A singular de Rham algebra and spectral sequences in diffeology

Katsuhiko Kuribayashi (Shinshu University)

6 June 2021 Global Diffeology Seminar Online on Zoom

- $\S1.~$ A stratifold As a diffeological space –
- §2. The singular de Rham complex in diffeology
- §3. The de Rham theorem and its applications
 Chen's iterated integral in Diff, the Leray–Serre spectral sequence and the Eilenberg–Moore spectral sequence –
- §4. Future prospective: With functors around **Diff** and the singular de Rham functor

$\S1.$ A stratifold as a diffeological space

The embedding $C^\infty(\):\mathsf{Mfd} o \mathbb{R} ext{-}\mathsf{Alg}$

Definition 1.1 (Sikorski (1971).)

A differential space is a pair (S, C) consisting of a topological space S and an \mathbb{R} -subalgebra C of the \mathbb{R} -algebra $C^0(S)$ of continuous real-valued functions on S, which is assumed to be *locally detectable* and C^{∞} -closed.

Local detectability : $f \in C$ if and only if for any $x \in S$, there exist an open neighborhood U of x and an element $g \in C$ such that $f|_U = g|_U$.

 $\underline{C^{\infty}\text{-closedness}}$: For each $n \geq 1$, each n-tuple $(f_1, ..., f_n)$ of maps in \mathcal{C} and each smooth map $g: \mathbb{R}^n \to \mathbb{R}$, the composite $h: S \to \mathbb{R}$ defined by $h(x) = g(f_1(x), ..., f_n(x))$ belongs to \mathcal{C} .

For $x \in S$, T_xS : the vector space consisting of derivations on the \mathbb{R} -algebra \mathcal{C}_x of the germs at x (*tangent space*).

Definition 1.2 (Kreck (2010))

A *stratifold* is a differential space (S, \mathcal{C}) such that the following four conditions hold:

- 1. old S is a locally compact Hausdorff space with countable basis;
- 2. the skeleta $sk_k(S) := \{x \in S \mid \dim T_xS \leq k\}$ are closed in S;
- 3. for each $x \in S$ and open neighborhood U of x in S, there exists a *bump function* at x subordinate to U
- 4. the strata $S^k := sk_k(S) sk_{k-1}(S)$ are k-dimensional smooth manifolds such that restriction along $i : S^k \hookrightarrow S$ induces an isomorphism of stalks $i^* : \mathcal{C}_x \xrightarrow{\cong} C^{\infty}(S^k)_x$ for each $x \in S^k$.
- ► The 'cone' is a stratifold.
- A parametrized stratifold (p-stratifold) is constructed from a stratifold attaching other finite manifolds with boundaries.

A continuous map $f : (S, C) \to (S', C')$ is a morphism of stratifolds if $\phi \circ f \in C$ for any $\phi \in C'$. We denote by **Stfd** the category of stratifolds.

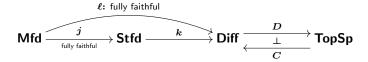
Proposition 1.3 (Aoki-K ('17))

There is a functor $k : \mathsf{Stfd} \to \mathsf{Diff}$ defined by $k(S, \mathcal{C}) = (S, \mathcal{D}_{\mathcal{C}})$ and k(f) = f for a morphism $f : S \to S'$ of stratifolds, where

$$\mathcal{D}_{\mathcal{C}} := \left\{ \left. u: U
ightarrow S \; \left| egin{array}{c} U: \textit{ open in } \mathbb{R}^q, q \geq 0, \ \phi \circ u \in C^\infty(U) \textit{ for any } \phi \in \mathcal{C} \end{array}
ight.
ight\},$$

Let M be a manifold and (S, \mathcal{C}) a stratifold. Then the functor $k : \mathsf{Stfd} \to \mathsf{Diff}$ induces a bijection

$$k_*: \operatorname{Hom}_{\operatorname{Stfd}}((M, C^{\infty}(M)), (S, \mathcal{C})) \xrightarrow{\cong} \operatorname{Hom}_{\operatorname{Diff}}((M, \mathcal{D}_{C^{\infty}(M)}), (S, \mathcal{D}_{\mathcal{C}})).$$



Observe that the functor k above is nothing but the functor Π in the sense of Batubenge, I-Zemmour, Karshon and Watts ('17).

$\S2$. The de Rham complex due to Souriau

For an open set U of \mathbb{R}^n , let $\mathcal{D}^X(U)$ be the set of plots with U as the domain and $\Omega^*_{de Rham}(U)$ the usual de Rham complex of U. Let **Open** be the category consisting of open sets of Euclidian spaces and smooth maps between them.

$$\Omega^p(X) := \left\{ egin{array}{c} \mathbf{Open}^{\mathrm{op}} \stackrel{\mathcal{D}^X}{\underset{\Omega^p_{\mathrm{de Rham}}}{\longrightarrow}} \mathsf{Sets} \ \end{array} \middle| \ \omega \ ext{is a natural transformation} \end{array}
ight.$$

with the cochain algebra structure induced by that of $\Omega^*_{{\scriptscriptstyle\mathsf{de}}\,\operatorname{\mathsf{Rham}}}(U).$

Remark 2.1

Let M be a manifold and $\Omega^*_{\mathrm{deRham}}(M)$ the usual de Rham complex of M. Recall the *tautological map* $\theta: \Omega^*_{\mathrm{deRham}}(M) \to \Omega^*(M)$ defined by

$$heta(\omega)=\{p^*\omega\}_{p\in\mathcal{D}^M}.$$

Then it follows that θ is an isomorphism of cochain algebras.

Katsuhiko Kuribayashi

Iglesias-Zemmour (Canad. J. Math. 65 (2013)) has introduced an integration map of the form

$$\int^{lZ}: \Omega^*(X) \longrightarrow C^*_{\mathsf{cube}}(X)$$

to the cubic cochain complex.

For the irrational torus $T_{\gamma}^2 = \mathbb{R}/(\mathbb{Z} + \gamma \mathbb{Z})$, (γ : irrational) with the quotient diffeology. We see that

$$\Omega^*(T^2_\gamma) \cong (\wedge^*(\mathbb{R}^1), d=0)$$

and then $H^1(\Omega(T^2_\gamma))\cong \mathbb{R}^1.$

On the other hand, by the Hurewicz theorem in Diff enables us to conclude that

$$H^1(C^*_{\mathsf{cube}}(T^2_\gamma))\cong \mathbb{R}^2.$$

One might expect a new de Rham complex for which the 'de Rham theorem' holds. (For connecting de Rham calculus and homotopy theory.)

§3. The singular de Rham complex

- The cubic de Rham complex (Iwase Izumida '19)
- The singular de Rham complex (K '20)

 $\mathbb{A}^n:=\{(x_0,...,x_n)\in\mathbb{R}^{n+1}\mid\sum_{i=0}^nx_i=1\}$: a diff-space with subdiffeology of the manifold \mathbb{R}^{n+1}

Define a simplicial DGA $(A_{DR}^*)_{\bullet}$ as follows. For each $n \geq 0$, $(A_{DR}^*)_n := \Omega^*(\mathbb{A}^n)$ and define a simplicial set

$$S^D_ullet(X):=\{\{\sigma:\mathbb{A}^n o X\mid\sigma:C^\infty ext{-map}\}\}_{n\geq 0}$$

Moreover, we have a simplicial map

$$S^D_ullet(X) o S^D_ullet(X)_{\mathsf{sub}} := \{\{\sigma: \Delta^n_{\mathsf{sub}} o X \mid \sigma ext{ is a } C^\infty ext{-map}\}\}_{n\geq 0}$$

induced by the inclusion $j:\Delta^n_{\mathsf{sub}} \to \mathbb{A}^n.$

Let Δ be the category which has posets $[n] := \{0, 1, ..., n\}$ for $n \ge 0$ as objects and non-decreasing maps $[n] \to [m]$ for $n, m \ge 0$ as morphisms. By definition, a simplicial set is a contravariant functor from Δ to **Sets** the category of sets.

$$A^*_{DR}(S^D_{\bullet}(X)) := \left\{ \begin{array}{c} \Delta^{\mathsf{op}} \underbrace{\overset{S^D_{\bullet}(X)}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})_{\bullet}}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{\overset{}}{\underset{(A^*_{DR})}{\overset{}}{\underset{(A^*_{DR})}{\overset{}}}}}}}}}} Sets} \right| \omega : a natural transformation} \right)$$

Definition 3.1 (For connecting new de Rham to the original one.) The factor map $\alpha : \Omega^*(X) \to A^*_{DR}(S^D_{\bullet}(X))$ is defined by

$$lpha(\omega)(\sigma):=\sigma^*(\omega).$$

Variations of the singular de Rham complex $A^*_{DR}(S^D_{ullet}(X))$ are considered.

The simplicial DGA $(C^*_{PL})_{\bullet} := C^*(\Delta[\bullet])$, where $\Delta[n] = \hom_{\Delta}(\neg, [n])$ is the standard *n*-simplicial set.

 \blacktriangleright We define an integration map $\int_{\Delta^p} : (A^p_{DR})_p o \mathbb{R}$ by

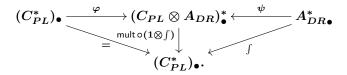
$$\int_{\Delta^p} \omega := \int_{\Delta^p} heta^{-1} \omega,$$

where $\theta : \Omega^*_{deRham}(\mathbb{A}^p) \xrightarrow{\cong} \Omega^*(\mathbb{A}^p)$ is the tautological map mentioned above.

▶ Define a mor. of simpl. DG modules $\int : (A_{DR}^*)_{\bullet} \to (C_{PL}^*)_{\bullet} = C^*(\Delta[\bullet])$ by

$$(\int \gamma)(\sigma) = \int_{\Delta^p} \sigma^* \gamma,$$

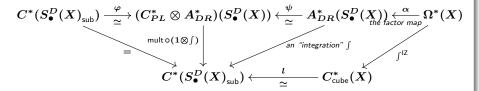
where $\gamma \in (A_{DR}^p)_n$, $\sigma : \mathbb{A}^p \to \mathbb{A}^n$ is the affine map induced by $\sigma : [p] \to [n]$. Then we have a commutative diagram of simplicial sets



The de Rham theorem in diffeology

Theorem 3.2 (K (2020))

For a diffeological space (X, \mathcal{D}^X) , one has a homotopy commutative diagram



in which φ and ψ are quasi-isomorphisms of cochain algebras and the integration map \int is a morphism of cochain complexes.

Moreover, the factor map α is a quasi-isomorphism if (X, \mathcal{D}^X) is a finite dimensional smooth CW-complex in the sense of lwase–lzumida, or stems from a p-stratifold via the functor k mentioned above.

Chen's iterated integrals in diffeology

M: a diff-space, $\omega_i \in \Omega^{p_i}(M)$ for each $1 \leq i \leq k$ and $q: U \to M^I$ a plot of the diff-space M^I . $\widetilde{\omega_{iq}} := (id_U \times t_i)^* q_{\sharp}^* \omega_i$, where $q_{\sharp}: U \times I \to M$ is the adjoint to q and $t_i: \Delta^k \to I$ denotes the projection in the *i*th factor.

$$(\int \omega_1 \cdots \omega_k)_q := \int_{\Delta^k} \widetilde{\omega_{1q}} \wedge \cdots \wedge \widetilde{\omega_{kq}}.$$

Then by definition, Chen's iterated integral \mathbf{lt} has the form

$$\mathsf{lt}(\omega_0[\omega_1|\cdots|\omega_k])=ev^*(\omega_0)\wedge\widetilde{\Delta^*}(\int\omega_1\cdots\omega_k),$$

where $\widetilde{\Delta}: LM \to M^I$ is the lift of the diagonal map $M \to M \times M$. Theorem 3.3 (K (2020))

Let M be a simply-connected diff-space, $\dim H^i(A_{DR}(S^D_{\bullet}(M))) < \infty$ for each $i \geq 0$. Suppose that the factor map for M is a quasi-isomorphism. Then

 $\alpha \circ \mathsf{lt}: \Omega^*(M) \otimes \overline{B}(A) \to \Omega^*(LM) \to A^*_{DR}(S^D_{\bullet}(LM))$

is a quasi-isomorphism of $\Omega^*(M)$ -modules.

The Leray–Serre spectral sequence in diffeology

Theorem 3.4 (K (2020), $A^*(X) := A^*_{DR}(S^D(X))$)

Let $\pi:E\to M$ be a smooth map between path-connected diffeological spaces with path-connected fibre L which is

i) a fibration in the sense of Christensen and Wu or ii) the pullback of the evaluation map $(\varepsilon_0, \varepsilon_1) : N^I \to N \times N$ for a connected diffeological space N along an embedding $f : M \to N \times N$.

Suppose further that in the case ii) the cohomology $H(A^*(M))$ is of finite type. Then one has the Leary–Serre spectral sequence $\{{}_{LS}E^{*,*}_r, d_r\}$ converging to $H(A^*(E))$ as an algebra with an isomorphism

$${}_{LS}E_2^{*,*} \cong H^*(M,\mathcal{H}^*(L))$$

of bigraded algebras, where $H^*(M, \mathcal{H}(L))$ is the cohomology with the local coefficients $\mathcal{H}^*(L) = \{H(A^*(L_c))\}_{c \in S_0^D(M)}$

The Eilenberg-Moore spectral sequence in diffeology

Theorem 3.5 (K (2020))

Let $\pi : E \to M$ be the smooth map as in Theorem 3.4 with the same assumption, $\varphi : X \to M$ a smooth map from a connected diffeological space Xfor which the cohomology $H(A^*(X))$ is of finite type and E_{φ} the pullback of π along φ . Suppose further that M is simply connected in case of i) and N is

Then one has the Eilenberg–Moore spectral sequence $\{_{EM}E_r^{*,*}, d_r\}$ converging to $H(A^*(E_{\varphi}))$ as an algebra with an isomorphism

$${}_{EM}E_2^{*,*}\cong {\rm Tor}_{H(A^*(M))}^{*,*}(H(A^*(X)),H(A^*(E)))$$

of bigraded algebras.

On the proofs.

- For the case i), Dress' construction for the Leary-Serre spectral sequence is applicable to our setting.
- For the case ii), the spectral sequences are constructed by considering a smooth lifting problem with an appropriate homotopy pullback.

Definition 3.6 (Christensen-Wu (2014))

A morphism $X \to Y$ in **Diff** is a *fibration* if $S^D_{\bullet}(X) \to S^D_{\bullet}(Y)$ is a (Kan) fibration in **Sets**^{Δ^{op}}.

FACT

- Any diffeological bundle (i.e. the pullback for every global plot is trivial) with fibrant fibre (for example, a diffeological group) is a fibration [C–W].
- For a diff-group G and a subgroup H with the sub-diffeology, the smooth map $G \rightarrow G/H$ is a diffeological bundle with fibre H [Iglesias-Zemmour]. Then it is a fibration in the sense of C–W.

Computational examples

$$T^2 := \{ (e^{2\pi i x}, e^{2\pi i y}) \mid (x, y) \in \mathbb{R}^2 \} \supset S_{\gamma} := \{ (e^{2\pi i t}, e^{2\pi i \gamma t}) \mid t \in \mathbb{R} \},$$

where $\gamma \in \mathbb{R} \setminus \mathbb{Q}$. Then the *irrational torus* T_{γ} is defined by the quotient T^2/S_{γ} with the quotient diffeology.

In the category **Diff**, $S_{\gamma} \to T^2 \xrightarrow{\pi} T_{\gamma}$: a principal diffeological fibre bundle. By using the Leray–Serre s.s., we have

$$H^*(A(T_\gamma)) \xrightarrow{\pi^*}{\cong} H^*(A(T^2)) \stackrel{\mathsf{factor\ map}}{\xleftarrow{\cong}} H^*_{DR}(T^2) \cong \wedge (x_1, x_2)$$

Applications

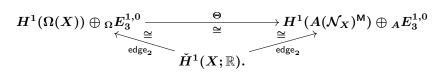
Recall the Čech-de Rham spectral sequence due to Zemmour:

A first quadrant spectral sequence

 $_{\Omega}E_{2}^{p,q} \cong H^{q}(HH^{p}(\mathbb{R}\mathsf{M}^{\mathsf{op}},\Omega^{*}(\mathcal{N}_{X})),d_{\Omega}),$

 $_{\Omega}E_{r}^{*,*} \Longrightarrow H^{*}(\operatorname{Tot} C^{*,*}) \cong HH^{*}(\mathbb{R}\mathsf{M}^{\operatorname{op}},\operatorname{map}(\mathcal{G},\mathbb{R})) =: \check{H}(X)$

• Comparing the spectral sequences for $\Omega(X)$ and A(X), we have a commutative diagram



In particular, we see

$$\Theta: H^1(\Omega(T_\gamma)) \oplus {}_{\Omega}E_2^{1,0} \stackrel{\cong}{ o} H^1(A(T_\gamma))$$

Corollary 3.7 (K '21)

There exists an isomorphism $H^*(A(T_{\gamma})) \cong \wedge(\Theta(t), \Theta(\xi))$ of algebras, where $t \in H^*(\Omega(T_{\gamma})) \cong \wedge(t)$ is a generator and $\xi \in \mathsf{Fl}^{\bullet}(T_{\gamma}) \cong \mathbb{R}$ is a flow bundle over T_{γ} with a connection 1-form, which is a generator of the group $\mathsf{Fl}^{\bullet}(T_{\gamma})$.

- Let $f: M \to T_{\gamma}$ be a smooth map from a diffeological space M. Then via the pullback construction along the map f, (*) : $S_{\gamma} \to M \times_{T_{\gamma}} T^2 \xrightarrow{\pi'} M$: a principal diffeological bundle
- Then the Leray–Serre spectral sequence in Theorem 3.4 for the fibration (*) allows us to deduce that

$$(\pi')^*: H^*(A^*(M)) \stackrel{\cong}{\longrightarrow} H^*(A^*(M imes_{T_{\gamma}} T^2))$$

of algebras, where $A^*(-):=A^*_{DR}(S^D_{ullet}(-)).$

Suppose further that M is simply connected. Then the comparison of the EMSS's in Theorem 3.5 for LM and $L(M \times_{T_{\gamma}} T^2)$ allows us to obtain an algebra isomorphism

$$(L\pi')^*: H^*(A^*(LM)) \xrightarrow{\cong} H^*(A^*(L(M imes_{T_{\gamma}} T^2)).$$

By Theorem 3.3 (On the composite $\alpha \circ \mathbf{lt}$), we have

Assertion 3.8

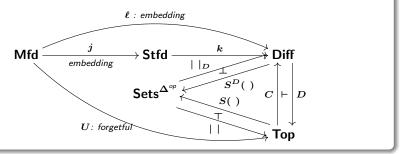
If $H^*(A^*(M)) \cong H^*(A^*(S^{2k+1}))$ as an algebra with $k \ge 1$ and the factor map for M is a quasi-isomorphism, then

 $H^*(A^*(L(M \times_{T_{\gamma}} T^2))) \cong \wedge (\alpha \circ \mathsf{lt}((\pi')^*(\omega))) \otimes \mathbb{R}[\alpha \circ \mathsf{lt}(1 \otimes (\pi')^*(\omega))]$

as an $H^*(A^*(M))$ -algebra, where lpha is the factor map and ω denotes the volume form of M.

$\S4$. With functors and a model structure on **Diff**

Assertion 4.1 (With the simplicial DGA $(A_{DR}^*)_{\bullet} = \Omega^*(\mathbb{A}^{\bullet}))$)



U. Buijs, Y. Félix, A. Murillo and D. Tanré, Lie Models in Topology, Progress in Mathematics 335, Birkhäuser, 2020.

A. Gómez-Tato, S. Halperin and D. Tanré, Rational homotopy theory for non-simply connected spaces, Transactions of AMS, **352** (2000), 1493–1525.

H. Kihara, Smooth homotopy of infinite-dimensional C^∞ -manifolds, to appear in Memoirs of the AMS, 2021,