Mapping spaces from projective spaces

Mitsunobu Tsutaya

Kyoto University

Algebraic and Geometric Models for Spaces and Related Topics 2015 Shinshu University August 19, 2015

- 1. Introduction
 - ► A_n-map
 - Main theorem
- 2. Recognitions of A_n -map
 - Projective spaces
 - Recognitions of A_n-map
- 3. Main theorem
 - Main theorem
 - Adjointness of B_n and Ω
- 4. Related topics
 - Evaluation fiber sequence
 - Higher homotopy commutativity
 - Gottlieb-type filtration on $\pi_*(X)$

1. Introduction		

- ► A_n-map
- Main theorem

2. A_n-map 00 3. Main theorem

4. Related topics

A_n -map

G, G', G'': topological monoids A_n -map $(n = 1, 2, \ldots, \infty)$ A family of maps $\{f_i: [0,1]^{i-1} \times G^i \to G'\}_{i-1}^n$ is called an A_n -form of f if 1. $f_1 = f_1$ 2. $f_i(t_1,\ldots,t_{i-1};\overline{g_1,\ldots,g_i})$ $= \begin{cases} f_{i-1}(t_1, \dots, \hat{t}_k, \dots, t_{i-1}; g_1, \dots, g_k g_{k+1}, \dots, g_i) \\ f_k(t_1, \dots, t_{k-1}; g_1, \dots, g_k) f_{i-k}(t_{k+1}, \dots, t_{i-1}; g_{k+1}, \dots, g_i) \\ f_{i-k}(t_{k+1}, \dots, t_{i-1}; g_{k+1}, \dots, g_i) \\ f_{i-k}(t_{k+1}, \dots, t_{i-1}; g_{k+1}, \dots, g_i) \end{cases}$ for $t_k = 0$ for $t_{k} = 1$ 3. $f_i(t_1, \ldots, t_{i-1}; g_1, \ldots, \overset{k}{*}, \ldots, g_i) =$ $f_{i-1}(t_1,\ldots,\max\{t_{k-1},t_k\},\ldots,t_{i-1};g_1,\ldots,\hat{g}_k,\ldots,g_i).$ A triple $(f, \{f_i\}, \ell)$ is called an A_n -map. We denote the space of A_n -maps from G to G' by $\mathcal{A}_n(G, G')$.

There is a composition of A_n -maps $\mathcal{A}_n(G',G'') \times \mathcal{A}_n(G,G') \to \mathcal{A}_n(G,G'').$

2. A_n-maps

3. Main theorem

4. Related topics

Main theorem

G: topological monoid, G': grouplike topological monoid. Both of them are CW complex.

Main Theorem (recognition theorem for A_n -maps) (T)

The composition

$$\mathcal{A}_n(G,G') \xrightarrow{B_n} \operatorname{Map}_0(B_nG,B_nG') \xrightarrow{(i_n)_{\#}} \operatorname{Map}_0(B_nG,BG')$$

is a natural weak equivalence, where $i_n : B_n G' \rightarrow BG'$ is the natural inclusion.

2. An-maps	

- **2**. Recognitions of A_n -map
 - Projective spaces
 - Recognitions of A_n-map

2. *An*-maps ●○ 3. Main theorem

4. Related topics

Projective spaces

G: topological monoid The *n*-th projective space B_nG is defined by

$$B_nG:=\left(\bigsqcup_{0\leq i\leq n}\Delta^i\times G^i\right)/\sim,$$

where \sim is the usual simplicial identification.

 $* = B_0 G \subset \Sigma G = B_1 G \subset B_2 G \subset \cdots \subset B_{\infty} G = BG.$

An A_n -map induces a based map between the *n*-th projective spaces:

 $B_n: \mathcal{A}_n(G,G') \to \operatorname{Map}_0(B_nG,B_nG').$

2. A_n-maps ○● 3. Main theorem

4. Related topics

Recognitions of A_n -map

G: topological monoid, G': grouplike topological monoid. Both of them are CW complex.

Thoerem (Stasheff, 1963)

A based map $f: G \rightarrow G'$ admits an A_n -form if and only if the composite

 $\Sigma G \xrightarrow{\Sigma f} \Sigma G' \xrightarrow{i_1} BG'$

extends to a map $B_n G \rightarrow BG'$.

Thoerem (Fuchs, 1965)

There is a one-to-one correspondence between $\pi_0(\mathcal{A}_{\infty}(G,G'))$ and the homotopy set of based maps [BG, BG'].

Thoerem

The model categories of simplicial groups and reduced simplicial sets are Quillen equivalent by the Kan's loop group construction.

	3. Main theorem	

3. Main theorem

- Main theorem
- Adjointness of B_n and Ω

2. A_n-maps

Main theorem
OO

4. Related topics

Main theorem

G: topological monoid, G': grouplike topological monoid. Both of them are CW complex.

Main Theorem (recognition theorem for A_n -maps) (T)

The composition

$$\mathcal{A}_n(G,G') \xrightarrow{B_n} \operatorname{Map}_0(B_nG,B_nG') \xrightarrow{(i_n)_{\#}} \operatorname{Map}_0(B_nG,BG')$$

is a natural weak equivalence, where $i_n : B_n G' \rightarrow BG'$ is the natural inclusion.

	3. Main theorem O●O	

Proof of Theorem

When n = 1, this is the well-known adjunction of Σ and Ω . Suppose this is true for A_{n-1} -maps. Consider the following commutative diagram of homotopy fiber sequences:

In fact, the map $F \to F'$ coincides with the composite $F \simeq \operatorname{Map}_0(S^{n-1} \wedge G^{\wedge n}, G') \simeq \operatorname{Map}_0(S^n \wedge G^{\wedge n}, BG') \simeq F'$. Then by the five lemma, we have the desired conclusion.

2. An-maps 00 3. Main theorem ○○● 4. Related topics

Adjointness of B_n and Ω

G: topological monoid which is a CW complex, X: a based space.

Corollary (adjointness of B_n and Ω) (T)

There is a natural weak equivalence

$$\mathcal{A}_n(G, \Omega X) \xrightarrow{\simeq} \operatorname{Map}_0(B_nG, X).$$

G': grouplike topological monoid which is a CW complex.

Corollary

The following map is a weak equivalence.

 $\overline{\mathscr{A}_{\infty}(G,G')} \xrightarrow{\simeq} \operatorname{Map}_{0}(BG,BG').$

	4. Related topics

4. Related topics

- Evaluation fiber sequence
- Higher homotopy commutativity
- Gottlieb-type filtration on $\pi_*(X)$

2. *A*_n-maps

Main theorem
 OOO

4. Related topics ●○○○○○

Evaluation fiber sequence

X, *Y*: based CW complexes. The homotopy fiber sequence

 $\cdots \to \Omega Y \to \operatorname{Map}_0(X, Y) \to \operatorname{Map}(X, Y) \to Y$

is called the evaluation fiber sequence. In general, this fiber sequence does not extend to the right. If Y = X, there is a homotopy fiber sequence

 $\dots \to \Omega X \to \operatorname{Map}_{0}(X, X)_{\mathrm{id}} \to \operatorname{Map}(X, X)_{\mathrm{id}} \to X$ $\to B \operatorname{Map}_{0}(X, X)_{\mathrm{id}} \to B \operatorname{Map}(X, X)_{\mathrm{id}}$

where the subspaces $\operatorname{Map}_0(X, Y)_f \subset \operatorname{Map}_0(X, Y)$ and $\operatorname{Map}(X, Y)_f \subset \operatorname{Map}(X, Y)$ consist of maps freely homotopic to a based map $f: X \to Y$.

3. Main theorem

4. Related topics

G: topological group which is a CW complex. The conjugation on *G* defines an action on *BG* and hence on $Map_0(X, BG)$. On the other hand, the conjugation defines a "homomorphism"

 $\alpha\colon G\to \mathcal{A}_n(G,G).$

Theorem (T)

There is a homotopy fiber sequence

 $G \to \operatorname{Map}_0(B_nG, BG)_{i_n} \to \operatorname{Map}(B_nG, BG)_{i_n} \to BG \xrightarrow{B\alpha} B\mathcal{A}_n(G, G)_{\alpha}$

where $\mathcal{A}_n(G,G)_{\alpha}$ is the union of path-components containing the image of α .

This theorem follows from the fact that the weak equivalence

 $\mathcal{A}_n(G,G) \xrightarrow{\simeq} \operatorname{Map}_0(B_nG,BG)$

is G-equivariant.

2. *An*-maps 00 3. Main theorem

4. Related topics

Higher homotopy commutativity

G: topological monoid, $N_{r,s}$: resultohedron ($r, s \ge 0$)

Definition (Kishimoto–Kono, 2010)

If there is a family of maps $\{Q_{r,s}: N_{r,s} \times G^{r+s} \to G\}_{0 \le r \le k, 0 \le s \le \ell}$ satisfying appropriate compatibility, *G* is said to be a *C*(*k*, *l*)-space.

C(1, 1)-space \Leftrightarrow homotopy commutative

	4. Related topics
	000000

G: topological group which is a CW complex

Theorem (Kishimoto–Kono, 2010)

The following are equivalent:

- G is a $C(k, \ell)$ -space,
- (i_k, i_ℓ) : $B_k G \lor B_\ell G \to BG$ extends over $B_k G \times B_\ell G$,
- i_{L}^{*} Map (S^{1}, BG) is trivial as a fiberwise A_{ℓ} -space.

Theorem (T)

G is a $C(k, \ell)$ -space if and only if the map $\alpha : G \to \mathcal{A}_{\ell}(G, G)$ is homotopic to the trivial map as an A_k -map.

2. An-maps

Main theorem
 OOO

4. Related topics

Gottlieb-type filtration

X: based connected CW complex

Definition

Define a subgroup $G_n^{(k)}(X) \subset \pi_n(X)$ by

 $G_n^{(k)}(X) = \operatorname{im}(ev_*: \pi_n(\operatorname{Map}(B_k\Omega X, X)_{i_k}) \to \pi_n(X)).$

The group $G_n(X) := G_n^{(\infty)}(X)$ is called the *n*-th Gottlieb group.

 $G_n(X) = G_n^{(\infty)}(X) \subset \cdots \subset G_n^{(2)}(X) \subset G_n^{(1)}(X) \subset Z(\pi_n(X)) \subset \pi_n(X)$ For $\alpha \in \pi_n(X)$, $\alpha \in G_n^{(k)}(X)$ if and only if

		Related topics
		00000
Example		

If *X* is an *H*-space, then $G_n^{(\infty)}(X) = \pi_n(X)$ for any $n \ge 1$. More generally, if ΩX is a C(1, k)-space, then $G_n^{(k)}(X) = \pi_n(X)$ for any $n \ge 1$.

Example (T

For an odd prime
$$p$$
 and $\frac{r(p-1)}{2} \le k < \frac{(r+1)(p-1)}{2}$, the subgroup

 $G_4^{(k)}(B\operatorname{SU}(2))_{(p)} \subset \pi_4(B\operatorname{SU}(2))_{(p)} \cong \mathbb{Z}_{(p)}$

has index p^r and $G_4^{(\infty)}(B \operatorname{SU}(2)) = 0$.

Example (Kishimoto-T)

G: compact connected simple Lie group Suppose that $H^*(BG; \mathbb{Q})$ is a polynomial algebra on the generators of degree $2n_1, \ldots, 2n_\ell$. If $p > 2n_\ell$, then the subgroup

$$0 \neq G_{2n_i}^{(n_\ell + p - 1)}(BG)_{(p)} \subset \pi_{2n_i}(BG)_{(p)} \cong \mathbb{Z}_{(p)}$$

has index $\geq p$.