
A COMPARISON BETWEEN TWO DE RHAM COMPLEXES IN

DIFFEOLOGY

KATSUHIKO KURIBAYASHI

Abstract. There are two de Rham complexes in diffeology. The original one

is due to Souriau and the other one is the singular de Rham complex defined

by a simplicial differential graded algebra. We compare the first de Rham
cohomology groups of the two complexes within the Čech–de Rham spectral

sequence by making use of the factor map which connects the two de Rham
complexes. As a consequence, it follows that the singular de Rham cohomology
algebra of the irrational torus Tθ is isomorphic to the tensor product of the

original de Rham cohomology and the exterior algebra generated by a non-
trivial flow bundle over Tθ.

1. Introduction

The de Rham complex introduced by Souriau [13] is very beneficial in the study of
diffeology; see [6, Chapters 6,7,8 and 9]. In fact, the de Rham calculus is applicable
to not only diffeological path spaces but also more general mapping spaces. It is
worth mentioning that the de Rham complex is a variant of the codomain of Chen’s
iterated integral map [3]. While the complex is isomorphic to the usual de Rham
complex if the input diffeological space is a manifold, the de Rham theorem does
not hold in general.

In [11], we introduced another cochain algebra called the singular de Rham com-
plex via the context of simplicial sets. It is regarded as a variant of the cubic de
Rham complex introduced by Iwase and Izumida in [9] and a diffeological counter-
part of the singular de Rham complex in [1, 15, 16].

An advantage of the new complex is that the de Rham theorem holds for every
diffeological space. Moreover, the singular de Rham complex enables us to construct
the Leray–Serre spectral sequence and the Eilenberg–Moore spectral sequence in
the diffeological setting; see [11, Theorems 5.4 and 5.5]. Furthermore, there exists
a natural morphism α : Ω(X) → A(X) of differential graded algebras from the
original de Rham complex Ω(X) due to Souriau to the new one A(X) such that the
integration map from Ω(X) to the cubic cochain complex of X introduced in [6,
Chapter 6] factors through α up to chain homotopy. Thus the map α is called the
factor map. It is important to mention that the idea of cubic differential forms on
a diffeological space in [9, Definition 4.1] is a starting point for our consideration of
diffeological de Rham theory.

The result [11, Theorem 2.4] asserts that the factor map is a quasi-isomorphism
of cochain algebras if X is a manifold, a finite dimensional smooth CW complex
or a parametrized stratifold; see [8, 9] and [10] for a smooth CW complex and
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a stratifold, respectively. Moreover, the factor map α induces a monomorphism
H(α) : H1(Ω(X)) → H1(A(X)) for every diffeological space X; see [11, Proposition
6.11]. We are interested in a geometric interpretation of the difference between the
two de Rham cohomology groups.

The aim of this manuscript is to compare the first de Rham cohomology groups
for the complexes A(X) and Ω(X) within the Čech–de Rham spectral sequence [7]
by means of the factor map α; see the paragraph before Theorem 2.3 for details. In
particular, it is shown that the first singular de Rham cohomology for the irrational
torus Tθ is isomorphic to the direct sum of the original one and the group of
equivalence classes of flow bundles over Tθ with connection 1-forms; see Corollary
2.5. As a consequence, we see that, as an algebra, the singular de Rham cohomology
H∗(A(Tθ)) is isomorphic to the tensor product of the original de Rham cohomology
and the exterior algebra generated by a flow bundle over Tθ; see Corollary 2.6.

In the following remark, we compare the irrational torus Tθ and the two dimen-
sional torus T2 from homotopical and homological points of view in diffeology.

Remark 1.1. There exists a diffeological bundle of the form R → T2 p→ Tθ whose
fibre is contractible; see [6, Chapter 8]. It follows from the smooth homotopy exact
sequence of the bundle that the projection p induces isomorphisms

πD
1 (Tθ) ∼= πD

1 (T2) ∼= π1(T2) ∼= Z⊕2 and πD
i (Tθ) ∼= πD

i (T2) ∼= πi(T2) = 0

for i ≥ 2. Here πD
i ( ) and πi( ) denote the smooth homotopy group functor and

the usual homotopy functor, respectively; see [6, Chapter 5] and [4, 3.1] for the
smooth homotopy group. However, the two tori are not homotopy equivalent to
each other. This follows from the result that the original de Rham cohomology is
a homotopy invariant for diffeological spaces. In fact, the de Rham cohomology
groups of Tθ and T2 are not isomorphic to each other; see [6, 6.88]. We observe
that H1(Ω(Tθ)) ∼= R; see [6, Exercise 119].

On the other hand, the singular de Rham cohomology H∗(A(Tθ)) is isomorphic
to H∗(A(T2)) as an algebra; see [11, Remark 2.9]. We stress that a non-trivial flow
bundle is in H∗(A(Tθ)) as mentioned above but not in H∗(A(T2)). In fact, each
flow bundle over a manifold is trivial because the fibre R is contractible and hence
the bundle has a smooth section; see [14, 6.7 Theorem].

In a more general setting, the singular de Rham complex connects with the
polynomial de Rham complex via quasi-isomorphisms; see [11, Corollary 3.5]. Thus
one might expect that rational (real) homotopy theory for non-simply connected
spaces (simplicial sets), for example [2, 5, 12], works well in developing the de Rham
calculus for diffeological spaces. We will pursue the topic in future work.

An outline for the article is as follows. In Section 2, we describe our main
theorem, Theorem 2.3, and its corollaries for the irrational torus. Section 3 is
devoted to proving the results. Section 4 deals with the injectivity of the edge map
of the Čech–de Rham spectral sequence.

2. The main theorem

We begin by recalling the definition of a diffeological space.

Definition 2.1. For a set X, a set DX of functions U → X for each open set U in
Rn and for each n ∈ N is a diffeology of X if the following three conditions hold:

(1) (Covering) Every constant map U → X for all open set U ⊂ Rn is in DX ;
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(2) (Compatibility) If U → X is in DX , then for any smooth map V → U from
an open set V ⊂ Rm, the composite V → U → X is also in DX ;

(3) (Locality) If U = ∪iUi is an open cover and U → X is a map such that
each restriction Ui → X is in DX , then the map U → X is in DX .

A pair (X,DX) consisting of a set and a diffeology is called a diffeological space.
We call an element of a diffeology DX a plot. Let (X,DX) be a diffeological space
and A a subset of X. The sub-diffeology DA on A is defined by the initial diffeology
for the inclusion i : A→ X; that is, p ∈ DA if and only if i ◦ p ∈ DX .

For a manifold M , let DM be the set of all smooth maps from open subsets of
Euclidean spaces to M . It is readily seen that DM is a diffeology of M . We call it
the standard diffeology of M .

Definition 2.2. Let (X,DX) and (Y,DY ) be diffeological spaces. A map f : X →
Y is smooth if for any plot p ∈ DX , the composite f ◦ p is in DY .

The original de Rham complex due to Souriau is recalled. Let (X,DX) be a
diffeological space. For an open subset U of Rn, let DX(U) be the set of plots with
U as the domain and Λ∗(U) = {h : U −→ ∧∗(⊕n

i=1Rdxi) | h is smooth} the usual
de Rham complex of the manifold U . Let Open denote the category consisting of
open subsets of Euclidean spaces and smooth maps between them. We can regard
DX( ) and Λ∗( ) as functors from Openop to Sets the category of sets.

A p-form is a natural transformation from DX( ) to Λ∗( ). Then the de Rham
complex Ω(X) is the cochain algebra of p-forms for p ≥ 0; that is, Ω(X) is the
direct sum of the modules

Ωp(X) :=

 Openop
DX

))

Λp

55

�� ��
�� ω Sets

∣∣∣∣∣∣ ω is a natural transformation


with the cochain algebra structure defined by that of Λ∗(U) pointwise.

We introduce another de Rham complex for a diffeological space, which is called
the singular de Rham complex. Let An := {(x0, ..., xn) ∈ Rn+1 |

∑n
i=0 xi = 1} be

the affine space equipped with the sub-diffeology of Rn+1 and (A∗
DR)• the simplicial

cochain algebra defined by (A∗
DR)n := Ω∗(An) for each n ≥ 0. Here we regard Rn+1

as a diffeological space endowed with the standard diffeology. For a diffeological
space (X,DX), let SD

• (X) denote the simplicial set defined by

SD
• (X) := {{σ : An → X | σ is a C∞-map}}n≥0.

The simplicial set and the simplicial cochain algebra (A∗
DR)• give rise to a cochain

algebra

Sets∆
op

(SD
• (X), (A∗

DR)•) :=

 ∆op

SD
• (X)

))

(A∗
DR)•

55

�� ��
�� ω Sets

∣∣∣∣∣∣∣ ω is a natural transformation


whose cochain algebra structure is defined by that of (A∗

DR)•. In what follows, we

call the complex A(X) := Sets∆
op

(SD
• (X), (A∗

DR)•) the singular de Rham complex
of X; see [11, Section 2] for fundamental properties of the cochain algebra. Observe
that the complex A(X) is a variant of the cubic de Rham complex in [9].

We recall the factor map α : Ω(X) → A(X) defined by α(ω)(σ) = σ∗(ω) which is
natural with respect to smooth maps between diffeological spaces; see [11, Section
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3.2]. As mentioned in the Introduction, if X is a manifold, then the factor map is
a quasi-isomorphism.

In order to describe our results, we further recall a generating family, a nebula,
a gauge monoid and the Čech–de Rham spectral sequence introduced by Iglesias-
Zemmour in [6, 7].

A subset GX of a diffeology of X is a generating family of the diffeology if for
any plot p : U → X and r ∈ U , there exists an open neighborhood V of r such that
the restriction P |V is a constant map or P |V = F ◦Q for some F : W → X in GX

and some smooth map Q : V →W ; see [6, 1.68].
Let (X,DX) be a diffeological space. Let GX be the generating family of DX

consisting of all plots whose domains are open balls in Euclidean spaces. We assume
that GX contains the set C∞(R0, X); see [6, 1.76]. Then we define the nebula NX

of X associated with GX to be the diffeological space

NX :=
⨿

φ∈GX

(
{φ} × dom(φ)

)
endowed with the sum diffeology, where dom(φ) denotes the domain of the plot φ.
We may write N (GX) for NX when expressing the generating family. It is readily
seen that the evaluation map ev : NX → X defined by ev(φ, r) = φ(r) is smooth.
The gauge monoid MX is a submonoid of the monoid of endomorphisms on the
nebula NX defined by

MX := {f ∈ C∞(NX ,NX) | ev ◦ f = ev and ♯Supp f <∞},

where Suppf := {φ ∈ G | f |{φ}×dom(φ) ̸= 1{φ}×dom(φ)}. In what follows, we denote
the monoid MX by M if the underlying diffeological space is clear from the context.

The original de Rham complex Ω∗(NX) is a left Mop-module whose actions are
defined by f∗ induced by endomorphisms f ∈ NX . Moreover, the complex Ω(NX)
is regarded as a two sided Mop-module for which the right module structure is
trivial. Then we have the Hochschild complex C∗,∗ = {Cp,q, δ, dΩ}p,q≥0 with

Cp,q = HomRMop⊗RM(RMop ⊗ (RMop)⊗p ⊗ RM,Ωq(NX)) ∼= map(Mp,Ωq(NX)),

where the horizontal map δ is the Hochshcild differential and the vertical map dΩ
is induced by the de Rham differential on Ω∗(NX); see [7, Subsection 8]. The hori-
zontal filtration F ∗ = {F j}j≥0 defined by F j = ⊕q≥jC

∗,q of the the total complex
Tot C∗,∗ gives rise to a first quadrant spectral sequence {ΩE∗,∗

r , dr} converging to
the Čech cohomology Ȟ(X) := HH∗(RMop,map(G,R)) with

Ep,q
2

∼= Hq(HHp(RMop,Ω(NX)), dΩ),

where HH∗(-) denotes the Hochschild cohomology; see [7, Subsections 9 and 16].
Observe that the differential dr is of bidegree (1 − r, r). This spectral sequence is
called the Čech–de Rham spectral sequence; see [7].

The same construction as that of the spectral sequence above is applicable to the
singular de Rham complex A(X). Then replacing the original de Rham complex
Ω(-) with A(-), we have a spectral sequence {AE∗,∗

r , dr}. The Poincaré lemma for
the complex A(-) holds; see [11, Theorem 2.4]. Then it follows that the target
of the spectral sequence for A(X) is also the Čech cohomology Ȟ(X). Thus the
naturality of the factor map α : A(X) → Ω(X) gives rise to a commutative diagram
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of isomorphisms

H1(Ω(X))⊕ ΩE
1,0
3

Θ
∼=

// H1(A(NX)M)⊕ AE
1,0
3

Ȟ1(X;R).
edge2

∼= 33gggggggggggggedge2

∼=kkVVVVVVVVVVVV

In fact, the edge homomorphism edge1 := ev∗ : H∗(Ω(X)) → ΩE
0,∗
2 = H∗(Ω(NX)M)

induced by the evaluation map ev : X → NX is an isomorphism; see [7, 6. Propo-
sition]. Moreover, the morphism α : Ω(X) → A(X) of cochain algebras induces a
map H(Tot(α)) between the total complexes which define the spectral sequences
above. Thus the naturality of the map α enables us to obtain a commutative
diagram
(2.1)

H∗(Ω(X))

H(α)

��

ev∗

∼=
// H∗(Ω(NX)M) = ΩE

0,∗
2

// //

f(α)2
��

ΩE
0,∗
∞

// //

f(α)∞
��

H∗(Tot C∗,∗)

H∗(Tot(α))

��

Ȟ∗(X).

edge2

∼=
jjVVVVV

edge2

∼=
tthhhhh

H∗(A(X))
ev∗

// H∗(A(NX)M) = AE
0,∗
2

// //
AE

0,∗
∞

// // H∗(Tot ′C∗,∗)

By degree reasons, we see that the surjective maps KE
0,1
2 → KE

0,1
∞ are isomor-

phisms and KE
1,0
3

∼= KE
1,0
∞ for K = Ω and A. Thus the map H∗(Tot(α)) yields

the homomorphism Θ which fits in the triangle. As a consequence, we see that the
map Θ is an isomorphism. Furthermore, the diagram (2.1) allows us to conclude
that the map H1(α) : H1(Ω(X)) → H1(A(X)) is injective; see the paragraph after
[11, Proposition 6.12].

In a particular case where a diffeological space X appears as the base space
of a diffeological bundle (see [6, Chapter 8]), we consider the injectivity of the

edge homomorphism edgei1 := (ev∗)i : Hi(A(X)) → Hi(A(NX)M) = AE
0,i
2 (X) for

i = 1, 2 in order to relate H∗(Ω(X)) to H∗(A(X)) in the Čech–de Rham spec-
tral sequence with the diagram (2.1). We observe that the restriction of the
map Θ mentioned above to H1(Ω(X)) is the composite of the monomorphism
H(α) : H1(Ω(X)) → H1(A(X)) and the map edge1. This follows from the com-
mutativity of the left square in the diagram (2.1). We recall that a smooth map
p : X → Y is a fibration in the sense of Christensen and Wu [4, Definition 4.7] if
SD(p) : SD

• (X) → SD
• (Y ) is a fibration in the category of simplicial sets.

Theorem 2.3. Let X be a connected diffeological space which admits a fibration

of the form F →M
π→ X in which M is a connected manifold and F is connected

diffeological space. Then (1) the edge homomorphism edge11 is injective, and (2) the
dimension of the kernel of edge21 is less than or equal to dimH1(A(F )).

Example 2.4. 1) Any diffeological bundle with fibrant fibre is a fibration; see [4,
Proposition 4.28].
2) Let G be a diffeological group (see [6, Chapter 7]) and H a subgroup of G with

the sub-diffeology. Then we have a fibration of the form H → G
π→ G/H, where π

is the canonical projection and G/H is endowed with the quotient diffeology; see
[6, 8.15] and [4, Proposition 4.30]. Thus if G is a Lie group and H is a connected
subgroup which is not necessarily closed, then the fibration π : G→ G/H with fibre
H satisfies the condition in Theorem 2.3. Assume further that H1(A(H)) = 0. By

virtue of Theorem 2.3, we see that the map edgei1 is injective for i = 1 and 2.
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Before describing corollaries, we recall results on principal R-bundles (flow bun-
dles) in [7]. For a diffeological space X, we consider a Hochschild cocycle τ : M →
Ω0(NX) = C∞(NX ,R) in Ker{δ : C1,0 → C2,0}. Then an M-action Aτ on NX ×R
is defined by Aτ (b, s) = (A(b), s + τ(A)(b)). The action gives rise to a principal
R-bundle of the form Yτ := NX ×τ R → NX/M ∼= NX/ev ∼= X over X, where
Yτ is the quotient space of NX × R by the M-action; see [6, 1.76]. More precisely,
the equivalence relation is generated by the binary relation which the M-action Aτ

induces. Observe that the second diffeomorphism is given by the evaluation map
ev : NX → X.

Let Fl(X) be the abelian group of equivalence classes of flow bundles. The sum
is given by the quotient of the direct sum of two flow bundles by the anti-diagonal
action of R; see [7, Proposition 2]. Then the map ΩE

1,0
1 → Fl(X) defined by

assigning the equivalence class of the flow bundle Yτ → X to [τ ] is an isomorphism.

Moreover, we see that ΩE
1,0
2 = Ker{dΩ : ΩE

1,0
1 → ΩE

1,1
1 } is isomorphic to Fl•(X)

the subgroup of Fl(X) consisting of all equivalence classes of flow bundles over X
with connection 1-forms; see [6, 8.37].

Thanks to the injectivity of the edge homomorphism in Theorem 2.3 and a result
on flow bundles mentioned above, we have

Corollary 2.5. Let Tθ be the irrational torus. Then the map Θ in the triangle

above gives rise to an isomorphism Θ : H1(Ω(Tθ))⊕ Fl•(Tθ)
∼=→ H1(A(Tθ)).

We recall the diffeomorphism ψ : R/(Z + θZ) → Tθ defined by ψ(t) = (0, e2πit)
in [6, Exercise 31, 3)]. Then there exist isomorphisms Ω(Tθ) ∼= Ω(R/(Z + θZ)) ∼=
(∧∗(R), d ≡ 0) which are induced by ψ and the subduction R → R/(Z + θZ),
respectively; see [6, Exercise 119]. On the other hand, we see that H∗(A(Tθ)) ∼=
∧(t1, t2) as an algebra, where deg ti = 1; see the proof of Corollary 2.5. Thus the
corollary above yields the following result.

Corollary 2.6. There exists an isomorphism H∗(A(Tθ)) ∼= ∧(Θ(t),Θ(ξ)) of alge-
bras, where t ∈ H∗(Ω(Tθ)) ∼= ∧(t) is a generator and ξ ∈ Fl•(Tθ) ∼= R is a flow
bundle over Tθ with a connection 1-form, which is a generator of the group Fl•(Tθ).

3. Proofs of Theorem 2.3 and Corollary 2.5

We begin by considering invariant differential forms on nebulae of dfiffeological
spaces.

Lemma 3.1. Let π : Y → X be a subduction and GY a generating family of
Y . Then the map π∗ : A(NX) → A(NY ) induced by π gives rise to a map π∗ :
A(NX)MX → A(NY )

MY , where the nebula NX is defined by the generating family
π∗GY := {π ◦ ϕ | ϕ ∈ GY } induced by GY .

Proof. For ω ∈ A∗(NX)MX and η ∈ MY , we show that η · π∗(ω) = π∗(ω). Let
σ : An → NY be an element in SD

n (NX), namely a smooth map from An. Since An

is connected, it follows that the image of σ is contained in a component {ϕ}×dom(ϕ)
of NY . We define a smooth map η : NX → NX by η(π ◦ ϕ, u) = (π ◦ ϕ′, η(u))
and by the identity maps in other components, where η(ϕ, u) = (ϕ′, η(u)). Since
ϕ(u) = ev(η(ϕ, u)) = ev(η(ϕ′, η(u))) = ϕ′(η(u)), it follows that ev◦η = η and hence
η ∈ MX . Observe that π ◦ η ◦ σ = η ◦ π ◦ σ. Thus we see that (η · π∗(ω))(σ) =
π∗(ω)(η ◦σ) = ω(π ◦ ησ) = ω(η ◦π ◦σ) = (η ·ω)(π ◦σ) = ω(π ◦σ) = π∗(ω)(σ). This
completes the proof. □
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Under the assumption in Theorem 2.3, we have a commutative diagram

(3.1) H∗(A(X))
ev∗=edge1 //

H∗(A(π))
��

H∗(A(NX)MX )

π∗

��

= AE
0,∗
2 (X)

H∗(A(M))
ev∗

// H∗(A(NM )MM ) = AE
0,∗
2 (M)

H∗(Ω(M))

H(α) ∼=

OO

ev∗

∼= // H∗(Ω(NM )MM )

f(α)2

OO

= ΩE
0,∗
2 (M).

Since M is a manifold, it follows from [11, Theorem 2.4] that H(α) is an isomor-
phism. Observe that, in constructing the spectral sequences, we use the generating
family GM of M consisting of all plots whose domains are open balls in Euclidean
spaces.

(I) On the map H∗(A(π)): By assumption, the map π : M → X is a fibration
with connected fibre. Therefore, the result [11, Theorem 5.4] enables us to obtain
the Leray–Serre spectral sequence {LSE

∗,∗
r , dr} for the fibration. We consider the

edge homomorphism edgei : Hi(A(X))
∼=→ LSE

i,0
2 → LSE

i,0
∞ → Hi(A(M)). Observe

that the map edgei is nothing but the map Hi(A(π)).

(I)-(1): For degree reasons, we see that LSE
1,0
2

∼= LSE
1,0
∞ in the definition of the

edge map. Thus edge1 is injective and then so is H1(A(π)).
(I)-(2): We have a commutative diagram

H2(A(X))

H∗(A(π))
��

∼= //
LSE

2,0
2

∼= // Im d0,12 ⊕ LSE
2,0
3

pr2
��

H2(A(M)) LSE
2,0
∞

j
oo

LSE
2,0
3 ,

∼=oo

where pr2 denoted the projection into the second factor and j is the inclusion of
the filtration which appears in the spectral sequence. Therefore, it follows that
KerH2(A(π)) ∼= Im d0,12 .

(II) The injectivity of f(α)2: Recall the commutative diagram (2.1). By degree

reasons, we see that the elements in ΩE
0,1
2 are non-exact. Since M is a manifold,

it follows from the argument in [7, Section 20] that ΩE
1,0
2 is trivial and then each

element in ΩE
0,2
2 is also non-exact; that is, all elements in ΩE

0,2
2 are not in the

image of the differential d2 : ΩE
1,0
2 → ΩE

0,2
2 .

This yields that the upper-left hand side surjective map in (2.1) is bijective. It
turns out that the map f(α)2 is injective for ∗ = 1, 2 and then the map (ev∗)i :

Hi(A(M)) → Hi(A(NM )MM ) = AE
0,i
2 (M) is injective for i = 1, 2.

Proof of Theorem 2.3. Consider the commutative diagram (3.1). The injectivity of
the maps described in (I)-(1) and (II) implies the result (1). Moreover, by (II), we
see that Keredge21 ⊂ KerH2(A(π)). The argument (I)-(2) enables us conclude that

dimKer edge21 ≤ dimKerH2(A(π)) = dim Im d0,12 ≤ dimH1(A(F )). We have the
result (2). □

Before proving Corollary 2.5, we recall a result on the Čech cohomology of a dif-
feological torus. Let TK be a diffeological torus, namely a quotient Rn/K endowed
with the quotient diffeology, where K is a discrete subgroup of Rn.
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Proposition 3.2. ([7, Corollary]) One has an isomorphism Ȟ∗(TK ,R) ∼= H∗(K;R).
Here H∗(K;R) denotes the ordinary cohomology of K.

Proof of Corollary 2.5. Let Tθ be the irrational torus. By definition, Tθ is the
diffeological space T 2/Sθ endowed with the quotient diffeology, where Sθ is the
subgroup {(e2πit, e2πiθt) ∈ T 2 | t ∈ R} which is diffeomorphic to R as a Lie group.
Then we have a principal R-bundle of the form R → T 2 → Tθ which is a diffeological
bundle; see [6, 8.11 and 8.15]. Therefore, the Leray–Serre spectral sequence [11,
Theorem 5.4] for the bundle allows us to conclude that H∗(A(Tθ)) ∼= H∗(A(T 2)) ∼=
H∗(Ω(T 2)) ∼= ∧(t1, t2), where deg ti = 1. In particular, H1(A(Tθ)) ∼= R⊕ R.

Moreover, by virtue of Theorem 2.3, we see that the map edge1 : H1(A(Tθ)) →
AE

0,1
2 is a monomorphism. Since Tθ is isomorphic to a diffeological torus of the form

R/(Z+θZ) ; see [6, Exercise 31, 3)], it follows from Proposition 3.2 that Ȟ∗(Tθ,R) ∼=
H∗(Z+θZ;R) ∼= H∗(Z⊕Z;R). This yields that AE

0,1
2 ⊕AE

1,0
3

∼= Ȟ1(Tθ,R) ∼= R⊕R.
The injectivity of the edge map above implies that AE

1,0
3 (Tθ) = 0 and hence the

map Θ induces an isomorphism H1(Ω(Tθ))⊕ ΩE
1,0
3

∼=→ H1(A(Tθ)). It follows from

[7, Section 19] that ΩE
1,0
2

∼= Fl•(Tθ). Furthermore, we have H2(Ω(Tθ)) = 0; see [6,

Exercise 119]. It turns out that ΩE
1,0
2

∼= ΩE
1,0
3 . We have the result. □

4. From the second singular de Rham cohomology to the Čech
cohomology

We define the edge homomorphism edge : Hi(A(X)) → Ȟi(X) by the composite
of the maps in the lower sequence in (2.1). For degree reasons, we see that each

element in AE
0,1
2 the E2-term of the Čech–de Rham spectral sequence is non-exact.

Then, the map edge : H1(A(X)) → Ȟ1(X) is injective under the same assumption
as in Theorem 2.3. In order to consider the edge map in degree 2, we generalize
Lemma 3.1 introducing a generating family of a multi-set. Let π : Y → X be a
subduction and GY a generating family of Y . We define Gmulti

X by the multi-set⨿
ϕ∈GY

{π ◦ ϕ}.

Proposition 4.1. Under the same assumption as in Theorem 2.3, if H1(A(F )) =
0, then the edge map H2(A(X)) → Ȟ2(X) is injective, where Ȟ2(X) is the Čech
cohomology associated with Gmulti

X .

Remark 4.2. In the proof of [7, Proposition in §5], we need the condition (*) for
a generating family GX that for any plot P : U → X and each r ∈ U , there
exists a plot q : B → Y in GX such that q = P |B . To this end, we have chosen
the generating family GY consisting of all plots whose domains are open balls in
Euclidian spaces. Let Gmulti

X be the generating multi-family mentioned above. Then
Gmulti
X also satisfies the condition (*). We observe that the inclusion π∗GY → Gmulti

X

induces a diffeomorphism N (π∗GY )/ev
∼=→ N (Gmulti

X )/ev between nebulae and hence

the evaluation map gives rise to a diffeomorphism N (Gmulti
X )/ev

∼=→ X; see [6, 1.76].

With the notation in Remark 4.2, for a map η in the monoid MY , we define
η(π ◦ ϕ, r) = (π ◦ ψ, η(r)), where η(ϕ, r) = (ψ, η(r)). Then we have a morphism
π′ : MY → MX of monoids defined by π′(η) = η. Moreover, we define

π̃ : Cp,q
X := map(Mp

X ,K
q(NX)) → map(Mp

Y ,K
q(NY )) =: Cp,q

Y
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for K = Ω and A by π̃(φ)(η1, .., ηp) = π∗(φ(η1, ..., ηp)). A straightforward calcu-

lation shows that π̃ is compatible with the differentials dΩ, dA and the Hochschild
differential δ. Thus we have

Proposition 4.3. The map π̃ induces a morphism of spectral sequences {f(π̃)r} :
{KE∗,∗

r (X), dr} → {KE∗,∗
r (Y ), dr} for K = Ω and A.

We are ready to prove the main result in this section.

Proof of Proposition 4.1. Suppose that there exists a non-zero element x in the
kernel of the map edge : H2(A(X)) → Ȟ2(X). We recall the commutative diagram

(3.1). For the map π∗ in the right-hand side, we see that π∗ = f(π̃)0,∗2 . This
follows from the construction the morphism {f(π̃)r} of the spectral sequence for
the singular de Rham complex in Proposition 4.3.

The arguments in (I)-(2) and (II) before the proof of Theorem 2.3 enable us

to deduce that ev∗(x) ∈ AE
0,2
2 (X) and f(π̃)2(ev

∗(x)) ∈ AE
0,2
2 (M) are non-zero

elements. We observe that H2(A(π)) is injective because H1(A(F )) = 0 by as-
sumption. Since x is in the kernel, it follows that ev∗(x) is a d2-exact element; that
is, the element ev∗(x) is in the image of the differential d2 in the E2-term of the
spectral sequence. The naturality of f(π̃)2 implies that f(π̃)2(ev

∗(x)) is also d2-
exact. Then, the commutativity of the diagram (2.1) obtained by replacing X with

M implies that the non-zero element (ev∗ ◦H(α)−1 ◦H∗(A(π)))(x) in ΩE
0,2
2 (M) is

d2-exact. For degree reasons, we see that d1,02 is nontrivial and then so is ΩE
1,0
2 .

On the other hand, sinceM is a manifold, it follows that ΩE
1,0
1 (M) ∼= FL•(M) =

0. In fact, the fibre R of a flow bundle is contractible and then the bundle admits
a smooth global section; see [14, 6.7 Theorem] for a differentiable approximation of

a section. Thus, we have ΩE
1,0
2 = Ker{Ωd : ΩE

1,0
1 (M) → ΩE

1,1
1 (M)} = 0, which is

a contradiction. This completes the proof. □
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