Mapping spaces from projective spaces

Mitsunobu Tsutaya

Kyoto University

Algebraic and Geometric Models for Spaces and Related Topics 2015
Shinshu University
August 19, 2015
1. Introduction
 - A_n-map
 - Main theorem

2. Recognitions of A_n-map
 - Projective spaces
 - Recognitions of A_n-map

3. Main theorem
 - Main theorem
 - Adjointness of B_n and Ω

4. Related topics
 - Evaluation fiber sequence
 - Higher homotopy commutativity
 - Gottlieb-type filtration on $\pi_\ast(X)$
1. Introduction
 ▶ A_n-map
 ▶ Main theorem
A$_n$-map

G, G', G'': topological monoids

A$_n$-map ($n = 1, 2, \ldots, \infty$)

A family of maps \(\{f_i : [0, 1]^{i-1} \times G^i \to G'\}_{i=1}^n \) is called an A$_n$-form of f if

1. $f_1 = f$,

2. $f_i(t_1, \ldots, t_{i-1}; g_1, \ldots, g_i) = \begin{cases} f_{i-1}(t_1, \ldots, \hat{t}_k, \ldots, t_{i-1}; g_1, \ldots, g_k g_{k+1}, \ldots, g_i) & \text{for } t_k = 0 \\ f_k(t_1, \ldots, t_{k-1}; g_1, \ldots, g_k) f_{i-k}(t_{k+1}, \ldots, t_{i-1}; g_{k+1}, \ldots, g_i) & \text{for } t_k = 1 \end{cases}$

3. $f_i(t_1, \ldots, t_{i-1}; g_1, \ldots, *, \ldots, g_i) = f_{i-1}(t_1, \ldots, \max\{t_{k-1}, t_k\}, \ldots, t_{i-1}; g_1, \ldots, \hat{g}_k, \ldots, g_i)$.

A triple $(f, \{f_i\}, \ell)$ is called an A$_n$-map. We denote the space of A$_n$-maps from G to G' by $A_n(G, G')$.

There is a composition of A$_n$-maps

$$A_n(G', G'') \times A_n(G, G') \to A_n(G, G'').$$
1. Introduction

2. A_n-maps

3. Main theorem

4. Related topics
G: topological monoid, G': grouplike topological monoid. Both of them are CW complex.

Main Theorem (recognition theorem for A_n-maps) (T)

The composition

$$
\mathcal{A}_n(G, G') \xrightarrow{B_n} \text{Map}_0(B_nG, B_nG') \xrightarrow{(i_n)^\#} \text{Map}_0(B_nG, BG')
$$

is a natural weak equivalence, where $i_n : B_nG' \to BG'$ is the natural inclusion.
2. Recognitions of A_n-map

- Projective spaces
- Recognitions of A_n-map
Projective spaces

G: topological monoid

The n-th projective space B_nG is defined by

$$B_nG := \left(\bigsqcup_{0 \leq i \leq n} \Delta^i \times G^i \right) / \sim,$$

where \sim is the usual simplicial identification.

$$* = B_0G \subset \Sigma G = B_1G \subset B_2G \subset \cdots \subset B_\infty G = BG.$$

An A_n-map induces a based map between the n-th projective spaces:

$$B_n: \mathcal{A}_n(G, G') \to \text{Map}_0(B_nG, B_nG').$$
Recognitions of A_n-map

G: topological monoid, G': grouplike topological monoid.
Both of them are CW complex.

Theorem (Stasheff, 1963)

A based map $f: G \to G'$ admits an A_n-form if and only if the composite

$$\Sigma G \xrightarrow{\Sigma f} \Sigma G' \xrightarrow{i_1} BG'$$

extends to a map $B_nG \to BG'$.

Theorem (Fuchs, 1965)

There is a one-to-one correspondence between $\pi_0(\mathcal{A}_\infty(G, G'))$ and the homotopy set of based maps $[BG, BG']$.

Theorem

The model categories of simplicial groups and reduced simplicial sets are Quillen equivalent by the Kan’s loop group construction.
3. Main theorem

- Main theorem
- Adjointness of B_n and Ω
Main theorem

G: topological monoid, G': grouplike topological monoid. Both of them are CW complex.

Main Theorem (recognition theorem for A_n-maps) (T)

The composition

$$A_n(G, G') \xrightarrow{B_n} \text{Map}_0(B_nG, B_nG') \xrightarrow{(i_n)^\#} \text{Map}_0(B_nG, BG')$$

is a natural weak equivalence, where $i_n : B_nG' \to BG'$ is the natural inclusion.
Proof of Theorem

When \(n = 1 \), this is the well-known adjunction of \(\Sigma \) and \(\Omega \). Suppose this is true for \(A_{n-1} \)-maps. Consider the following commutative diagram of homotopy fiber sequences:

\[
\begin{array}{ccc}
F & \longrightarrow & \mathcal{A}_n(G, G') \\
\downarrow & & \downarrow \\
F' & \longrightarrow & \text{Map}_0(B_nG, BG')
\end{array}
\]

\[
\begin{array}{ccc}
& & \\
& & \\
\longrightarrow & \longrightarrow & \longrightarrow \\
& & \\
\mathcal{A}_{n-1}(G, G') & \longrightarrow & \text{Map}_0(B_{n-1}G, BG')
\end{array}
\]

\(\cong \)

In fact, the map \(F \rightarrow F' \) coincides with the composite

\(F \cong \text{Map}_0(S^{n-1} \wedge G^n, G') \cong \text{Map}_0(S^n \wedge G^n, BG') \cong F' \). Then by the five lemma, we have the desired conclusion.
Adjointness of B_n and Ω

G: topological monoid which is a CW complex, X: a based space.

Corollary (adjointness of B_n and Ω) (T)

There is a natural weak equivalence

$$\mathcal{A}_n(G, \Omega X) \tilde{\rightarrow} \text{Map}_0(B_nG, X).$$

G': grouplike topological monoid which is a CW complex.

Corollary

The following map is a weak equivalence.

$$\mathcal{A}_\infty(G, G') \tilde{\rightarrow} \text{Map}_0(BG, BG').$$
4. Related topics

- Evaluation fiber sequence
- Higher homotopy commutativity
- Gottlieb-type filtration on $\pi_*(X)$
1. Introduction

2. A_n-maps

3. Main theorem

4. Related topics

Evaluation fiber sequence

Let X, Y be based CW complexes. The homotopy fiber sequence

$$
\cdots \to \Omega Y \to \text{Map}_0(X, Y) \to \text{Map}(X, Y) \to Y
$$

is called the **evaluation fiber sequence**. In general, this fiber sequence does not extend to the right.

If $Y = X$, there is a homotopy fiber sequence

$$
\cdots \to \Omega X \to \text{Map}_0(X, X)_{\text{id}} \to \text{Map}(X, X)_{\text{id}} \to X
$$

$$
\quad \to B \text{Map}_0(X, X)_{\text{id}} \to B \text{Map}(X, X)_{\text{id}}
$$

where the subspaces $\text{Map}_0(X, Y)_f \subset \text{Map}_0(X, Y)$ and $\text{Map}(X, Y)_f \subset \text{Map}(X, Y)$ consist of maps **freely** homotopic to a based map $f : X \to Y$.

G: topological group which is a CW complex. The conjugation on G defines an action on BG and hence on $\text{Map}_0(X, BG)$. On the other hand, the conjugation defines a “homomorphism”

$$\alpha : G \to \mathcal{A}_n(G, G).$$

Theorem (T)

There is a homotopy fiber sequence

$$G \to \text{Map}_0(B_nG, BG)_{i_n} \to \text{Map}(B_nG, BG)_{i_n} \to BG \xrightarrow{B\alpha} B\mathcal{A}_n(G, G)_{\alpha}$$

where $\mathcal{A}_n(G, G)_{\alpha}$ is the union of path-components containing the image of α.

This theorem follows from the fact that the weak equivalence

$$\mathcal{A}_n(G, G) \xrightarrow{\sim} \text{Map}_0(B_nG, BG)$$

is G-equivariant.
Higher homotopy commutativity

G: topological monoid, $N_{r,s}$: resultohedron \ ((r, s \geq 0)

Definition (Kishimoto–Kono, 2010)

If there is a family of maps $\{Q_{r,s}: N_{r,s} \times G^{r+s} \to G\}_{0 \leq r \leq k, 0 \leq s \leq \ell}$ satisfying appropriate compatibility, G is said to be a $C(k, \ell)$-space.

$C(1, 1)$-space \iff homotopy commutative
G: topological group which is a CW complex

Theorem (Kishimoto–Kono, 2010)

The following are equivalent:

1. G is a $C(k, \ell)$-space,
2. $(i_k, i_\ell): B_k G \vee B_\ell G \to BG$ extends over $B_k G \times B_\ell G$,
3. $i_k^* \text{Map}(S^1, BG)$ is trivial as a fiberwise A_ℓ-space.

Theorem (T)

G is a $C(k, \ell)$-space if and only if the map $\alpha: G \to \mathcal{A}_\ell(G, G)$ is homotopic to the trivial map as an A_k-map.
Gottlieb-type filtration

X: based connected CW complex

Definition

Define a subgroup \(G_n^{(k)}(X) \subset \pi_n(X) \) by

\[
G_n^{(k)}(X) = \text{im}(ev_* : \pi_n(\text{Map}(B_k \Omega X, X)_{i_k}) \to \pi_n(X)).
\]

The group \(G_n(X) := G_n^{(\infty)}(X) \) is called the \(n \)-th Gottlieb group.

\[
G_n(X) = G_n^{(\infty)}(X) \subset \cdots \subset G_n^{(2)}(X) \subset G_n^{(1)}(X) \subset Z(\pi_n(X)) \subset \pi_n(X)
\]

For \(\alpha \in \pi_n(X) \), \(\alpha \in G_n^{(k)}(X) \) if and only if

\[
S^n \vee B_k \Omega X \xrightarrow{(\alpha, i_k)} X
\]

\[
S^n \times B_k \Omega X
\]
Example

If X is an H-space, then $G_n^{(\infty)}(X) = \pi_n(X)$ for any $n \geq 1$. More generally, if ΩX is a $C(1, k)$-space, then $G_n^{(k)}(X) = \pi_n(X)$ for any $n \geq 1$.

Example (T)

For an odd prime p and $\frac{r(p-1)}{2} \leq k < \frac{(r+1)(p-1)}{2}$, the subgroup

$$G_4^{(k)}(B SU(2))_{(p)} \subset \pi_4(B SU(2))_{(p)} \cong \mathbb{Z}_p$$

has index p^r and $G_4^{(\infty)}(B SU(2)) = 0$.

Example (Kishimoto–T)

G: compact connected simple Lie group
Suppose that $H^*(BG; \mathbb{Q})$ is a polynomial algebra on the generators of degree $2n_1, \ldots, 2n_\ell$. If $p > 2n_\ell$, then the subgroup

$$0 \neq G_{2n_i}^{(n_\ell+p-1)}(BG)_{(p)} \subset \pi_{2n_i}(BG)_{(p)} \cong \mathbb{Z}_p$$

has index $\geq p$.