Talk 1: Formal deformation quantizaton

Akira Yoshioka 2

7 February 2013 Shinshu

²Dept. Math. Tokyo University of Science

In this talk, we give a brief review on formal deformation quantization.

- 1 We explain definition of formal deformation quantization and its basic facts.
- 2 We discuss existence and classification problems of formal deformation quantization on manifolds.
- 3 We explain Weyl manifolds, which give the existence of formal deformation quantization on symplectic manifolds.

Based on the joint works with H. Omori, Y. Maeda,

1.1. Background

Wigner introduced a phase space distribution, related to Weyl's quantization procedure.

[Wg]: E. P. Wigner, On the quantum correction for thermodynamics equilibriun, Phys. Rev., 40 (1932) 749-759.

Moyal introduced the "sine-Poisson" bracket, now called the Moyal bracket, for functions on phase space.

[Moyal]: J. E. Moyal, Quantum Mechanics as s statistical theory, Proc. Cambridge Phil. Soc., 45 (1949) 99-124.

Deformation quntization is proposed by Bayen-Flato-Fronsdal-Lichnerowicz-Sternheimer to express the trasfer from classical mechanics to quantum mechanics, and also the opposite direction. They analyse a deformation quantization for fomal power series.

[BFFLS1] F Bayen, M Flato, C Fronsdal, A Lichnerowicz, D Sternheimer, Deformation theory and quantization. I. Deformations of symplectic structures, Annals of Physics, **111**(1978) 61–110.

•00000000

1.2. Example: Moyal product

The Moyal product is a well-known example of star product.

$$f *_{o} g = f \exp \frac{v}{2} \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right) g = f \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{v}{2} \right)^{k} \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right)^{k} g$$

$$= fg + \frac{v}{2} f \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right) g + \frac{1}{2!} \left(\frac{v}{2} \right)^{2} f \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right)^{2} g$$

$$+ \dots + \frac{1}{k!} \left(\frac{v}{2} \right)^{k} f \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right)^{k} g + \dots$$

Formal power series.

We assume ν is a formal parameter and we consider the space of all formal power series \mathcal{A}_{ν} of ν with coefficients in the space of all smooth functions on \mathbb{R}^{2m} .

$$\mathcal{A}_{\nu} = \left\{ f = \sum_{k=0}^{\infty} f_k(\mathbf{w}) \, \nu^k \mid f_k(\mathbf{w}) \in C^{\infty}(\mathbb{R}^{2m}) \right\}$$
 (1)

where w denotes the variables $w = (u_1, \dots, u_m, v_1, \dots, v_m)$.

00000000

Bidervation

We consider a biderivation

$$\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} = \sum_{j=1}^{m} \left(\overleftarrow{\partial_{v_{j}}} \cdot \overrightarrow{\partial_{u_{j}}} - \overleftarrow{\partial_{u_{j}}} \cdot \overrightarrow{\partial_{v_{j}}} \right)$$
(2)

where left arrow means the differential $\overleftarrow{\partial}_{u_i}$ acts on the function on the left hand side and the right arrow on the right, nemely

$$f\left(\overleftarrow{\partial_{v}}\cdot\overrightarrow{\partial_{u}}-\overleftarrow{\partial_{u}}\cdot\overrightarrow{\partial_{v}}\right)g=f\sum_{j=1}^{n}\left(\overleftarrow{\partial_{v_{j}}}\cdot\overrightarrow{\partial_{u_{j}}}-\overleftarrow{\partial_{u_{j}}}\cdot\overrightarrow{\partial_{v_{j}}}\right)g$$
$$=\sum_{j=1}^{n}\left(\partial_{v_{j}}f\partial_{u_{j}}g-\partial_{u_{j}}f\partial_{v_{j}}g\right)$$

4. Rerences

1. Deformation quantization

000000000

Moyal product

The Moyal product $f *_{\alpha} g$ is given by the power series of the bidifferential operators $(\overleftarrow{\partial_v} \cdot \overrightarrow{\partial_u} - \overleftarrow{\partial_u} \cdot \overrightarrow{\partial_v})$ such that

$$f *_{o} g = f \exp \frac{v}{2} \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right) g = f \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{v}{2} \right)^{k} \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right)^{k} g$$

$$= fg + \frac{v}{2} f \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right) g + \frac{1}{2!} \left(\frac{v}{2} \right)^{2} f \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right)^{2} g$$

$$+ \dots + \frac{1}{k!} \left(\frac{v}{2} \right)^{k} f \left(\overleftarrow{\partial_{v}} \cdot \overrightarrow{\partial_{u}} - \overleftarrow{\partial_{u}} \cdot \overrightarrow{\partial_{v}} \right)^{k} g + \dots$$
(3)

Theorem

The Moyal product is a well-defined $\mathbb{C}[[v]]$ -bilinear product on the space of all formal power series \mathcal{A}_{v} , and associative.

General product.

Biderivation.

We can consider a slight extension of the Moyal product. For an arbitrary complex $2m \times 2m$ matrix $\Lambda = (\Lambda^{jk})$ we consider a biderivation such that

$$\overleftarrow{\partial} \Lambda \overrightarrow{\partial} = \sum_{jk} \Lambda^{jk} \overleftarrow{\partial}_{w_j} \overrightarrow{\partial}_{w_k} \tag{4}$$

where we put $w = (w_1, \dots, w_{2m}) = (u_1, \dots, u_m, v_1, \dots, v_m)$.

Product

Instead of the biderivation $\overleftarrow{\partial_v} \cdot \overrightarrow{\partial_u} - \overleftarrow{\partial_u} \cdot \overrightarrow{\partial_v}$ in the definition of the Moyal product, using the biderivation $\overleftarrow{\partial} \Lambda \overrightarrow{\partial}$ we define a bilinear product $f *_{\Lambda} g$ by

$$f *_{\Lambda} g = f \exp \frac{\nu}{2} \left(\overleftarrow{\partial} \Lambda \overrightarrow{\partial} \right) g$$

$$= fg + \frac{\nu}{2} f \left(\overleftarrow{\partial} \Lambda \overrightarrow{\partial} \right) g + \frac{1}{2!} \left(\frac{\nu}{2} \right)^2 f \left(\overleftarrow{\partial} \Lambda \overrightarrow{\partial} \right)^2 g + \cdots$$

$$= fg + \nu C_1(f, g) + \nu^2 C_2(f, g) + \cdots + \nu^k C_k(f, g) + \cdots$$
(5)

where $C_k(f,g)$ is a bidifferential operator given by

$$C_k(f,g) = f\left(\frac{1}{k!} \frac{1}{2^k} \left(\overleftarrow{\partial} \Lambda \overrightarrow{\partial}\right)^k\right) g$$

For any Λ , the product * is associative. If Λ is symmetric, the product is commutative. イロナイ御 トイヨト イヨト 一耳

Poisson structure

Moreover, the skewsymmetric part of $C_1(f,g)$ gives a Poisson bracket

$$C_1^-(f,g) = C_1(f,g) - C_1(g,f)$$

Actually, if we write the skewsymmetric part of the matrix Λ as J then it is easy to see

$$C_1^-(f,g) = f\left(\overrightarrow{\partial}\Lambda\overrightarrow{\partial}\right)g = \sum_{jk} J^{jk}\overleftarrow{\partial}_{w_j} f\overrightarrow{\partial}_{w_k} g$$

For a matrix $\Lambda = J_0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, the star product $*_{\Lambda}$ is equal to the Moyal product.

Canonical commutation relations.

We see directly

Theorem

For the Moyal product or the star product * with $J = J_0$, the generators $(u_1, \cdots, u_m, v_1, \cdots, v_m)$ satisfy the canonical commutation relations.

$$[u_j, u_k]_* = u_j *_{\Lambda} u_k - u_k *_{\Lambda} u_j = [v_j, v_k]_* = 0, \quad j, k = 1, \dots, m,$$

 $[u_j, v_k]_* = -i\hbar$

000000000

Idea of deformation quantization

Remark

We remark here that

- we can construct a quantum mechanical system not by using operators but by using ordinary functions and deformed product.
- Moreover, if the parameter tends to 0, we see the product becomes an ordinary commutative multiplication of functions.

This is the basic idea of deformation quantization.

1.3. Deformation quantization

The the product *, in the previous subsection:

$$f *_{\Lambda} g = f \exp \frac{v}{2} \left(\overleftarrow{\partial} \Lambda \overrightarrow{\partial} \right) g$$

$$= fg + \frac{v}{2} f \left(\overleftarrow{\partial} \Lambda \overrightarrow{\partial} \right) g + \frac{1}{2!} \left(\frac{v}{2} \right)^2 f \left(\overleftarrow{\partial} \Lambda \overrightarrow{\partial} \right)^2 g + \cdots$$

$$= fg + vC_1(f, g) + v^2 C_2(f, g) + \cdots + v^k C_k(f, g) + \cdots$$

where $C_k(f,g)$ is a bidifferential operator given by

$$C_k(f,g) = f\left(\frac{1}{k!} \frac{1}{2^k} \left(\overleftarrow{\partial} \Lambda \overrightarrow{\partial}\right)^k\right) g$$

and the skewsymmetric part of $C_1^-(f,g)$ gives a Poisson bracket.

Generalizing this product, we give a concept of deformation quantization on a general manifold. 4 D F 4 P F 4 P F B F

Formal power seires.

Let M be an arbitrary manifold. We set the space of all formal power series $\mathcal{A}_{\nu}(M)$ of ν with coefficients in the smooth functions $C^{\infty}(M)$:

$$\mathcal{A}_{\nu}(M) = \left\{ f = \sum_{k=0}^{\infty} f_k \, \nu^k \mid f_k \in C^{\infty}(M) \right\}$$
 (6)

Star product.

Assume we have a $\mathbb{C}[[\nu]]$ -bilinear product $*_{\nu}$ on $\mathcal{A}_{\nu}(M)$ given in the form

$$f *_{\nu} g = fg + \nu C_1(f, g) + \nu^2 C_2(f, g) + \dots + \nu^k C_k(f, g) + \dots$$
 (7)

where $C_k(f,g)$ is a bidifferential operator on M.

Definition (Star product)

A product *, is called a star product if it is associative and the constant function 1 is the unit element.

Poisson structure.

For any star product $*_{\nu}$, the associativity gives

$$[f,g*_{\nu}h]=[f,g]*_{\nu}h+g*_{\nu}[f,h]$$

and

$$\sum_{\text{cyclic}} [f,[g,h]] = 0$$

Here we write the skewsymmetric part of C_1 as $\{f,g\} = C_1(f,g)$. Substituting the expansion of the product (7) we see the lowest order terms give

$$\{f,gh\}=\{f,g\}h+g\{f,h\}$$

and

$$\sum_{\text{cyclic}} \{f, \{g, h\}\} = 0$$

respectively.

Then we have

Proposition

The skewsymmtric part of the fist order term C_1 of a star product becomes a Poisson bracket of the manifold M.

Deformation quantization.

We are in a position to define a deformation quantization of a Poisson manifold.

Definition

For a Poisson manifold $(M, \{,\})$, star product $*_{v}$ is called a deformation quantization of $(M, \{,\})$ when the skewsymmetric part C_1^- is equal to the Poisson bracket $\{, \}$. And $*_{v}$ is called a star product of $(M, \{, \})$.

Remark

Remark that $*_v$ is localized to an arbtrary domain $U \subset M$, that is, we have a star product f * g for any $f, g \in \mathcal{A}_{\hbar}(U)$.

1.4. Equivalence of formal star products

Assume we have star products $*_{\nu}$, $*'_{\nu}$ on M. Let us consider a $\mathbb{C}[[\nu]]$ -linear map $T_{\nu}: \mathcal{A}_{\nu}(M) \to \mathcal{A}_{\nu}(M)$ of the form

$$T_{\nu} = T_0 + \nu T_1 + \dots + \nu^k T_k + \dots,$$

where T_k $(k = 0, 1, \cdots)$ is a differential operator on M.

Definition

A linear isomorphism T_{ν} is called a an isomorphism of if

$$T_{\nu}(f*_{\nu}g)=T_{\nu}(f)*_{\nu}T_{\nu}(g)$$

2. Existence and Classification

There were existence problem and classification problem of a deformation quantization for Poisson manifolds.

2.1. Symplectic case

The problem established independently:

- Dewilde-Lecomte: Step-wise and Cohomology
 - [DL]: M. De Wilde, P. B. A. Lecomte Existence of star products and of formal deformations of the Poisson Lie algebra of arbitrary sympletic manifolds, Lett, Math, Phys. 7 (1983), 487–496
- Omori-Maeda-Yoshioka: Weyl algebra bundle and quantized contact structure
 - [OMY1]: H. Omori, Y. Maeda, A. Yoshioka, Weyl manifolds and deformation quantization, Adv. in Math. 85 (1991) 224-255.
- Fedosov: Fedosov connection
 - [F]: B. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Goem. 40 (1994), 213-1994

Localization and Darboux chart

When $(M, \{, \})$ is symplectic, the deformation quantization * has a nice property.

On a Darboux chart $(U,(u_1,\cdots,u_n,v_1,\cdots,v_n))$, the Poisson bracket is expressed in the form

$$\{f,g\} = \sum_{i} \frac{\partial f}{\partial \nu_{i}} \frac{\partial g}{\partial u_{i}} - \frac{\partial f}{\partial u_{i}} \frac{\partial g}{\partial \nu_{i}} = f \overleftarrow{\partial} \Lambda \overrightarrow{\partial} g, \tag{8}$$

where $\Lambda = \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}$. Then we have

Proposition (Quantized Darboux theorem)

For any deformation quantization $*_v$ on a symplectic manifold $(M, \{, \})$, locally the product $*_v$ is isomorphic to the Moyal product on $C^{\infty}(U)[[\hbar]]$.

Existence

On the other hand, by gluing local Moyal algebra we obtain a deformation quantizaion.

Theorem (DeWilde-Lecomte, OMY, Fedosov)

For any symplectic manifold $(M, \{ , \})$, there exists a deformation quantization.

Classification

Let M be a symplectic manifold with symplectic form ω . We consider a formal power series of closed two forms

$$\Omega_{\nu} = \omega + \nu \Omega_1 + \dots + \nu^k \Omega_k + \dots$$

on a symplectic manifold M where ω_0 is the symplectic form.

Theorem (Classification theorem)

For a symplectic manifold (M, ω) , isomorphic classe of deformation quantizations have one-one correspondence with the cohomology classes $\{[\Omega_v]\}$.

See for example, [F], [OMY2]:

[OMY2], H. Omori, Y. Maeda, A. Yoshioka, *Poincare-Cartan class and* deformation quantization of Kaehler manifolds, Commun. Math. Phys. **194** (1998) 207–230. 4 D F 4 P F F F F F F

2.1. Symplectic case

Poisson case

■ Kontsevich [K] shows the existence of a formal star product on any poisson manifold.

3. Weyl manifolds

Weyl manifold W_M is an algebra bundle over a symplectic manifold M whose fibre is a Weyl algebra W.

- Weyl algebra bundle
- Weyl diffeomorphisms, patching
- Deformation quantization

Trivial bundle

For a symplectic manifold M, we have an altas consisting of Darboux charts $\{(U, x^1, \dots, x^m, v_1, \dots, v_m)\}.$

We sometimes write as $(z^1, \dots, z^{2m}) = (x^1, \dots, x^m, y_1, \dots, y_m)$.

We consider a trivial bundle for every Darboux chart

$$W_U = U \times W$$

Weyl continuation

We embedd a set $C^{\infty}(U)$ of all smooth functions on U into W_U as sections by

$$f(z) \mapsto f^{\#}(z) = \sum_k \tfrac{1}{k!} f^{(k)}(z) Z^k \in \Gamma(W_U)$$

where Z^k is a complete symmetrization of the product in W. The section $f^{\#}$ is called a Weyl continuation of f.

We denote by $\mathcal{F}(W_U)$ the space of all Weyl continuations on U. We have

Proposition

$$f^{\#} * g^{\#} = (f *_{\nu} g)^{\#}$$

where * is the multiplication in W and $*_{\nu}$ is the Moyal product with respect to the Darboux chart (z^1, \dots, z^{2m}) . 4日ト4周ト4日ト4日ト ヨーの90

3.2. Weyl diffeomorphisms, patching

Weyl diffeomorphisms

For bundles W_{U} , $W_{U'}$, we consider a bundle isomorphism

$$\Phi:W_U\to W_{U'}$$

Definition

An isomorphism Φ is called a Weyl diffeomorphism if

$$\Phi(\nu) = \nu$$

$$\Phi^*\mathcal{F}(W_{U'}) = \mathcal{F}(W_U)$$

$$\overline{\Phi^*(f^\#)} = \Phi^*(\overline{f}^\#)$$

Patching

We can patch $\{W_U\}$ by Weyl diffeomorphisms and we get the Weyl manifold.

Theorem

For a symplectic manifold M, there exist Weyl manifolds W_M .

Contact algebra

For patching, we need to deal with the center of the Weyl algebra. In order to do this, we introduce a quantized contact Lie algebra. We consider an element τ such that

$$[\tau, \nu] = 2\nu, \ [\tau, Z^k] = \nu Z^k, \ k = 1, 2, \cdots, 2m.$$

We set a Lie algebra (called a *quantized contact algebra*)

$$\mathfrak{G}=\mathbb{R}\tau\oplus W$$

000

3.3. Deformation quantization

Global Weyl functions

Definition

A section $\tilde{f} \in \Gamma(W_M)$ is called a global \hat{W} eyl function of W_M if it is a Weyl function when restricted to a local trivialization. We denote by $\mathcal{F}(W_M)$ the algebra of all Weyl functions of W_M .

Proposition

There exist a $\mathbb{C}[[v]]$ -linear isomorphism σ from $C^{\infty}(M)[[v]]$ to \mathcal{F}_M .

000

Existence of Deformation quantizaion

Using the linear isomorphism $\sigma: C^{\infty}(M)[[\nu]] \to \mathcal{F}_M$ we can introduce an associative product on $C^{\infty}(M)[[\nu]]$ by

$$f *_{\nu} g = \sigma^{-1}(\sigma(f) * \sigma(g))$$

We have

Theorem

The product $f *_{V} g$ is a deformation quantization of a symplectic manifold (M,ω) , namely we have

$$f *_{\nu} g = fg + \nu \{f, g\} + \dots + \nu^k C_k(f, g) + \dots$$

000

Remark

We can also patch tivial algebra bundles with fiber $\mathfrak{G} = \mathbb{R}\tau \oplus W$ and we obtain a bundle \mathfrak{G}_M .

From this bundle, we can obtain a Fedosov connection by means of the contact structure τ .

[Y]: A. Yoshioka, Contact Weyl manifolds over a symplectic manifold, Advnced Studies in Pure Mathematics, 37 (2002) 459–493.

- [BFFLS1] F Bayen, M Flato, C Fronsdal, A Lichnerowicz, D Sternheimer, Deformation theory and quantization. I. Deformations of symplectic structures, Annals of Physics, **111**(1978) 61–110.
- [BFFLS2] F Bayen, M Flato, C Fronsdal, A Lichnerowicz, D Sternheimer, Deformation theory and quantization. II. Physical Applications, Annals of Physics. **111**(1978) 111–151.
 - [DL] M. De Wilde, P. B. A. Lecomte, Existence of star products and of formal deformations of the Poisson Lie algebra of arbitrary sympletic manifolds, Lett, Math, Phys. 7 (1983), 487-496

- [F] B. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Goem. 40 (1994), 213-1994
- [K] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett, Math, Phys. 66 (2003), 157-216.
- [Moyal] J. E. Moyal, Quantum Mechanics as s statistical theory, Proc. Cambridge Phil. Soc., **45** (1949) 99–124.
 - [OM] H. Omori, Y. Maeda, Quantum Calculus (in Japanese), Springer, 2004
- [OMY1] H. Omori, Y. Maeda, A. Yoshioka, Weyl manifolds and deformation quantization, Adv. in Math. 85 (1991) 224–255.

- [OMY2] H. Omori, Y. Maeda, A. Yoshioka, *Poincare-Cartan class and* deformation quantization of Kaehler manifolds, Commun. Math. Phys. 194 (1998) 207-230.
- [OMY3] H. Omori, Y. Maeda, A. Yoshioka, Deformation quantizatons of Poisson algebras, Contemp. Math., 179 (1994) 213–240.
- [OMMY1] Omori H, Maeda Y., Miyazaki N. and Yoshioka A., Orderings and Non-formal Deformation quantization, Lett. Math. Phys. 82 (2007) 153-175 e
- [OMMY2] Omori H, Maeda Y., Miyazaki N. and Yoshioka A., Deformation of Expression of Algebras, (preprint)
 - [Td] Toda M., Introduction to Elliptic functions, Nihon Hyoronshya, Tokyo, 2001. (in Japanese)

- [TY] Tomihisa T. and Yoshioka A., Star Products and Star Exponentials, J. Geometry and Symmetry in Physics, 19 (2010) 99–111.
- [Wq] E. P. Wigner, On the quantum correctino for thermodynamics equilibriun, Phys. Rev., 40 (1932) 749-759.
 - [Y] A. Yoshioka, Contact Weyl manifolds over a symplectic manifold, Advnced Studies in Pure Mathematics, 37 (2002) 459–493.
- [Y1] Yoshioka A., A family of star products and its application, In: XXVI workshop on geometrical methods in physics, Kielonowski P., Odzijewicz A. Schlichenmaier M. and Voronov T. (Eds), AIP. Conference Proceedings 956, Melville, New York 2007, pp 37–42,

[Y2] Yoshioka A., Examples of Star Exponentials, In: XXVI workshop on geometrical methods in physics. Kielonowski P., S. T. Ali, Odzijewicz A. Schlichenmaier M. and Voronov T. (Eds), AIP. Conference Proceedings **1191**, Melville, New York 2009, pp 188–193,