# Toward Riemannian diffeology

Katsuhiko Kuribayashi (Shinshu University)

Joint work with Keiichi Sakai and Yusuke Shiobara KSS '25: Toward Riemannian diffeology, arXiv:2505.04170

> 12–16 May 2025, 9<sup>th</sup> EACAT Hebei Normal University

# §1. Diffeology and a diffeological space

## Definition 1.1 (Souriau '80)

For a set X, a set  $\mathcal{D}$  of functions  $U \to X$  for each open set U in  $\mathbb{R}^n$  and for each  $n \in \mathbb{N}$  is a *diffeology* of X if the following three conditions hold:

- (i) (Covering) Every constant map U o X for all open set  $U \subset \mathbb{R}^n$  is in  $\mathcal{D}$ .
- (ii) (Compatibility) If  $U \to X$  is in  $\mathcal{D}$ , then for any smooth map  $V \to U$  from an open set  $V \subset \mathbb{R}^m$ , the composite  $V \to U \to X$  is also in  $\mathcal{D}$ .
- (iii) (Locality) If  $U = \bigcup_i U_i$  is an open cover and  $U \to X$  is a map such that each restriction  $U_i \to X$  is in  $\mathcal{D}$ , then the map  $U \to X$  is in  $\mathcal{D}$ .

An element of a diffeology  $\mathcal{D}$  is called a *plot* of X. A *diffeological space*  $(X, \mathcal{D})$  consists of a set X and a diffeology  $\mathcal{D}$  of X.

## Definition 1.2

Let  $(X, \mathcal{D}^X)$  and  $(Y, \mathcal{D}^Y)$  be diffeological spaces. A map  $X \to Y$  is *smooth* if for any plot  $p \in \mathcal{D}^X$ , the composite  $f \circ p$  is in  $\mathcal{D}^Y$ .

FACT : The category of diffeological spaces **Diff** is complete, cocomplete and cartesian closed.

# Examples

- Let M be a manifold. The underlying set M and the standard diffeology  $\mathcal{D}^M_{\mathrm{std}}$  give rise to a diffeological space  $m(M) \coloneqq (M, \mathcal{D}^M_{\mathrm{std}})$ , where  $\mathcal{D}^M_{\mathrm{std}}$  is defined to be the set of all smooth maps  $U \to M$  from domains to M in the usual sense.
- For  $Y \in \text{Top}$ , the diffeological space C(Y) consists of the underlying set Y and the diffeology  $\mathcal{D}^Y \coloneqq \{\text{continuous maps } P \colon U_P \to Y\}.$
- For  $(X, \mathcal{D}^X) \in \mathsf{Diff}$ , the topological space D(X) consists of the underlying set X and the topology  $\mathcal{O}$  defined by

 $\mathcal{O} \coloneqq \{ O \subset X \mid P^{-1}(O) \text{ is an open set of } U_P \text{ for each } P \in \mathcal{D}^X \}$ 

which is called the D-topology of X.

# Overview of Diffeology (What can we do with diffeology?)

- The de Rham theory for diffeology (P. Iglesias-Zemmour '13, K. '20)
- Sheaf theory (Nezhad–Ahmadi '19, Krepski–Watts–Wolbert '24)
- (Abstract) Homotopy theory (Christensen–Wu '14, Shimakawa–Yoshida– Haraguchi '18, Kihara '19 '23,)
- Rational homotopy theory for non-simply connected diffeological spaces (with local systems in the sense of Gómez-Tato-Halperin-Tanré) (K. '24)

There exists a commutative diagram of functors



# Riemannian notions?

§2. A framework of Riemannian diffeology By using the functor  $\widehat{T}_2$ : Euc  $\rightarrow$  Diff defined by

$$\widehat{T}_2(U)\coloneqq U imes \mathbb{R}^{\dim U} imes \mathbb{R}^{\dim U},$$

we have the functor  $T_2 := \mathbb{L}\mathcal{Y}\widehat{T}_2$ : Diff  $\to$  Diff via the left Kan extension along the Yoneda functor  $\mathcal{Y}$ . Observe that as a diffeological space,

$$T_2(X)\cong \operatorname*{colim}_{P\in\mathcal{D}}(U_P imes \mathbb{R}^{\dim U_P} imes \mathbb{R}^{\dim U_P}).$$



#### Definition 2.1

A map  $g: T_2(X) \to \mathbb{R}$  is a *weak Riemannian metric* on X if the composite  $g \circ \pi_{\widehat{T}_2(U_P)}$  is a symmetric and positive covariant 2-tensor on  $U_P$  for each plot P of X, where  $\pi_{\widehat{T}_2(U_P)}$  denotes the canonical map  $\widehat{T}_2(U_P) \to T_2(X)$ .

#### Remark 2.2

## If M is a manifold, then $T_2(M) \cong T(M) \times_M T(M)$ as a diffeological space.

A weak Riemannian metric  $g: T_2(X) \to \mathbb{R}$  on a diffeological space X gives a pseudodistance d of X by applying the usual procedure; that is, the pseudodistance  $d: X \times X \to \mathbb{R}_{\geq 0} \cup \{\infty\}$  is defined by

$$d(x,y) = \inf_{\gamma \in \mathsf{Path}(X;x,y)} \ell(\gamma), \quad \text{where} \quad \ell(\gamma) = \int_0^1 (g(\gamma)_t(1,1))^{\frac{1}{2}} dt \quad (2)$$

and  $d(x, y) = \infty$  if there is no smooth path connecting x and y. Here Path(X; x, y) denotes the set of smooth paths  $\gamma$  with  $\gamma(0) = x$  and  $\gamma(1) = y$ .

## Theorem 2.3 (KSS '25)

Let  $d: X \times X \to \mathbb{R}_{\geq 0}$  be the pseudodistance on a diffeological space X defined by a weak Riemannian metric  $g: T_2(X) \to \mathbb{R}$ . Then the D-topology of X is finer than the topology  $\mathcal{O}_d$  defined by d; that is,

the D-topology of  $X \supset \mathcal{O}_d$ .

In particular, the function  $d: D(X) imes D(X) o \mathbb{R}$  is continuous.

# The definiteness of a weak Riemannian metric

Let  $(X, \mathcal{D})$  be a diffeological space. A subset  $\mathcal{G} \subset \mathcal{D}$  is a *generating family* of  $\mathcal{D}$  if each plot  $P \in \mathcal{D}$  locally factors through an element  $Q \in \mathcal{G}$ ; that is,

$$P|_W = Q \circ h$$
 for some smooth  $h: W o \operatorname{dom}(Q)$ , an open subset  $W \subset \operatorname{dom}(P).$ 

 $\mathcal{G}_{\text{atlas}} \coloneqq \{i_{\lambda} \circ \varphi_{\lambda}^{-1} \colon \varphi_{\lambda}(V_{\lambda}) \to M \mid i_{\lambda} \text{ is the inclusion, } \lambda \in \Lambda\}$  with the atlas  $\{(V_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$  and the set of immersions  $\mathcal{G}_{\text{imm}} \coloneqq \{\text{immersions } f \colon U \hookrightarrow M\}$  are generating families of the standard diffeology  $\mathcal{D}_{\text{std}}^{M}$ .

#### Definition 2.4

A weak Riemannian metric  $g: T_2(X) \to \mathbb{R}$  is *definite* if there exists a generating family  $\mathcal{G}$  of the diffeology  $\mathcal{D}$  of X such that the symmetric positive covariant 2-tensor  $g(P) := g \circ \pi_{\widehat{T}_2(U_P)}$  is definite in the usual sense for every  $P \in \mathcal{G}$ .



8/14

# A Riemannian metric on a diffeological adjunction space

We consider the diffeological adjunction space  $X \coprod_A Y$  obtained by two *inductions i* and *j* into weak Riemannian diffeological spaces

$$(X,g_X) \xleftarrow{i} A \xrightarrow{j} (Y,g_Y).$$
 (4)

Here, i:A o X is induction  $\stackrel{\mathsf{def}}{\Longleftrightarrow} i$  is an inc. and  $P\in\mathcal{D}_A$  iff  $i\circ P\in\mathcal{D}_X$ .

Theorem 2.5 (KSS '25)

Suppose that the diagram  $T_2(A) \xrightarrow{j_*} T_2(Y)$  is commutative. Then, the  $i_* \downarrow \qquad \qquad \downarrow^{g_Y}$  $T_2(X) \xrightarrow{g_X} \mathbb{R}$ 

map  $g \colon T_2(X \coprod_A Y) o \mathbb{R}$  defined by

 $g((s,v_1,v_2)) \coloneqq g_{U_P}((s,v_1,v_2)) = g_X((s,v_1,v_2))$ 

for  $(s, v_1, v_2) \in T_2(U_{P_X})$  is a well-defined weak Riemannian metric on the diffeological adjunction space  $X \coprod_A Y$  endowed with the quotient diffeology. Moreover, if  $g_X$  and  $g_Y$  are definite, then so is g. Theorem 2.5 allows us to conclude that the adjunction space

$$M \coloneqq \mathbb{R} \coprod_{(1,\infty)} \mathbb{R}^2$$

is a definite weak Riemannian diffeological space which is not a manifold. Observe that D(M) is non-Hausdorff.



# A Riemannian metric on a diffeological mapping space

Let X and Y be diffeological spaces and  $\mathcal{G}$  a generating family of  $\mathcal{D}^Y$ . Then, the set  $C^{\infty}(X,Y)$  of smooth maps is endowed with the *functional diffeology*  $\mathcal{D}_{func}$ ; that is,

$$(P:U_P o C^\infty(X,Y)) \in \mathcal{D}_{ ext{func}} \stackrel{ ext{def}}{\Longleftrightarrow} ad(P): U_P imes X o Y ext{ is smooth}.$$

We introduce a subdiffeology of  $\mathcal{D}_{func}$ . To this end, we consider the following condition (E) for a plot  $P \in \mathcal{D}_{func}$ .

(E) For  $r \in U_P$  and  $m \in X$ , there exists an open neighborhood  $W_{r,m}$  of r in  $U_P$  such that the composite

$$W_{r,m} \longrightarrow U_P \stackrel{P}{\longrightarrow} C^{\infty}(X,Y) \stackrel{\operatorname{ev}_m}{\longrightarrow} Y$$

is in  ${\mathcal G}$ , where  ${
m ev}_{oldsymbol{m}}$  denotes the evaluation map at  $oldsymbol{m}$ .

Let  $\mathcal{F}_{\mathcal{G}}^{XY}$  be the subset of plots in  $\mathcal{D}_{func}$  each of which satisfies the condition (E).

Let M be a closed orientable manifold and N a definite weak Riemannian diffeological space with a generating family  $\mathcal{G}$  which gives the definiteness. We define  $g: T_2(C^{\infty}(M, N)) \to \mathbb{R}$  by

$$g(P)_r(v,w) = \int_M g_N(\operatorname{ev}_m \circ P)_r(v,w) \operatorname{vol}_M$$
(5)

for  $r \in U_P$ , where  $\operatorname{vol}_M$  denotes a volume form on M.

## Theorem 2.6 (KSS '25)

Let g be the weak Riemannian metric on  $C^{\infty}(M, N)$  defined as above, where the diffeology is restricted to  $\mathcal{D}' \coloneqq \langle \mathcal{F}_{g}^{MN} \rangle$ . Then the metric g is definite with respect to the generating family  $\mathcal{F}_{g}^{MN}$  in the sense of Definition 2.4.

## Proposition 2.7 (KSS '25)

For the weak Riemannian metric g on  $(C^{\infty}(M, N), \mathcal{D}')$  in (5), the pseudodistance d defined by g is indeed a distance provided the pseudodistance defined by  $g_N$  is distance on N.

Mixing the constructions mentioned above, we have

#### Example 2.8

Let M be a closed orientable manifold and  $(N,g_N)$  a Remannian manifold. The diffeological adjunction space

$$C^{\infty}(M,N) \prod_{N} C^{\infty}(M,N)$$

obtained by the section  $N o C^\infty(M,N)$  admits a definite weak Riemannian metric  $\widetilde{g}$  for which

$$\iota^*(\widetilde{g}) = (\int_M \operatorname{vol}_M) imes g_N,$$

where the left-hand side is the pullback of the metric  $\tilde{g}$  by the canonical injection  $\iota: N \to C^{\infty}(M, N) \coprod_N C^{\infty}(M, N)$  and  $\operatorname{vol}_M$  denotes the volume form of M.

## A metric on the free loop space and the concatenation map

We consider the subduction  $\pi: S^1 \coprod S^1 \to S^1 \lor S^1$  and the *smooth* pinching map  $p: S^1 \to S^1 \lor S^1$ . Let M be a Riemannian manifold and LM the (smooth) free loop space  $C^{\infty}(S^1, M)$ .

$$(C^{\infty}(S^1 \coprod S^1, M) \cong LM imes LM, g \oplus g) \ \hat{\uparrow}_{\pi^*} \ (C^{\infty}(S^1 \vee S^1, M), g_{\vee} \coloneqq (\pi^*)^* (g \oplus g)) \xrightarrow[c:=p^*]{} (LM \coloneqq C^{\infty}(S^1, M), g)$$

## Theorem 2.9 (KSS '25)

The concatenation map c preserves the metrics; that is,

$$c^*g = g_{\vee}.$$

14 / 14