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Homological Mirror Symmmetry for Fano varieties I

Mirror of a Fano manifold

X : Fano +«—— (XY, W) : Landau-Ginzburg model
c1(X) >0 XV: non-cpt cpx mfd
< Ric >0 W : XY — C holomorphic

Homological Mirror Symmetry

DPF(X) & D4Sing(W) £ HOMF (W),
DPCoh(X) 2 DPF(W).

“Classical” Mirror Symmetry

QH(X;K) = Jac(W) =




Strominger-Yau-Zaslow conjecture I

“Conjecture” (T-duality). X and XY admit dual (special) Lagrangian
torus fibration

v (7)"Hb) = (= H )Y =T

X X
T

Any Lagrangian fibration is (locally) given by a completely integrable
system (p1,...,0n) : X — R™:

dpq,...,dpn linearly independent (on an open dense subset),
Poisson commutativity: {¢;,¢;} =0, 4,j53=1,...,n

Remark (Auroux).In the Fano case, ‘“special” Lagrangian fibration
is defined on the complement of an anti-canonical divisor of X.
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ToriCc case I

Let X be a projective toric manifold:
(C*)™ C X open dense, and (C*)™ ~ (C*)™ extends to (C*)" ~ X.

(Sl)’” acts on X in Hamiltonian fashion, and the moment map
®: X — A CR" = (Lie(sH)")
gives a Lagrangian torus fibration on Int A C A:
e A is a convex polytope (the moment polytope),
e Each fiber L(u) = ®~1(w) is a torus orbit,

e If v is in a relative interior of a k-dimensional face, then
L(w) is an isotropic submanifold of dim = k.

In particular, L(u) are Lagrangian tori for u € Int A.



Lagrangian Intersection Floer theory for torus fibers
(Cho-Oh, Fulaya-Oh-Ohta-Ono,...):

- Potential function (superpotential),

- Floer homology,

- QH(X) = Jac(W).

This talk: A-model on the Grassmannians Gr(2,n) = Gr(2,C") of
2-planes in C".

Plan

e Lagrangian Intersection Floer Theory

e Lagrangian Intersection Floer Theory for Toric Manifolds
e Integrable Systems on Grassmannians

e Potential Functions for Grassmannians



Lagrangian Intersection Floer Theory I

Let (X,w) be a compact symplectic manifold of dim = 2n,
Lo, L1 C X Lagrangian submanifolds (i.e. dimL; =n and w[, = 0).

CF(Lo,L1) = €& Rp, R=1Z,C,A\g= Novikov ring,...
peLoNly

mi =0 :CF(Lg,L1) - CF(Lg,L1) (and higher products m;) is given
by counting holomorphic disks with Lagrangian boundary condition:

_ 2,0 } VA
m1(p) qEL%WLl/Be@Z(X,L)#{p 5 9'Lo exD( /ﬁw) q

Under suitable assumptions, we have m12 — 0, and Floer homology is
defined by

HF(Lg,L1) := H(CF(Lg,L1),my).



Hamiltonian invariance I

Theorem. Under suitable conditions,

HF(po(Lo),p1(L1)) = HF(Lg, Ly1)

for Hamiltonian diffeomorphism g, ©1.

Define
HF(L,L) : = HF(L,p(L))

by a Hamiltonian diffeomorphism ¢ on X such that L and (L) are
transverse.

Corollary. If L is displaceable, i.e. LNy(L) = () for some Hamiltonian
diffeomorphism,

HF(L,L) # 0.



Deformation of As.-structure {m;}, I

For b € Hl(L; R/2w\/—1Z), one can define “twisted” products {mz}k:
my(e) = my(b,...,b,e,b,...,b)
k
Remark.
HY(L;v/=1R/27v/=17) £ {flat U(1)-connections over L}/gauge.
If (m4)2 =0, define HF((L,b),(L,b)) := H(CF(L,L),m%).

Definition. (L,b) is balanced if HF((L,b),(L,b)) # 0.

Remark. displaceable = not balanced.



Potential Functions I

(m’i)2 # 0 in general (because of disk bubbles):
bo,b bo,b1 /.. b bo,b b
(mlo 1)2 — mzo 1(moO(LO)a ) — m20 1(-,m01(L1)).

mQ(L) is “defined” by counting holo. disks u : (D?,0D?) — (X, L):

wh(L) = 3 #{uilu] = By exp(~ [ w)holy(9p),

BET‘-Q(XaL)
where hol,(98) is the holonomy of b along 98.

HF((Lg,bo), (L1,b1)) is defined if mX(Lg) = mat(L1).

Definition (Potential function).

B | JHY(L; R/27V=1Z) — R,  (L,b) — m{(L).
L



Lagrangian Floer Theory for Toric Fano Manifolds

Theorem (Cho-Oh, Fukaya-Oh-Ohta-Ono). Let X be a toric Fano
manifold with moment polytope

A={ueR"|l;(u) = (vj,u)y —7;,>0,i=1,...,m}.
Then the potential function for L(u) = @ 1(u), u € Int A is

PO(u,b) = PO(L(u),b) = 3 elvirk)—tilw),
=1

1=

and PO gives the superpotential of the LG mirror of X.

Example. X = P! with b = 0, L(u)
_ _—Area(Dq) —Area(D»>)
PO(L(u)) =e 4 e 2 I
i e_u + e_()‘_u) =y _|_ 9’
Yy
where y = u= %, Q = e ‘ |V

- A=1[0,A] 10




Lagrangian Floer Theory for Toric Fano Manifolds I

Theorem (Fukaya-Oh-Ohta-Ono).

QH(X) £ Jac(PY) = R[yl?”.’yn]

In particular, # Crit(BO) = rank H*(X).

Theorem (Fukaya-Oh-Ohta-Ono). For L(u) = & 1(u) (u € IntA)
and b € HY(L(w)), the followings are equivalent:

o (u,b) € Crit(BO),

o (L(u),b) is balanced, i.e. HF((L(u),b),(L(u),b)) # 0,

o HE((L(u),b), (L(u),b)) = H*(L(u)).

Remark.

# Crit(BO) = # of balanced Lagrangian fibers.
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Grassmannian Gr(2,n) = Gr(2,C") I

Gr(2,n) as a symplectic reduction
Gr(2,n) = C"*?JU(2) = gy (V—-11)/U(2),
where pgr(oy 1 "2 — u(2) is the moment map of the U(2)-action:

1 W1 n 12 5.
(zyw) =1t & |—V—-1) <|Z7’| ZZwZ) :
1=1

o w za0;  |wg]?

Note: (z,w) € u(j%z)(\/——ll) — ||z|| = |w|| = 1 and (z,w) = 0.
Pliicker embedding:Gr(2,n) — P(A2C"),

Example. Gr(2,4) c P(A2C%) = P° is given by
Gr(2,5) = {[Zijlicicj<a € P> | Z12Z34 — Z13Z24 + Z14Z23 = 0O}.
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Completely integrable systems on Gr(2,n)

Theorem. For each triangulation I of a convex n-gon, one can define
a completely integrable system ®r : Gr(2,n) — R2(n=2),

Remark (Hausmann-Knutson). In the case where the triangulation is
the “caterpillar’, o is the Gelfand-Cetlin system (Guillemin-Sternberg).
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Construction of & I

Consider the map v : C"*2 — su(2)™ £ (R3)" given by

<1 w1 vV—1 |z|2 _ |w-\2 oy
(z,w) = | : N <513z — o ( ‘ QZ.WZ |w'|2 Z_ |ZZ|2>> '
Zn Wn L t v 'I:_].,...,’I’L
Then
1 n
(z,w) € /LU(Q)(\/—ll) — Z; x; = O.
i.e. (x1,...,xn) defines a spatial n-gon in su(2) = R3.

R?’
J g T3
L6
Zo
I I
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Construction of &

v induces

v . Gr(2,n) — moduli of n-gons with fixed perimeter 2.

A triangulation ' of n-gon gives a set of n — 3 diagonals.

Then & : Gr(2,n) — R2(n=2) = gn-1 y Rn—=3 j5 gjven by

®r([z,w]) = lengths of n — 1 edges and n — 3 diagonals of v([z, w])

The image A := & (Gr(2,n)) is a convex polytope defined by tri-
angle inequalities.

15



Gr(2,n) and the polygon space I

Remark. v induces

v : Gr(2,n)/T = moduli of n-gons with fixed perimeter 2,

where T' C U(n) is a maximal torus. The symplectic reduction

Gr(2,n)//T = moduli of n-gons in R> with fixed side lengths

is called the polygon space.

112

Gr(2,n)//T = moduli space of weighted n-points in P!
moduli of parabolic SU(2)-bundles on P!

(if parabolic weights are “small”)

112

¢ is a lift of bending Hamiltonians on the polygon space (Kapovich-
Millson, Klyachko).
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Toric Degeneration of Gr(2,n) I

A toric degeneration of Gr(2,n) is given by deforming the Pliicker
relations into binomials.

Example. Toric degeneration of Gr(2,4) is given by

tZ12234 — 213224 + Z14223 = 0.

Theorem (Speyer-Sturmfels).

{toric degenerations of Gr(2,n) } JontN {triangulations of n-gon}.

Let f: X' — S(= C or C*3) denote the toric degeneration corre-
sponding to I, and X[ = f~1(0) its central fiber (toric variety).
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Toric Dedgeneration of Integrable Systems I

Proposition. Ar = &(Gr(2,n)) is the moment polytope of Xor.

Theorem. ¢ : Gr(2,n) — A can be deformed into a toric moment
map X{ — Ar.

Theorem. XO'_ is a (singular) toric Fano variety and admits a small
resolution m: X§ — X[, i.e.

codimg 7~ L(singular locus) > 2

This enables us to compare holomorphic disks in Gr(2,n) and Xor.
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Potential Function

Theorem. Fix a triangulation I of the reference polygon. Then the
potential function of the Lagrangian torus fibers L(u) is given by

por= Y (y(b)y(C)_+_y(a)y(C) y(a)y(b)>’

_|_
y(a) y(b) y(c)

where y(a) is a Laurent monomial in Q = e~% and y; = e (b; are basis
of H1(L(w))) associated to an edge or a diagonal a, and the sum is
taken over all triangles in the triangulation T .

triangles
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Theorem. For any pair (I', ") of triangulations of the reference poly-
gon, there is a piecewise-linear automorphism

of the affine space such that Tr r(Ar) = Ar. The map Ty is
defined over 7 if Ar is an integral polytope.

Theorem. For any pair (I", ") of triangulations of the reference poly-
gon, the potential functions*BOr and*BO are related by a subtraction-
free rational change of variables whose “tropicalization’ is the piecewise-
linear transformation T .

f_ . Y1Y4 + Y2y3
Y1Y2 + Y3ya

20



Example: the case of Gr(2,4) I

(After a linear coordinate change), Ar is given by

uy < up < Ap, A% Z

>‘3§u3§u17

uz < ug < up. \/
[>‘37)\1]

The above figure is the projection Ay — [A3, A 1], (u;); — uq.

Ar has an edge on which
e Ar is not Delzant,
e X[ is singular, and
e Fibers of & : Gr(2,4) — R* are Lagrangian U(2) = 53 x St
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Potential function for Gr(2,4)

T he potential function is given by

mg — G—ZBQT—U2+)\1 _I_ e—$1+x2T—u1—|—u2 _|_ 6:1:1—:133Tu1—u3
| eT3TU3TA3 | T2 T4 U2—UL | o—23FTap—u3tug
=Q1 Y2 0 Y3y b2 be
yo Y1 Y3 @3  ys Y3

T his coincides with the superpotential W (CC*)4 — C obtained by
Eguchi-Hori-Xiong.

PO has 4 critical points

Y1 = ys = £/Q1Q3, y3 = £/2Q3y1, y2 = Q1Q3/y3-

Hence there exist 4 balanced (L(u),b).
Note: 4 < dim H*(Gr(2,4)) = 6.

Eguchi-Hori-Xiong constructed a partial compactification of (C*)%.
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Floer homologies for Lagrangian Fibers on 0A I

Identify the edge with [—1,1] in Ar.

Li=dri(t) 2U(2)
is a Lagrangian fiber for t € (—1,1).

Proposition. There exists g € U(4) such that g(Ly) = L_¢. In par-
ticular, if t = 0, then L is displaceable from itself by a Hamiltonian
diffeomorphism, and hence HF (L, L) = 0.

Proposition. Lg is a fixed point set of an anti-holomorphic (and anti-
symplectic) involution on Gr(2,4).

Corollary (Iriyeh-Sakai-Tasaki).
HF(Lo, Lo; Z/QZ) = H*(LO; Z/QZ)(% H*(U(Q), Z/QZ)).
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Conjectures/Questions.
e There exists two b € H(Lg; A) such that HF((Lg,b), (Lo, b); \) # 0.
[ HF((Lt,b), (Lt,b); /\) = 0 for t 73 0.
o PO(L4,b) L 0 for any t.
Relation to the partial compactification by Eguchi-Hori-Xiong?

e Higher dimensional case?
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