Cartan calculi on the free loop spaces

Katsuhiko Kuribayashi (Shinshu University)

14 June 2022 Online on Zoom

- [FZ20] D. Fiorenza and N. Kowalzig, Higher brackets on cyclic and negative cyclic (co)homology, Int. Math. Res. Not., 2020(23) 91 48-9209, 2020.
- [KNWY21] K. Kuribayashi, T. Naito, S. Wakatsuki and T. Yamaguchi, A reduction of the string bracket to the loop product, (2021). arXiv:2109.10536v1.
- [KNWY22] K. Kuribayashi, T. Naito, S. Wakatsuki and T. Yamaguchi, Cartan calculi on the free loop spaces, (2022), in preparation.

Models for spaces and maps in rational homotopy theory

The de Rham–Sullivan correspondence gives an equivalence between the homotopy category of nilpotent rational connected spaces of finite \mathbb{Q} -type and that of cofibrant connected commutative differential graded algebras of finite \mathbb{Q} -type.

$$\mathsf{fN}\mathbb{Q}\text{-}\mathsf{Ho}(\mathsf{Top}) \xrightarrow[]{Q \circ A_{PL}()}{\simeq} \mathsf{f}\mathbb{Q}\text{-}\mathsf{Ho}(\mathsf{CDGA}^{op})$$

Here Q denotes the cofibrant replacement. As a consequence, we have a quasi-iso. ($\wedge V = (\text{poly. alg} \otimes \text{exterior alg}), d$) $\stackrel{\simeq}{\rightarrow} A_{PL}(X)$ for a space X.

- The CDGA $(\land V, d)$ is called a *Sullivan (rational) model* for X.
- The morphism $Q \circ A_{PL}(f) : (\land V_Y, d_Y) \to (\land V_X, d_X)$ for a map $f: X \to Y$ is called the *Sullivan representative* for f (or a *model* for f).

Motivated results

$$\Delta: H_*(LM;\mathbb{Q}) \stackrel{- imes [S^1]}{\longrightarrow} H_{*+1}(LM imes S^1;\mathbb{Q}) \stackrel{ ext{rotation action}_*}{\longrightarrow} H_{*+1}(LM;\mathbb{Q})$$

Definition 1.1 (K, Naito, Wakatsuki, Yamaguchi '21 (KNWY21))

A manifold M is Batalin–Vilkovisky (BV) exact if $\operatorname{Im} \widetilde{\Delta} = \operatorname{Ker} \widetilde{\Delta}$ for the reduced BV operator $\widetilde{\Delta} : \widetilde{H}_*(LM; \mathbb{Q}) \to \widetilde{H}_{*+1}(LM; \mathbb{Q}).$

Theorem 1.2 (KNWY21)

Let M be a simply-connected closed manifold. Assume further that M is BV exact. Then there exists a commutative diagram

The new homotopy invariant, the BV exactness, is related to traditional ones.

Theorem 1.3 (KNWY21)

A simply-connected space X admitting positive weights is BV exact. In particular, a formal space is BV exact.

The proof uses linear maps

 $L, e: Der(the minimal model for X) \rightarrow End(the minimal model for LM),$

which satisfies the Cartan magic formular

 $L_ heta = [B, e_ heta]$

for $\theta \in \text{Der}(\text{the minimal model for } X)$. Here B is a map which induces the BV operator.

This inspires us to consider algebraic and topological backgrounds for such a Lie representation L and a linear map e.

The original Cartan calculus

The Lie derivative L_X and the interior product (contraction) ι_X for each vector field X on a manifold M are incorporated in the framework of a *Cartan calculus*

$$\operatorname{Der}(C^\infty(M)) \xrightarrow[\iota_{(\,\,)}]{} \left(\operatorname{Der}(\Omega^*(M)), d\right) = \left(\operatorname{Der}(HH^*_{conti}(C^\infty(M))), B\right)$$

in the sense that $L_{()}$ is a Lie algebra representation and $\iota_{()}$ is a linear map which satisfy the *formula* $L_X = [d, \iota_X]$ for any vector field X.

 \exists ? a *second stage* of a Cartan calculus

$$Hig(\operatorname{Der}(\Omega^*(M)), [d, -]ig)? o ??$$

In the Hochschild and cyclic theory, we consider such a second stage for $\Omega^*(M)$ and the rational de Rham complex $A_{PL}(X)$ for a space X.

A guiding principle for the second stage

Let A be a unital algebra over a commutative ring k. For a derivation D on A, we define a map L_D on the Hochschild complex $C_*(A)$ by

$$L_D(a_0,...,a_n) = \sum_{i\geq 0} (a_0,..,a_{i-1},Da_i,a_{i+1},...,a_n).$$

We also recall the Hochschild cohomology $HH^*(A, A)$ of A. In particular, the first cohomology $HH^1(A, A)$ is isomorphic to $Der(A)/\{\text{inner derivations}\}$ as a k-module. Then, we have

Proposition 1.4 (Loday, 4.1.6 Corollary)

There are well-defined homomorphisms of Lie algebras $[D] \mapsto L_D$:

 $HH^1(A,A) \to \operatorname{End}_k(HH_n(A))$ and $HH^1(A,A) \to \operatorname{End}_k(HC_n(A)).$

Assertion 1.5

We have

- an algebraic construction of a Cartan calculus $({}_{HH}L_{(\)}, {}_{HH}e_{(\)})$ of the André–Quillen cohomology of the de Rham complex $\Omega^*(M)$ with values in the endomorphism ring $\operatorname{End}(HH_*(\Omega^*(M)))$ and
- a geometric construction of a Cartan calculus (L₍₎, ι₍₎) of the real homotopy group π_{*}(aut₁(M)) ⊗ ℝ of the monoid of self-homotopy equivalences of M with values in the derivation ring Der(H^{*}(LM : ℝ)).

There exists a commutative diagram

$$H^*_{AQ}(\Omega^*(M)) \xrightarrow[HH^{L}(\cdot)]{} (\operatorname{End}(HH_*(\Omega^*(M))), B)$$
Sullivan's isp. $\Phi \uparrow \cong \qquad \uparrow a \text{ monic map}$
 $\pi_*(\operatorname{aut}_1(M)) \otimes \mathbb{R} \xrightarrow[(-1)^* \iota(\cdot)]{} (\operatorname{Der}(H^*(LM:\mathbb{R})), \Delta)$

such that each sequence is a Cartan calculus, where $*\geq 2,\,\Delta$ is the BV operator on the loop cohomology.

$\S 2$ A homotopy Cartan calculus in the sense of Fiorenza and Kowalzig

Let (M, d, B) be a *mixed complex*; $d: M \to M$ is a differential of degree 1, $B: M \to M$ of degree -1 with $B^2 = 0$ and [d, B] = dB + Bd = 0.

Definition 2.1 (FK20, Definition 3.1)

Let $(\mathfrak{g}, \delta, [,])$ be a dg Lie algebra. A homotopy pre-Cartan calculus of \mathfrak{g} on M consists of linear maps $e \colon \mathfrak{g} \to \operatorname{End}(M)$ of degree 1, $L \colon \mathfrak{g} \to \operatorname{End}(M)$ of degree 0 and $S \colon \mathfrak{g} \to \operatorname{End}(M)$ of degree (-1) such that

$$L_{\theta} = [B, e_{\theta}] + [d, S_{\theta}] + S_{\delta\theta}, \qquad (1)$$

$$[d, e_{\theta}] + e_{\delta\theta} = 0, \tag{2}$$

$$[B, S_{\theta}] = 0 \tag{3}$$

for any $\theta \in \mathfrak{g}$. Here e is called a *contraction operator* (or *cap product*) and L a *Lie derivative*.

(1) and (2) imply that e and L are chain maps of degree 1 and 0, respectively.

Definition 2.2 (FK20, Definition 3.7, Remark 3.8)

A homotopy Cartan calculus on M is a homotopy pre-Cartan calculus (\mathfrak{g}, e, L, S) endowed with a linear map $T \colon \mathfrak{g} \otimes \mathfrak{g} \to \operatorname{End}(M)$ of degree 0 such that

$$[e_{\theta}, L_{\rho}] - e_{[\theta, \rho]} = [d, T_{\theta, \rho}] - T_{\delta\theta, \rho} - (-1)^{\deg\theta} T_{\theta, \delta\rho}$$
(4)
$$[S_{\theta}, L_{\rho}] - S_{[\theta, \rho]} = [B, T_{\theta, \rho}]$$
(5)

for any $\theta, \rho \in \mathfrak{g}$.

- Let $(\wedge V, d)$ be a Sullivan algebra with $V^1 = 0$. Then we define a mixed complex $(\wedge V \otimes \wedge \overline{V}, d, s)$, where $(\overline{V})^i = V^{i+1}$, s is the derivation of degree (-1) defined by $sv = \overline{v}$ and $s\overline{v} = 0$, and d is the unique extension of d: $\wedge V \to \wedge V$ satisfying [d, s] = 0.
- Observe that $\wedge V \otimes \wedge \overline{V}$ is a model for the free loop space LM of a simplyconnected space M if $\wedge V$ is a Sullivan model for M. In particular, we have

$$H^*(\wedge V\otimes\wedge\overline{V},d)\cong H^*(LM;\mathbb{Q}).$$

Definition 2.3

For a derivation heta on $\wedge V$, we define derivations ${}_aL_ heta$ and ${}_ae_ heta$ on $\wedge V\otimes\wedge\overline{V}$ by

$${}_{a}L_{\theta}v = \theta v, \quad {}_{a}L_{\theta}\bar{v} = (-1)^{\deg\theta}s\theta v,$$
 (6)

$$_{a}e_{\theta}v = 0, \quad _{a}e_{\theta}\bar{v} = (-1)^{\deg\theta}\theta v$$
(7)

for $v \in V$. This defines linear maps ${}_{a}L \colon \operatorname{Der}(\wedge V) \to \operatorname{End}(\wedge V \otimes \wedge \overline{V})$ of degree 0 and ${}_{a}e \colon \operatorname{Der}(\wedge V) \to \operatorname{End}(\wedge V \otimes \wedge \overline{V})$ of degree 1.

Proposition 2.4 (KNWY22)

The above maps give a homotopy Cartan calculus

$$((\mathrm{Der}(\wedge V), {}_{a}e, {}_{a}L, S=0, T=0))$$

on $(\wedge V\otimes \wedge \overline{V}, d, s)$.

Let A be a DGA and $C_*(A)$ the Hochschild complex. For a derivation θ on A, we define $_{HH}L_{\theta}: C_*(A) \to C_*(A)$ by $_{HH}L_{\theta} = \sum_i L_{\theta,i}$ and

$$L_{ heta,i}(a_0[a_1|\cdots|a_n]) = \left\{ egin{array}{ll} heta(a_0)[a_1|a_2|\cdots|a_n] & (i=0) \ (-1)^{| heta|(arepsilon_i+1)}a_0[a_1|\cdots| heta(a_i)|\cdots|a_n] & (1\leq i\leq n). \end{array}
ight.$$

We also define ${}_{HH}e_{ heta}: C_*(A)
ightarrow C_*(A)$ by ${}_{HH}e_{ heta}|_A = 0$ and

$$_{HH}e_{ heta}(a_0[a_1|\cdots|a_n])=(-1)^{| heta||a_0|+| heta|+|a_0|}a_0 heta(a_1)[a_2|\cdots|a_n].$$

Moreover, we define $S_ heta: C_*(A) o C_*(A)$ by $S_ heta|_A = 0$ and, for $n \geq 1$,

$$S_{ heta}|_{A\otimes T^n(sar{A})} = \sum_{j=1}^n \left(\sum_{k=0}^{n-j} s\circ t_n^k
ight)\circ L_{ heta,j}.$$

Proposition 2.5 (KNWY22)

The morphisms described above give a homotopy Cartan calculus

$$(\operatorname{Der}(A), _{HH}L, _{HH}e, S, T = 0)$$

on the mixed complex $(C_*(A), d, B)$.

$\S3.$ Geometric descriptions of $m{L}$ and $m{e}$

Given $\theta \in \pi_n(\operatorname{aut}_1(X))$, let $\operatorname{ad}(\theta) : S^n \times X \to X$ be the adjoint of θ and consider the map between the free loop spaces $L(\operatorname{ad}(\theta)) : LS^n \times LX \to LX$ induced by the 'loop construction'. Define $L : \pi_n(\operatorname{aut}_1(X)) \to \operatorname{End}(H^*(LX))$ by the composite

$$L_{\theta}: H^{*}(LX) \xrightarrow{L(\mathrm{ad}(\theta))^{*}} H^{*}(LS^{n} \times LX) \xrightarrow{\int_{[S^{n}]}} H^{*}(LX), \qquad (8)$$

where $\int_{[S^n]}$ denotes the integration along the image of the fundamental class via the map $H^n(S^n) \xrightarrow{ev_0^*} H^n(LS^n)$. Moreover, we define $e: \pi_n(\operatorname{aut}_1(X)) \to \operatorname{End}(H^*(LX))$ by the composite

$$e_{\theta}: H^*(LX) \xrightarrow{L(\mathrm{ad}(\theta))^*} H^*(LS^n \times LX) \xrightarrow{\int_{\overline{[S^n]}}} H^*(LX).$$
(9)

Here $\overline{[S^n]}$ is the cohomology class in $H^{n-1}(LS^n)$ which is the image of the fundamental class of S^n induced by the composite

$$H^n(S^n) \overset{ev^*_0}{\longrightarrow} H^n(LS^n) \overset{\Delta}{\longrightarrow} H^{n-1}(LS^n).$$

Sulllivan's isomorphism of Lie algebras

We have the following sequence of the homotopy sets

$$\pi_n(\operatorname{aut}_1(X)) \stackrel{k}{\longrightarrow} [S^n imes X, X] \stackrel{\mu}{\longrightarrow} [\mathcal{M}_X, \mathcal{M}_{S^n imes X}],$$

where \mathcal{M}_Y denotes a minimal Sullivan model for a space Y and μ assigns a map f a Sullivan representative for f. We may replace $\mathcal{M}_{S^n \times X}$ with the DGA $H^*(S^n) \otimes \mathcal{M}_X$.

We write

$$(\mu \circ k)(heta) = 1 \otimes 1_{\mathcal{M}_X} + \iota \otimes heta',$$

where ι is the generator of $H^n(S^n)$. Then, Sulllivan's isomorphism of Lie algebras

$$\Phi: \pi_*(\operatorname{aut}_1(X))\otimes \mathbb{Q} \stackrel{\cong}{ o} H^*_{AQ}(A^*_{PL}(X)) = H^*(\operatorname{Der}(\mathcal{M}_X), [d, -])$$

is defined by $\Phi(\theta) = \theta'$. Here, the homotopy group $\pi_*(\operatorname{aut}_1(M))$ is regarded as a Lie algebra endowed with the Samelson product.

Theorem 3.1 (KNWY22)

One has a commutative diagram

$$H^*_{AQ}(\Omega^*(M)) \xrightarrow{HHL_{()}}_{HH^e_{()}} (\operatorname{End}(HH_*(\Omega^*(M))), B)$$

Sullivan's iso. $\Phi \upharpoonright \cong \qquad \qquad \uparrow^{a \text{ monic map}}$
 $\pi_*(\operatorname{aut}_1(M)) \otimes \mathbb{R} \xrightarrow{L_{()}}_{(-1)^*\iota_{()}} (\operatorname{Der}(H^*(LM:\mathbb{R})), \Delta)$

in which each sequence is a Cartan calculus, where $* \geq 2$, Δ is the BV operator on the loop cohomology. In particular, the calculi give the formulae

$${}_{HH}L_\eta = [B, {}_{HH}e_\eta]$$
 and $L_ heta = [\Delta, \pm \iota_ heta]$

for $\eta \in H^*_{AQ}(\Omega^*(M))$ and $\theta \in \pi_*(\operatorname{aut}_1(M)) \otimes \mathbb{R}$. Moreover, The right vertical map is a monic linear map induced by the isomorphism between the loop cohomology and the Hochshcild homology preserving operators Δ and B.

Sketch of the proof.

Over the rational, we use a model $\mathcal{L}=(\wedge V\otimes\wedge\overline{V},d)$ for LM described in Section 2.

(i) One has a commutative diagram

$$H^*(\mathrm{Der}(\wedge V)) \xrightarrow[(\mathrm{resp.} e_{(\)})]{} End^{-n}(HH_*(\wedge V))$$

 $(\mathrm{resp.} e_{(\)}) \longrightarrow [\mathrm{inclusion}]{} \mathrm{End}^{-n}(H_*(\mathcal{L})).$

(ii) Let X be a simply-connected space of finite type and $\wedge V$ the minimal model for X. Then there exists a commutative diagram

$$\pi_*(\operatorname{aut}_1(X))\otimes \mathbb{Q} \xrightarrow[(-1)^*e_(\)]{\operatorname{End}} \operatorname{End}^{-*}(H^*(LX)) \ \cong \ \downarrow_\Phi \qquad \qquad \downarrow\cong \ H_*(\operatorname{Der}(\wedge V)) \xrightarrow[aL(\)]{aL(\)} \operatorname{End}^{-*}(H_*(\mathcal{L})).$$

A geometric description of Sullivan's iso. Φ

Félix and Thomas ([FT '04]) define a morphism Γ_1 by the composite

$$\pi_n(\Omega \operatorname{aut}_1(M)_0) \otimes \mathbb{Q} \xrightarrow{\operatorname{Hurewicz\ map}} H_n(\Omega \operatorname{aut}_1(M)_0; \mathbb{Q})
onumber \ X[M] \downarrow
onumber \ H_{n+m}(\Omega \operatorname{aut}_1(M)_0 imes M; \mathbb{Q}) \xrightarrow{g_*} H_{n+m}(LM; \mathbb{Q})$$

for $n \geq 1$, where $g: \Omega \operatorname{aut}_1(M)_0 \times M \to LM$ is defined by $g(\gamma, x)(t) = \gamma(t)(x)$ for $\gamma \in \Omega \operatorname{aut}_1(M)_0$, $x \in M$ and $t \in S^1$.

Theorem 3.2 (KNWY22)

There exists a commutative diagram

$$\pi_{n}(\operatorname{aut}_{1}(M)) \otimes \mathbb{Q} \xrightarrow{\Phi: Sullivan's \text{ iso.}} H_{n}(\operatorname{Der}(\wedge V))$$

$$\stackrel{\partial}{\cong} \xrightarrow{\cong \downarrow \lambda} \\
\pi_{n-1}(\operatorname{\Omegaaut}_{1}(M)_{0}) \otimes \mathbb{Q} \xrightarrow{\Gamma_{1}\cong} H_{n+m-1}^{(1)}(LM) \xrightarrow{\operatorname{PD}^{-1}} H_{(1)}^{-n+1}(\wedge V),$$

where ∂ is the adjoint map.

The strategy of the proof.

Lannes' division functor $(\land V: B)$;

 $\mathsf{CDGA}((\land V:B),C)\cong\mathsf{CDGA}(\land V,B\otimes C)$

• $A_{PL}(X) \xleftarrow{\simeq} (\wedge V, d)$: a minimal model for a rational space X

• $A_{PL}(U) \xleftarrow{\simeq} (B, d_B)$: a commutative model for a connected space UWe use *twice* the Haefliger ('82) (Bousfield–Peterson–Smith ('89), Brown– Szczarba ('97)) model for a function space of the form

 $\Big|ig(\mathsf{Sullivan} egin{array}{c} \mathsf{Sullivan} egin{array}{c} \mathsf{solution} ((\wedge V:B)ig) \Big/ M_u \Big| \simeq \mathsf{a} \ \mathsf{component} \ \mathsf{of} \ \mathcal{F}(U,X) \end{array}$

to construct a model for $g: \Omega {
m aut}_1(M)_0 imes M o LM$

Proposition 3.3 (Loday, 4.1.6 Corollary)

There are well-defined homomorphisms of Lie algebras $[D] \mapsto L_D$:

 $HH^1(A, A) \to \operatorname{End}_k(HH_n(A))$ and $HH^1(A, A) \to \operatorname{End}_k(HC_n(A))$.

$\S4$ An equivariant cohomology (cyclic homology) version of the Lie representation L and its geometrical description

Let X be a simply-connected space. For an element θ in the homotopy group $\pi_n(\operatorname{aut}_1(X))$ for n>1, we define a map u_θ by the composite

$$u_{ heta}:=L(\)\circ inc\circ heta:S^{n}\longrightarrow { ext{aut}}_{1}(X)\longrightarrow { ext{map}}(X,X)\stackrel{L}{\longrightarrow}{ ext{map}}(LX,LX),$$

where inc denotes the inclusion and L is the map which assigns $Lf: LX \to LX$ defined by $Lf(l) = f \circ l$ to a map $f: X \to X$. Then, the adjoint map $ad(u_{\theta}): S^n \times LX \to LX$ gives rise to the derivation

$$L_ heta: H^*(LX;\mathbb{K}) {\stackrel{(ad(u_ heta))^*}{\longrightarrow}} H^*(S^n) \otimes H^*(LX;\mathbb{K}) {\stackrel{\int_{S^n}}{\longrightarrow}} H^{*-n}(LX;\mathbb{K})$$

on the cohomology $H^*(LX;\mathbb{K})$ with coefficients in a field \mathbb{K} of arbitrary characteristic, where \int_{S^n} denotes the integration along the fibre. We see that the definition of L_{θ} coincides with that in (8).

Katsuhiko Kuribayashi

Cartan calculi on the free loop spaces

Tuesday Seminar on Topology 2022 19 / 22

Observe that the adjoint map $ad(u_{\theta}): S^n \times LM \to LM$ is an S^1 -equivariant map, where the S^1 -action on S^n is defined to be trivial. Thus, we have a map $ad(u_{\theta}) \times_{S^1} 1: (S^n \times LX) \times_{S^1} ES^1 \to LX \times_{S^1} ES^1$ between the Borel constructions. Therefore, the same construction as that of L_{θ} with the integration enables us to obtain a derivation

$$\overline{L}_{ heta}: H^*_{S^1}(LX;\mathbb{K}) {\,\longrightarrow\,} H^{*-n}_{S^1}(LX;\mathbb{K})$$

of degree -n.

Theorem 4.1 (KNWY22)

The map

$$\overline{L}_{(\)}:\pi_*(\operatorname{\mathsf{aut}}_1(X)) o\operatorname{Der}_*(H^*_{S^1}(LX;\mathbb{K}))$$

(10)

is a morphism of Lie algebras.

• Over the rational

Let $\wedge V$ be a Sullivan model for X. For a derivation $\theta \in (\text{Der}(\wedge V))$, we define a derivation $_{a}\overline{L}_{(\theta)}$ on $\mathcal{E} := \wedge V \otimes \wedge \overline{V} \otimes \mathbb{Q}[u]$, which is a Sullivan model for $LX \times_{S^{1}} ES^{1}$, by $_{a}\overline{L}_{(\theta)} = _{a}L_{(\theta)} \otimes \mathbb{1}_{\mathbb{Q}[u]}$.

Theorem 4.2 (KNWY22)

(i) There exists a commutative diagram

modulo the filtration of the EMSS in the sense that $(_a\overline{L}_{\theta} - \overline{L}_{\theta})(F^p) \subset F^{p+1}$ for θ in $\pi_*(\operatorname{aut}_1(X)) \otimes \mathbb{Q}$ and $p \geq 0$, where $\{F^p\}$ is the filtration of $H^*_{S^1}(LX)$ associated with the EMSS converges to the S^1 -equivariant cohomology $H^*_{S^1}(LM;\mathbb{Q}) \cong HC^-_*(\wedge V)$ with

$$E_2^{*,*} \cong \operatorname{Cotor}_{H^*(S^1;\mathbb{Q})}^{*,*}(H^*(LM;\mathbb{Q}),\mathbb{Q}).$$

(ii) Suppose that X is BV exact, then the diagram above is indeed commutative.

Theorem 4.3

There are the following implications concerning rational homotopy invariants for a simply-connected space X.

Here the S-action on $\widetilde{H}_{S^1}^*(LX;\mathbb{Q})$ is defined by the multiplication of the generator of $\widetilde{H}^*(BS^1;\mathbb{Q})$ with the map induced by the projection q of the fibration $LX \to ES^1 \times_{S^1} LX \xrightarrow{q} BS^1$. Observe that the equivalence (*) holds if X has the homotopy type of a finite CW complex.