. Recognitions of \boldsymbol{A}_{n}-map

- Projective spaces
- Recognitions of A_{n}-map

Projective spaces

G: topological monoid
The n-th projective space $\boldsymbol{B}_{n} \boldsymbol{G}$ is defined by

$$
B_{n} G:=\left(\coprod_{0 \leq i \leq n} \Delta^{i} \times G^{i}\right) / \sim,
$$

where \sim is the usual simplicial identification.

$$
{ }^{*}=B_{0} G \subset \Sigma G=B_{1} G \subset B_{2} G \subset \cdots \subset B_{\infty} G=B G .
$$

An $\boldsymbol{A}_{\boldsymbol{n}}$-map induces a based map between the \boldsymbol{n}-th projective spaces:

$$
B_{n}: \mathcal{A}_{n}\left(\boldsymbol{G}, \boldsymbol{G}^{\prime}\right) \rightarrow \operatorname{Map}_{0}\left(\boldsymbol{B}_{n} \boldsymbol{G}, \boldsymbol{B}_{n} \boldsymbol{G}^{\prime}\right)
$$

Recognitions of A_{n}-map

\boldsymbol{G} : topological monoid, \boldsymbol{G}^{\prime} : grouplike topological monoid.
Both of them are CW complex.

Thoerem (Stasheff, 1963)

A based map $f: \boldsymbol{G} \rightarrow \boldsymbol{G}^{\prime}$ admits an $\boldsymbol{A}_{\boldsymbol{n}}$-form if and only if the composite

$$
\Sigma G \xrightarrow{\Sigma f} \Sigma \boldsymbol{G}^{\prime} \xrightarrow{i_{1}} \boldsymbol{B} \boldsymbol{G}^{\prime}
$$

extends to a map $\boldsymbol{B}_{\boldsymbol{n}} \boldsymbol{G} \rightarrow \boldsymbol{B} \boldsymbol{G}^{\prime}$.

Thoerem (Fuchs, 1965)

There is a one-to-one correspondence between $\pi_{0}\left(\mathcal{F}_{\infty}\left(\boldsymbol{G}, \boldsymbol{G}^{\prime}\right)\right)$ and the homotopy set of based maps $\left[\boldsymbol{B G}, \boldsymbol{B} \boldsymbol{G}^{\prime}\right]$.

Thoerem

The model categories of simplicial groups and reduced simplicial sets are Quillen equivalent by the Kan's loop group construction.

3. Main theorem

- Main theorem
- Adjointness of \boldsymbol{B}_{n} and $\boldsymbol{\Omega}$

Main theorem

\boldsymbol{G} : topological monoid, \boldsymbol{G}^{\prime} : grouplike topological monoid. Both of them are CW complex.

Main Theorem (recognition theorem for \boldsymbol{A}_{n}-maps) (T)
The composition

$$
\mathcal{A}_{n}\left(\boldsymbol{G}, \boldsymbol{G}^{\prime}\right) \xrightarrow{\boldsymbol{B}_{n}} \operatorname{Map}_{0}\left(\boldsymbol{B}_{n} \boldsymbol{G}, \boldsymbol{B}_{n} \boldsymbol{G}^{\prime}\right) \xrightarrow{\left(i_{n}\right)_{4}} \operatorname{Map}_{0}\left(\boldsymbol{B}_{n} \boldsymbol{G}, \boldsymbol{B} \boldsymbol{G}^{\prime}\right)
$$

is a natural weak equivalence, where $\boldsymbol{i}_{n}: \boldsymbol{B}_{n} \boldsymbol{G}^{\prime} \rightarrow \boldsymbol{B} \boldsymbol{G}^{\prime}$ is the natural inclusion.

Proof of Theorem

When $n=1$, this is the well-known adjunction of Σ and Ω.
Suppose this is true for \boldsymbol{A}_{n-1}-maps. Consider the following commutative diagram of homotopy fiber sequences:

In fact, the map $F \rightarrow F^{\prime}$ coincides with the composite $F \simeq \operatorname{Map}_{0}\left(S^{n-1} \wedge G^{\wedge n}, G^{\prime}\right) \simeq \operatorname{Map}_{0}\left(S^{n} \wedge \boldsymbol{G}^{\wedge n}, B G^{\prime}\right) \simeq F^{\prime}$. Then by the five lemma, we have the desired conclusion.

Adjointness of B_{n} and Ω

\boldsymbol{G} : topological monoid which is a CW complex, \boldsymbol{X} : a based space.
Corollary (adjointness of \boldsymbol{B}_{n} and Ω) (T)
There is a natural weak equivalence

$$
\mathcal{A}_{n}(G, \Omega X) \xrightarrow{\simeq} \operatorname{Map}_{0}\left(B_{n} G, X\right) .
$$

G^{\prime} : grouplike topological monoid which is a CW complex.
Corollary
The following map is a weak equivalence.

$$
\mathscr{F}_{\infty}\left(G, G^{\prime}\right) \xrightarrow{\simeq} \operatorname{Map}_{0}\left(B G, B G^{\prime}\right) .
$$

4. Related topics
> Evaluation fiber sequence

- Higher homotopy commutativity
- Gottlieb-type filtration on $\pi_{*}(X)$

Evaluation fiber sequence

X, Y : based CW complexes.
The homotopy fiber sequence

$$
\cdots \rightarrow \Omega Y \rightarrow \operatorname{Map}_{0}(X, Y) \rightarrow \operatorname{Map}(X, Y) \rightarrow Y
$$

is called the evaluation fiber sequence. In general, this fiber sequence does not extend to the right.
If $Y=X$, there is a homotopy fiber sequence

$$
\begin{aligned}
\cdots \rightarrow \Omega X & \rightarrow \operatorname{Map}_{0}(X, X)_{\mathrm{id}} \rightarrow \operatorname{Map}(X, X)_{\mathrm{id}} \rightarrow X \\
& \rightarrow B \operatorname{Map}_{0}(X, X)_{\mathrm{id}} \rightarrow B \operatorname{Map}(X, X)_{\mathrm{id}}
\end{aligned}
$$

where the subspaces $\operatorname{Map}_{0}(X, Y)_{f} \subset \operatorname{Map}_{0}(X, Y)$ and $\operatorname{Map}(X, Y)_{f} \subset \operatorname{Map}(X, Y)$ consist of maps freely homotopic to a based $\operatorname{map} f: X \rightarrow Y$.

G: topological group which is a CW complex.
The conjugation on \boldsymbol{G} defines an action on $\boldsymbol{B G}$ and hence on $\mathbf{M a p}_{0}(\boldsymbol{X}, \boldsymbol{B} \boldsymbol{G})$. On the other hand, the conjugation defines a "homomorphism"

$$
\alpha: G \rightarrow \mathcal{A}_{n}(G, G) .
$$

Theorem (T)

There is a homotopy fiber sequence

$$
\boldsymbol{G} \rightarrow \operatorname{Map}_{0}\left(B_{n} G, B G\right)_{i_{n}} \rightarrow \operatorname{Map}\left(B_{n} G, B G\right)_{i_{n}} \rightarrow B G \xrightarrow{B \alpha} B \mathcal{A}_{n}(G, G)_{\alpha}
$$

where $\mathscr{A}_{n}(\boldsymbol{G}, \boldsymbol{G})_{\alpha}$ is the union of path-components containing the image of α.

This theorem follows from the fact that the weak equivalence

$$
\mathcal{H}_{n}(G, G) \xrightarrow{\simeq} \operatorname{Map}_{0}\left(B_{n} G, B G\right)
$$

is \boldsymbol{G}-equivariant.

Higher homotopy commutativity

\boldsymbol{G} : topological monoid, $\boldsymbol{N}_{r, s}$: resultohedron $(\boldsymbol{r}, \boldsymbol{s} \geq \mathbf{0})$
Definition (Kishimoto-Kono, 2010)
If there is a family of maps $\left\{Q_{r, s}: N_{r, s} \times G^{r+s} \rightarrow G\right\}_{0 \leq r \leq k, 0 \leq s \leq \ell}$ satisfying appropriate compatibility, \boldsymbol{G} is said to be a $\boldsymbol{C}(\boldsymbol{k}, \boldsymbol{\ell})$-space.

$C(1,1)$-space \Leftrightarrow homotopy commutative

G: topological group which is a CW complex

Theorem (Kishimoto-Kono, 2010)

The following are equivalent:

- \boldsymbol{G} is a $C(k, \ell)$-space,
$\vee\left(\boldsymbol{i}_{k}, \boldsymbol{i}_{\ell}\right): \boldsymbol{B}_{k} \boldsymbol{G} \vee \boldsymbol{B}_{\ell} \boldsymbol{G} \rightarrow \boldsymbol{B} \boldsymbol{G}$ extends over $\boldsymbol{B}_{\boldsymbol{k}} \boldsymbol{G} \times \boldsymbol{B}_{\ell} \boldsymbol{G}$,
$>i_{k}^{*} \operatorname{Map}\left(S^{1}, B G\right)$ is trivial as a fiberwise A_{ℓ}-space.

Theorem (T)

\boldsymbol{G} is a $\boldsymbol{C}(\boldsymbol{k}, \boldsymbol{\ell})$-space if and only if the map $\alpha: \boldsymbol{G} \rightarrow \mathcal{A}_{\ell}(\boldsymbol{G}, \boldsymbol{G})$ is homotopic to the trivial map as an $\boldsymbol{A}_{\boldsymbol{k}}$-map.

Gottlieb-type filtration

X : based connected CW complex

Definition

Define a subgroup $G_{n}^{(k)}(X) \subset \pi_{n}(X)$ by

$$
G_{n}^{(k)}(X)=\operatorname{im}\left(e v_{*}: \pi_{n}\left(\operatorname{Map}\left(B_{k} \Omega X, X\right)_{i_{k}}\right) \rightarrow \pi_{n}(X)\right) .
$$

The group $G_{n}(X):=G_{n}^{(\infty)}(X)$ is called the n-th Gottlieb group.

$$
G_{n}(X)=G_{n}^{(\infty)}(X) \subset \cdots \subset G_{n}^{(2)}(X) \subset G_{n}^{(1)}(X) \subset Z\left(\pi_{n}(X)\right) \subset \pi_{n}(X)
$$

For $\alpha \in \pi_{n}(X), \alpha \in G_{n}^{(k)}(X)$ if and only if

$$
\begin{aligned}
& S^{n} \vee \boldsymbol{B}_{k} \Omega X \xrightarrow{\left(\alpha, i_{k}\right)} X \\
& S^{n} \times \boldsymbol{B}_{k} \boldsymbol{\beta}^{\prime} \boldsymbol{\prime}^{\prime} X
\end{aligned}
$$

Example

If X is an H-space, then $\boldsymbol{G}_{n}^{(\infty)}(X)=\pi_{n}(X)$ for any $n \geq 1$. More generally, if ΩX is a $C(1, k)$-space, then $G_{n}^{(k)}(X)=\pi_{n}(X)$ for any $n \geq 1$.

Example (T)

For an odd prime p and $\frac{r(p-1)}{2} \leq k<\frac{(r+1)(p-1)}{2}$, the subgroup

$$
G_{4}^{(k)}(B \operatorname{SU}(2))_{(p)} \subset \pi_{4}(B \mathbf{S U}(\mathbf{2}))_{(p)} \cong \mathbb{Z}_{(p)}
$$

has index \boldsymbol{p}^{r} and $\boldsymbol{G}_{4}^{(\infty)}(\boldsymbol{B} \mathbf{S U}(\mathbf{2}))=\mathbf{0}$.

Example (Kishimoto-T)

G : compact connected simple Lie group
Suppose that $\boldsymbol{H}^{*}(\boldsymbol{B G} ; \mathbb{Q})$ is a polynomial algebra on the generators of degree $2 n_{1}, \ldots, 2 n_{f}$. If $p>2 n_{\ell}$, then the subgroup

$$
0 \neq G_{2 n_{i}}^{\left(n_{i}+p-1\right)}(B G)_{(p)} \subset \pi_{2 n_{i}}(B G)_{(p)} \cong \mathbb{Z}_{(p)}
$$

has index $\geq \boldsymbol{p}$.

