Akira Yoshioka 2

7 February 2013 Shinshu

²Dept. Math. Tokyo University of Science

- 1 We recall the definition of star exponentials.
- 2 We show some construction of star exponentials.

Based on the joint works with H. Omori, Y. Maeda, N. Miyazaki,

1.1. Definition

The space of q-number functions \mathcal{F}_{ρ} is a complete topological algebra for $0<\rho\leq 2$ (even $\rho>2$ for future under some regularization). We can consider exponential element

$$\exp_* t\left(\frac{H}{i\hbar}\right) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \underbrace{\frac{H}{i\hbar} * \cdots * \frac{H}{i\hbar}}_{n}$$

in this algebra.

For a q-number polynomial $H \in \mathcal{P}(\mathbb{P})$, we define the star exponenial $\exp_* t(H/i\hbar)$ by the differential equation

$$\frac{d}{dt}\exp_*t\left(\frac{H}{i\hbar}\right) = \frac{H}{i\hbar} * \exp_*t\left(\frac{H}{i\hbar}\right), \ \exp_*t\left(\frac{H}{i\hbar}\right)|_{t=0} = 1$$

Remark

We set the Fréchet space

$$\mathcal{E}_{\rho+}(C^2) = \bigcap_{\lambda > \rho} \mathcal{E}_{\lambda}(C^2) \tag{1}$$

and we donote by $\mathfrak{C}_{\rho+}$ the correponding bundle and by $\mathcal{F}_{\rho+}$ the space of the flat sections of this bundle.

When $H \in \mathcal{P}(\mathbb{P})$ is a linear element, then $\exp_* t\left(\frac{H}{i\hbar}\right)$ belongs to the good space $\mathcal{F}_{1+}(\subset \mathcal{F}_2)$.

On the other hand, the most interesting case is given by quadratic form $H \in \mathcal{P}(\mathbb{P})$. In this case we can solve the differential equation explicitly, but the star exponential belongs to the space \mathcal{F}_{2+} , which is difficult to treat at present.

Although general theory related to the space \mathcal{F}_{2+} is not yet established, we illustrate the concrete example of the star expoenential of the quadratic forms and its application.

•0

1.2. Examples

We very the parameter $K \in \mathcal{S}_{\mathcal{C}}(2)$ and at some K we can obtain interesting identities in the algebra of $*_{\kappa}$ product.

Linear case

We consider a liner q-number polynomial. It is written in general form as

$$H = a_1 u + a_2 v = \langle \boldsymbol{a}, \boldsymbol{u} \rangle, \quad a_1, a_2 \in \mathbb{C}.$$

Star exponential of H belongs to the space of q-number function \mathcal{F}_{1+} . The star exponetial $\exp_* t\left(\frac{H}{i\hbar}\right)$ at K, which is denoted by $\exp_{*_K} t\left(\frac{H}{i\hbar}\right)$, is explicitly given as

$$\exp_{*_{K}} t\left(\frac{H}{i\hbar}\right) = \exp \frac{t^{2}}{4\hbar} \langle aK, a \rangle \exp \frac{t}{i\hbar} \langle a, u \rangle.$$

0

Hence if the real part satisfies an inequality such as

$$\mathfrak{R}_{\frac{1}{4\hbar}}\langle aK, a \rangle < 0 \tag{A}$$

the term $\exp \frac{t^2}{4\hbar} \langle aK, a \rangle$ is rapidly decreasing with respect to t and then we can consider an integral

$$\int_{-\infty}^{\infty} e^{-e^t} \exp_{*_K} t \left(z + \frac{H}{i\hbar} \right) dt$$

Then we define star gamma function by

$$\Gamma_*(z) = \int_{-\infty}^{\infty} e^{-e^t} \exp_* t \left(z + \frac{H}{i\hbar} \right) dt \tag{2}$$

This is evaluated at every K and the value $\Gamma_{*_{K}}(z)$ of the star gamma function at K is given by the integral, where K satisfies the condition (A). We have the identity for K satisfying (A)

$$\Gamma_{*_K}(z+1) = \left(z + \frac{H}{i\hbar}\right) *_K \Gamma_{*_K}(z).$$

2. Examples

In this section, we show some examples of star exponetials.

2.1. Path integral (iterated integral) construction of quadratic case

[YM]: Yoshioka A., T. Matsumoto, *Path integral for Star Exponential functons of quadratic forms*, In: Geometry, Integrability and Quantization. I. M. Mladenov, G. L. Naber (Eds), **4**, Coral Press Scientific Publishing, Sofia 2003, pp 330–340,

Notation

We first give the Moyal product on \mathbb{C}^2 . Let x, y be coordinate functions of \mathbb{C}^2 and let \hbar be a positive real parameter. The canoncial Poisson bracket is given by

$$\{f,g\} = \frac{\partial f}{\partial x}\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}\frac{\partial g}{\partial x} = f\left(\overleftarrow{\partial}_x \wedge \overrightarrow{\partial}_y\right)g\tag{3}$$

Here we use a notation such as

$$\{f,g\} = f\left(\overleftarrow{\partial}_x \wedge \overrightarrow{\partial}_y\right)g = f\left(\overleftarrow{\partial}_x \overrightarrow{\partial}_y - \overleftarrow{\partial}_y \overrightarrow{\partial}_x\right)g \tag{4}$$

Using the binomial theorem formally, we set bidifferential operators

$$\left(\overleftarrow{\partial}_x \wedge \overrightarrow{\partial}_y\right)^n = \sum_{l+m=n} \frac{n!}{l!m!} (-1)^m \left(\overleftarrow{\partial}_x \overrightarrow{\partial}_y\right)^l \left(\overleftarrow{\partial}_y \overrightarrow{\partial}_x\right)^m$$

and

$$\exp\left(\frac{i\hbar}{2}\overleftarrow{\partial}_x\wedge\overrightarrow{\partial}_y\right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{i\hbar}{2}\right)^n \left(\overleftarrow{\partial}_x\wedge\overrightarrow{\partial}_y\right)^n$$

The Moyal product is then given by

Definition

$$f *_{0} g = f \exp\left(\frac{i\hbar}{2} \overleftarrow{\partial}_{x} \wedge \overrightarrow{\partial}_{y}\right) g$$

We remark here that the product $f*_0g$ is not necessarily convergent for arbitrary smooth functions, however it is defined when at least one of f,g is a polynomial function.

With the Moyal product, we can define the *-exponential function of a quadratic form in the following way. Let us consider a quadratic form on \mathbb{C}^2 given by

$$H = ax^2 + 2bxy + cy^2, \quad a, b, c \in \mathbb{C}.$$
 (5)

The *-exponential function is formally given by

$$e_*^{t\frac{H}{i\hbar}} * f = \sum_{n=0}^{\infty} \frac{t^n}{n!} \left(\frac{H}{i\hbar}\right)_*^n * f$$
 (6)

for every polynomial function f(x,y) where $\left(\frac{H}{i\hbar}\right)_*^n = \underbrace{\frac{H}{i\hbar} * \cdots * \frac{H}{i\hbar}}_{n}$. In this

note, we study the explicit form of $e^{t\frac{H}{i\hbar}}$ by means of the path-integral method.

Normal forms and the invariance of $*_0$

Given a quadratic function $H = ax^2 + 2bxy + cy^2$ on \mathbb{C}^2 , we consider a descriminant

$$D = b^2 - ac. (7)$$

We will show that H with nonvanishing descriminant is transformed into $x^2 - y^2$ via linear transformations by $SL(2, \mathbb{C})$.

First we consider the case where H has the descriminat $D = \frac{1}{4}$. We will prove

Proposition

There exists $\binom{p}{r}\binom{q}{s} \in SL(2,\mathbb{C})$ such that

$$H = -\frac{1}{2}w^2 + \frac{1}{2}z^2,\tag{8}$$

where

$$\begin{pmatrix} w \\ z \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}. \tag{9}$$

Such matrices $\binom{p}{r}\binom{q}{s}$ are not unique, parametrized by \mathbb{C} .

First we consider the case where H has the descriminat $D = \frac{1}{4}$. We will prove

Proposition

There exists $\binom{p}{r}\binom{q}{s} \in SL(2,\mathbb{C})$ such that

$$H = -\frac{1}{2}w^2 + \frac{1}{2}z^2,\tag{10}$$

where

$$\begin{pmatrix} w \\ z \end{pmatrix} = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}. \tag{11}$$

Such matrices $\binom{p}{r}\binom{q}{s}$ are not unique, parametrized by \mathbb{C} .

Furthermore, by a direct calculation we have the following invariance property of the Moyal product:

Proposition

The Moyal product is expressed in terms of the coordinate functions w, z such as

$$f *_0 g = f \exp \left(\underbrace{i\hbar}_2 \overleftarrow{\partial}_w \wedge \overrightarrow{\partial}_z \right) g$$

Path Integral representation

In what follows, we give a path-integral representation of the *-exponential function of quadratic forms.

- 1 Fist we consider $H = -\frac{1}{2}x^2 + \frac{1}{2}y^2$.
- **Then we obtain the *-exponential functions for general** H with $D \neq 0$.

*-exponential of
$$-\frac{1}{2}x^2 + \frac{1}{2}y^2$$

First, we give the *-exponential function of $-\frac{1}{2}x^2 + \frac{1}{2}y^2$.

The basic tool is the following Mehler's formula:

Lemma

Let $H_n(t)$ be an Hermite polynomial of degree n. Then it holds

$$e^{-x^2-y^2} \sum_{n=0}^{\infty} \frac{z^n}{2^n n!} H_n(x) H_n(y) = \frac{1}{\sqrt{1-z^2}} \exp\left(-\frac{1}{1-z^2} (x^2 + y^2 - 2zxy)\right)$$

For the first step of path integral, we consider the product $\exp\left(t\frac{H}{i\hbar}\right)*_0 \exp\left(s\frac{H}{i\hbar}\right)$ for $H=(-x^2+y^2)/2$.

Mehler's formula gives the formula:

Proposition

$$\exp\left(t\frac{H}{i\hbar}\right) *_{o} \exp\left(s\frac{H}{i\hbar}\right) = \frac{1}{1 + ts/4} \exp\left(\frac{t + s}{1 + ts/4}\frac{H}{i\hbar}\right)$$

Direct calculation of star Moyal product gives

$$\begin{split} \exp\left(t\frac{H}{i\hbar}\right) * \exp\left(s\frac{H}{i\hbar}\right) \\ &= \exp\left(t\frac{H}{i\hbar}\right) \sum_{l=0}^{\infty} \frac{1}{l!} \left(\frac{i\hbar}{2}\right)^{l} \sqrt{\frac{t}{2i\hbar}}{}^{l} H_{l}\left(\sqrt{\frac{t}{2i\hbar}}x\right) \sqrt{\frac{is}{2\hbar}}{}^{l} H_{l}\left(\sqrt{\frac{is}{2\hbar}}y\right) \\ &\times \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \left(\frac{i\hbar}{2}\right)^{k} \sqrt{\frac{it}{2\hbar}}{}^{k} H_{k}\left(\sqrt{\frac{it}{2\hbar}}y\right) \sqrt{\frac{s}{2i\hbar}}{}^{k} H_{k}\left(\sqrt{\frac{s}{2i\hbar}}x\right) \exp\left(s\frac{H}{i\hbar}\right) \end{split}$$

and then it holds

$$\exp\left(t\frac{H}{i\hbar}\right) * \exp\left(s\frac{H}{i\hbar}\right)$$

$$= \exp\left(\frac{t+s}{i\hbar}H\right) \sum_{l=0}^{\infty} \frac{1}{2^{l}l!} \left(\frac{i\sqrt{ts}}{2}\right)^{l} H_{l}\left(\sqrt{\frac{t}{2i\hbar}}x\right) H_{l}\left(\sqrt{\frac{is}{2\hbar}}y\right)$$

$$\times \sum_{k=0}^{\infty} \frac{1}{2^{k}k!} \left(\frac{-i\sqrt{ts}}{2}\right)^{k} H_{k}\left(\sqrt{\frac{it}{2\hbar}}y\right) H_{k}\left(\sqrt{\frac{s}{2i\hbar}}x\right)$$
(12)

For the next step, we consider the iterated product of exponential functions $e^{t_1\tilde{H}}*\cdots*e^{t_n\tilde{H}}$, where we put $\tilde{H}=\frac{H}{i\hbar}=(-x^2+y^2)/2i\hbar$. In what follows, we will show the formula:

Proposition

$$e^{t_1\tilde{H}} * \cdots * e^{t_n\tilde{H}} = \frac{1}{c_n(t)} \exp\left(\frac{s_n(t)}{c_n(t)}\tilde{H}\right)$$
 (a)

where

$$c_n(t) = 1 + \sum_{k;2 \le 2k \le n} \sum_{1 \le i_1 < i_2 < \dots < i_{2k} \le n} (t_{i_1}/2) \cdots (t_{i_{2k}}/2)$$
 (b)

and

$$s_n(t) = 2 \sum_{k; 1 \le 2k+1 \le n} \sum_{1 \le i_1 < i_2 < \dots < i_{2k+1} \le n} (t_{i_1}/2) \cdots (t_{i_{2k+1}}/2)$$
 (c)

For t > 0, we devide the interval [0, t] into N equal segments for every positive integer N. We put $\triangle t = t/N$. Then we have

$$c_N(\triangle t) = \sum_{k; 0 \le 2k \le N} a_k(t/2)^{2k}, \quad s_N(\triangle t) = 2 \sum_{k; 1 \le 2k+1 \le N} b_k(t/2)^{2k+1},$$

where the coefficients are given by

$$a_k = \frac{1}{(2k)!} \cdot \left(1 - \frac{1}{N}\right) \cdot \left(1 - \frac{2}{N}\right) \cdots \left(1 - \frac{2k-1}{N}\right)$$

and

$$b_k = \frac{1}{(2k+1)!} \cdot \left(1 - \frac{1}{N}\right) \cdot \left(1 - \frac{2}{N}\right) \cdots \left(1 - \frac{2k}{N}\right)$$

It is easy to see the coefficients of $c_N(\triangle t)$ and $s_N(\triangle t)$ converges as $N \to \infty$ and the limits are

$$\lim_{N \to \infty} c_N(\triangle t) = \cosh \frac{t}{2}, \quad \lim_{N \to \infty} s_N(\triangle t) = 2 \sinh \frac{t}{2}$$

Thus, we have

Theorem

The N-itereted product converges

$$\lim_{N \to \infty} e^{(t/N)\tilde{H}} * \cdots * e^{(t/N)\tilde{H}} = \frac{1}{\cosh \frac{t}{2}} e^{2\tilde{H} \tanh \frac{t}{2}}$$

where
$$\tilde{H} = H/(i\hbar)$$
 and $H = -\frac{x^2}{2} + \frac{y^2}{2}$.

*-exponential for general case

We consider the *-exponential function of $H = ax^2 + 2bxy + cy^2$, $a, b, c \in \mathbb{C}$ with $D = b^2 - ac \neq 0$.

For this case we can show $H=2\sqrt{D}(-\frac{1}{2}w^2+\frac{1}{2}z^2)$, where w=px+qy, z=rx+sy and $\binom{p}{r}\binom{q}{s}\in SL(2,\mathbb{C})$.

Notice the commutator of w, z satisfies $[w, z] = i\hbar$. Then the trasformation fomula yields

Theorem

The *-exponential function of H is

$$e_*^{t\frac{H}{i\hbar}} = \frac{1}{\cosh\sqrt{D}t} \exp\left(\frac{H}{\sqrt{D}}\tanh\sqrt{D}t\right)$$

2.2. Star Hermite polynomials

We recall the following.

For any 2×2 complex matrix $\Lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix} \in M_2(\mathbb{C})$, we have a biderivation on polynomials

$$p_1 \overleftarrow{\partial} \Lambda \overrightarrow{\partial} p_2 = p_1 \left(\sum_{\alpha\beta} \lambda_{\alpha\beta} \overleftarrow{\partial}_{\alpha} \overrightarrow{\partial}_{\beta} \right) p_2 = \sum_{\alpha\beta} \lambda_{\alpha\beta} \partial_{\alpha} p_1 \partial_{\beta} p_2, \quad p_1, p_2 \in \mathcal{P}(\mathbb{C}^2).$$

We have

Proposition

For any $\Lambda \in M_2(\mathbb{C})$, the product $*_{\Lambda}$ is well-defined and associative on $\mathcal{P}(\mathbb{C}^2)$.

In this section, we consider the star product for the simple case where

$$\Lambda = \left(\begin{array}{cc} \rho & 0 \\ 0 & 0 \end{array} \right)$$

Then we see easily that the star product is commutative and explicitly given by $p_1 *_{\Lambda} p_2 = p_1 \exp\left(\frac{\mathrm{i}\hbar p}{2}\overleftarrow{\partial_{u_1}}\overrightarrow{\partial_{u_1}}\right)p_2$. This means that the algebra is essentially reduced to space of functions of one varible u_1 . Thus, we consider functions f(w), g(w) of one variable $w \in \mathbb{C}$ and we consider a commutative star product $*_{\tau}$ with complex parameter τ such that

$$f(w) *_{\tau} g(w) = f(w) e^{\frac{\tau}{2} \overleftarrow{\partial}_{w} \overrightarrow{\partial}_{w}} g(w)$$

A direct calculation gives

$$\exp_{*_{\tau}} itw = \exp(itw - (\tau/4)t^2)$$

We see the generating function of Hermite polynomilas gives

$$e^{\sqrt{2}tw-\frac{1}{2}t^2} = \sum_{n=0}^{\infty} H_n(w) \frac{t^n}{n!}$$

The left hand side is a star exponential function at $\tau=-1$, $\exp_{*_{-1}}(\sqrt{2}tw)=e^{\sqrt{2}tw-\frac{1}{2}t^2}$. Thus the expansion

$$\exp_{*_{-1}}(\sqrt{2}tw) = \sum_{n=0}^{\infty} \frac{1}{n!} (\sqrt{2}tw)_{*_{-1}}^{n}$$

yields

$$(\sqrt{2}w)_{*_{-1}}^{n} = H_{n}(w).$$

We define a star Hermite function by

$$\exp_{*_{\tau}}(\sqrt{2}tw) = \sum_{n=0}^{\infty} H_n(w, \tau) \frac{t^n}{n!}$$

The identity $\frac{d}{dt} \exp_{*_{\tau}} \sqrt{2}tw = \sqrt{2}w *_{\tau} \exp_{*_{\tau}} \sqrt{2}tw$ yields

$$\frac{\tau}{\sqrt{2}}H'_n(w,\tau) + \sqrt{2}w \, H_n(w,\tau) = H_{n+1}(w,\tau).$$

The exponetial law gives

$$\sum_{k+l=n} \frac{n!}{k! l!} H_k(w, \tau) *_{\tau} H_l(w, \tau) = H_n(w, \tau)$$

2.3. Star theta functions

For $\Re \tau > 0$ star exponential

$$\exp_{*} niw = \exp(niw - (\tau/4)n^2)$$

is rapidly decreasing with respect to n. Then we can consider summations for τ satisfying $\Re \tau > 0$

$$\sum_{n=-\infty}^{\infty} \exp_{*_{\tau}} 2niw$$

$$= \sum_{n=-\infty}^{\infty} \exp(2niw - \tau n^2) = \sum_{n=-\infty}^{\infty} q^{n^2} e^{2niw}, \quad (q = e^{-\tau}).$$

This is Jacobi's theta function $\theta_3(w, \tau)$.

Then we set star theta functions as

$$\theta_{1*_{\tau}}(w) = \frac{1}{i} \sum_{n=-\infty}^{\infty} (-1)^n \exp_{*_{\tau}}(2n+1)iw,$$

$$\theta_{2*_{\tau}}(w) = \sum_{n=-\infty}^{\infty} \exp_{*_{\tau}}(2n+1)iw,$$

$$\theta_{3*_{\tau}}(w) = \sum_{n=-\infty}^{\infty} \exp_{*_{\tau}} 2niw,$$

$$\theta_{4*_{\tau}}(w) = \sum_{n=-\infty}^{\infty} (-1)^n \exp_{*_{\tau}} 2niw$$

We see

$$\exp_{*_{\tau}} 2iw *_{\tau} \theta_{k*_{\tau}}(w) = \theta_{k*_{\tau}}(w), \quad (k = 2, 3)$$

$$\exp_{*_{-}} 2iw *_{\tau} \theta_{k*_{\tau}}(w) = -\theta_{k*_{\tau}}(w), \quad (k = 1, 4)$$

Then using $\exp_{*_{\tau}} 2iw = e^{-\tau}e^{2iw}$ and the product formula directly we have the quasi-periodicity

$$e^{2iw^{-\tau}}\theta_{k*_{\tau}}(w+i\tau) = \theta_{k*_{\tau}}(w), \quad (k=2,3)$$

$$e^{2iw-\tau}\theta_{k*_{\tau}}(w+i\tau) = -\theta_{k*_{\tau}}(w), \quad (k=1,4)$$

Star delta function

For τ with $\Re \tau > 0$, we consider

$$\delta_{*_{\tau}}(w-a) = \int_{-\infty}^{\infty} e_{*_{\tau}}^{it(w-a)} dt, \quad \forall a \in \mathbb{C}$$

We see easily for any star polynomial

$$p_*(w) = \sum_k a_k w_*^k, \quad a_k \in \mathbb{C}$$

it holds

$$p_*(w) *_{\tau} \delta_{*_{\tau}}(w - a) = p(a)$$

Using star delta functions we have

$$\theta_{1*_{\tau}} = \frac{1}{2} \sum_{n=-\infty}^{\infty} (-1)^n \delta_{*_{\tau}}(w + \frac{\pi}{2} + n\pi)$$

$$\theta_{2*_{\tau}} = \frac{1}{2} \sum_{n=-\infty}^{\infty} (-1)^n \delta_{*_{\tau}}(w + n\pi)$$

$$\theta_{3*_{\tau}} = \frac{1}{2} \sum_{n=-\infty}^{\infty} \delta_{*_{\tau}}(w + n\pi)$$

$$\theta_{4*_{\tau}} = \frac{1}{2} \sum_{n=-\infty}^{\infty} \delta_{*_{\tau}} (w + \frac{\pi}{2} + n\pi)$$

By a direct caluculation we have

$$\delta_{*_{\tau}}(w-a) = \frac{2\sqrt{\pi}}{\sqrt{\tau}} \exp\left(-\frac{1}{\tau}(w-a)^2\right)$$

We see $\theta_{3*}(w) = \theta_3(w, \tau)$ Then we have

$$\theta_3(w,\tau) = \sum_n \delta_{*_\tau}(w + n\pi)$$

$$= \frac{\sqrt{\pi}}{\sqrt{\tau}} \sum_n \exp\left(-\frac{1}{\tau}(w + n\pi)^2\right)$$

$$= \frac{\sqrt{\pi}}{\sqrt{\tau}} e^{-(1/\tau)w^2} \theta_3(2\pi w/i\tau, \pi^2/\tau)$$

2.3. Clifford algebra

In this subsection, we construct a Clifford algebra by means of the star exponential $\exp_* t(\frac{2u*v}{i\hbar})$ for certain K. In what follows, we decsribe a rough sketch of the construction.

We recall the star exponential for quadratic case.

Quadratic case

First we consider a generic point in $S_C(2)$

$$K = \begin{pmatrix} \tau' & \kappa \\ \kappa & \tau \end{pmatrix} \in \mathcal{S}_{\mathcal{C}}(2)$$

In the star product $*_{\kappa}$ algebra, we write the generator $u = u_1, v = u_2$ satisfying

$$[u,v]_{*_K} = -i\hbar$$

Then the star exponential of H = 2u * v is explicitly given at a general point K as

$$\exp_{*_{K}} t \left(\frac{2u * v}{i\hbar} \right)$$

$$= \frac{2e^{-t}}{\sqrt{D}} \exp \left[\frac{e^{t} - e^{-t}}{i\hbar D} \left((e^{t} - e^{-t})\tau u^{2} + 2\triangle uv + (e^{t} - e^{-t})\tau' v^{2} \right) \right]$$

where

$$D = \Delta^2 - (e^t - e^{-t})\tau'\tau, \ \Delta = e^t + e^{-t} - \kappa(e^t - e^{-t})$$

In the sequel, **we assum** $\tau' = 0$, that is, we take a point

$$K = \left(\begin{array}{cc} 0 & \kappa \\ \kappa & \tau \end{array}\right)$$

Then
$$\sqrt{D} = \triangle$$
.

We have a limit

$$\lim_{t \to -\infty} \varpi_{00} = \exp_{*_K} t \left(\frac{2u * v}{i\hbar} \right) = \frac{2}{1+\kappa} \exp\left(-\frac{1}{i\hbar(1+\kappa)} (2uv - \frac{\tau}{1+\kappa} u^2) \right) \tag{13}$$

which we call a **vacuum**. In fact, we have

Lemma

i)
$$\varpi_{00} *_{\kappa} \varpi_{00} = \varpi_{00}$$

ii)
$$v *_{K} \varpi_{00} = \varpi_{00} *_{K} u = 0.$$

Putting $t = \pi i$, we have the identity

$$\exp_{*_{K}} \pi i \left(\frac{2u * v}{i\hbar} \right) = 1 \tag{14}$$

Using

$$v *_{\kappa} (u *_{\kappa} v) = (v *_{\kappa} u) *_{\kappa} v = (u *_{\kappa} v + i\hbar) *_{\kappa} u$$

we see that the star exponential satisfies

$$v *_{\kappa} \exp_{*_{\kappa}} t \left(\frac{2u * v}{i\hbar} \right) = \exp_{*_{\kappa}} t \left(\frac{2v * u}{i\hbar} \right) *_{\kappa} v$$
$$= \exp_{*_{\kappa}} t \left(\frac{2u * v + 2i\hbar}{i\hbar} \right) *_{\kappa} v$$
$$= e^{2t} \exp_{*_{\kappa}} t \left(\frac{2u * v}{i\hbar} \right) *_{\kappa} v$$

Then the integral $\frac{1}{2}\int_{-\infty}^{0}\exp_{*_{K}}t(\frac{2v*u}{i\hbar})dt$ converges and then we define

$$\frac{1}{2} \int_{-\infty}^{0} \exp_{*_{K}} t \left(\frac{2v * u}{i\hbar} \right) dt = (v *_{K} u)_{+}^{-1}$$
 (15)

and

$$\mathring{v} = u *_{K} (v *_{K} u)_{+}^{-1}. \tag{16}$$

Then we have

Lemma

The element \hat{v} is the right inverse of v satisfying

$$v *_{K} \overset{\circ}{v} = 1, \quad \overset{\circ}{v} *_{K} v = 1 - \varpi_{00}$$

Now we fix an integer l. By putting

$$t = t_l = \frac{\pi i}{2^l}$$

we obtain 2^l roots of the unity

$$\Omega_{l} = \exp_{*_{K}} \frac{\pi i}{2^{l}} \left(\frac{2u * v}{i\hbar} \right), \ \varpi_{l} = \exp 2 \left(\frac{\pi i}{2^{l}} \right)$$
 (17)

such that

$$\Omega_{l*_{K}}^{2^{l}} = \underbrace{\Omega_{l} *_{K} \cdots *_{K} \Omega_{l}}_{2^{l}} = 1, \ \varpi_{l}^{2^{l}} = 1$$

Then we have

Lemma

These satisfy

$$\Omega^k_{l*_K} *_{_K} u^m_{*_K} *_{_K} \varpi_{00} *_{_K} v^m_{*_K} = \varpi^{km}_l u^m_{*_K} *_{_K} \varpi_{00} *_{_K} v^m_{*_K}$$

Now we take appropriate complex numbers $a_0, a_1, \cdots, a_{2^l-1}$ so that an element

$$E = \sum_{k=0}^{2^{l}-1} a_k \Omega_{l*_K}^k$$

satisfies the identies

$$E *_{\kappa} u_{*_{\kappa}}^{m} *_{\kappa} \varpi_{00} *_{\kappa} v_{*_{\kappa}}^{m}$$

$$= \begin{cases} *_{\kappa} u_{*_{\kappa}}^{m} *_{\kappa} \varpi_{00} *_{\kappa} v_{*_{\kappa}}^{m} & \cdots 0 \le m \le 2^{l-1} - 1 \\ 0 & \cdots 2^{l-1} \le m \le 2^{l} - 1 \end{cases}$$

We see this is equivalent to

$$\sum_{k=0}^{2^{l}-1} a_{k} \varpi_{l}^{km} = \left\{ \begin{array}{l} 1 \cdots 0 \leq m \leq 2^{l-1} - 1 \\ 0 \cdots 2^{l-1} \leq m \leq 2^{l} - 1 \end{array} \right.$$

The complex numbers $a_0, a_1, \dots, a_{2^{l}-1}$ are uniquely determined by these equations. Then we have

Lemma

The element E satisfies

$$E *_{\kappa} E = 1$$

and the element F = 1 - E satisfies

$$F *_{K} F = 1, E *_{K} F = F *_{K} E = 0$$

Further we have

Lemma

$$E *_{_{K}} (v)^{2^{l-1}}_{*_{_{K}}} = (v)^{2^{l-1}}_{*_{_{K}}} *_{_{K}} F, \quad (\mathring{v})^{2^{l-1}}_{*_{_{K}}} *_{_{K}} F = E * (\mathring{v})^{2^{l-1}}_{*_{_{K}}}$$
 where $(v)^{2^{l-1}}_{*_{_{K}}} = \underbrace{v *_{_{K}} \cdots *_{_{K}} v}_{2^{l-1}}$ and $(\mathring{v})^{2^{l-1}}_{*_{_{K}}} = \underbrace{\mathring{v} *_{_{K}} \cdots *_{_{K}} \mathring{v}}_{2^{l-1}}$

Now we set

$$\xi = E *_{\kappa} (v)^{2^{l-1}}_{*_{\kappa}}, \ \eta = (\mathring{v})^{2^{l-1}}_{*_{\kappa}} *_{\kappa} F$$

Then we have

Theorem

The elements ξ and η of the $*_{\kappa}$ product algebra satisfies the identities

$$\xi *_{_K} \xi = \eta *_{_K} \eta = 0$$

$$\xi *_{\scriptscriptstyle{K}} \eta + \xi *_{\scriptscriptstyle{K}} \eta = 1$$

- [OM] H. Omori, Y. Maeda, *Quantum Calculus (in Japanese)*, Springer, 2004
- [TY] Tomihisa T. and Yoshioka A., *Star Products and Star Exponentials*, J. Geometry and Symmetry in Physics, **19** (2010) 99–111.
- [YM] Yoshioka A., T. Matsumoto, *Path integral for Star Exponential functons of quadratic forms*, In: Geometry, Integrability and Quantization. I. M. Mladenov, G. L. Naber (Eds), **4**, Coral Press Scientific Publishing, Sofia 2003, pp 330–340,

