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Multiplicative spectral sequences

§1. A multiplicative spectral sequence for the nerve of a
topological category

Let C = [C1
t
//

s // C0] be a topological category. The nerve functor gives rise to

a cosimplicial cohain complex

n 7→ C∗(NervenC,K) =: Cn,∗

and then this induces a cosimplicial abelian group

n 7→ Hq(NervenC,K)

for any q, where K is a field.
Let BC be the classifying space, namely, BC = ||Nerve•C|| which is the fat
geometric realization of the simplicial space Nerve•C

ω ∪T η := (−1)qp
′
(dh

p+1 · · · d
h
p+p′)

∗ω ∪ (dh
0 · · · dh

p−1)
∗η

for ω ∈ Cp,q and η ∈ Cp′,q′
.
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Multiplicative spectral sequences

▶ A multiplication on TotC∗(Nerve•C,K)

Theorem 1.1

Let C = [C1
t
//

s // C0] be a category internal to Top. Then there exists a spec-

tral sequence {E∗,∗
r , dr} converging to H∗(BC;K) as an algebra with

Ep,q
2

∼= Hp(Hq(Nerve•C;K)).

▶ The cohomology of the TotC•,∗ ∼= H∗(BC) by a method of acyclic models.
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Multiplicative spectral sequences

Theorem 1.2 (Gugenheim–May, ’74: A torsion functor version)

Let G be a topological group and X a G-space. Then there exists a spectral
sequence converging to the Borel cohomology

H∗
G(X;K) := H∗(EG ×G X;K)

as an algebra with Ep,q
2

∼=Hp(Hq(Nerve•G;K)). Here G := [G × X
t
//

s // X]

denotes the transformation groupoid associated to the G-space X. In particular,
one has an isomorphism

Ep,q
2

∼= Cotorp,qH∗(G;K)(K,H∗(X;K))

provided H∗(G;K) and H∗(X;K) are locally finite.

C : a comodule over K a field and M , N : right C-comodule and a left one,
respactively.

M2CN := Ker ∇ // M ⊗ N
∇:=∇M⊗1−1⊗∇N// M ⊗ C ⊗ N
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The free loop space of the real projective space

§2. The computation of the cohomology algebra of the
free loop space of the real projective space

Let G be a discrete group acting on a topological space M . For g ∈ G, we define

Pg(M) := {γ : [0, 1] → M | γ(1) = gγ(0)}

which is a subspace of the space of continuous paths M [0,1] from the interval
[0, 1] to M . Moreover, we put

PG(M) :=
∐
g∈G

(Pg(M) × {g}). (1)

Then, PG(M) admits a G-action defined by h · (γ, g) = (hγ, hgh
−1), where

hγ(t) = h · γ(t). For a space X, let LX denote the free loop space of X,
namely, the space of continuous maps from the circle S1 to X.

Let G → M
p→ M/G be a principal G-bundle.

To (1) in Section 3, page 18
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The free loop space of the real projective space

Proposition 2.1 (cf. Behrend, Ginot, Noohi and Xu ’12)

The map p : EG ×G PG(M) → L(M/G) induced naturally by the projection
p : M → M/G is a weak homotopy equivalence.

Sketch of proof. For each m ∈ M , a fibration

Pm
G (M) // PG(M)

q:=
∐

qg
// M

is constructed, where Pm
G (M) =

∐
g∈G Pm

g (M) and
Pm

g (M) := {γ : [0, 1] → M | γ(0) = m, γ(1) = gγ(0) = gm}. Moreover,
we have a commutative diagram

Pm
G (M)

��

p
// Ω[m](M/G)

��

EG ×G PG(M)

1×Gev0 ��

p
// L(M/G)

ev0��

EG ×G M
π̃

≃ // M/G

in which two vertical sequences are fibrations. We can prove p on the fibre is a
weak homotopy equivalence.
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The free loop space of the real projective space

▶ On the cohomology of Pg(M) for a simply connected G-space M

For each g ∈ G, in order to compute H∗(Pg(M);K), we may use the
Eilenberg–Moore spectral sequence (henceforth EMSS) for the pullback diagram

Pg(M) //

��

M [0,1]

ε0×ε1
��

M
1×g

// M × M,

(2)

where εi is the evaluation map at i for i = 0, 1 and g denotes the map induced
by the action on M with the element g. We observe that the EMSS {E∗,∗

r , dr}
converges to H∗(Pg(M);K) as an algebra with

E∗,∗
2

∼= Tor∗,∗H∗(M ;K)⊗H∗(M ;K)(H
∗(M ;K)g,H

∗(M ;K))

as a bigraded algebra. Here H∗(M ;K)g is the cohomology algebra H∗(M ;K)
endowed with the right H∗(M ;K) ⊗ H∗(M ;K)-action defined by

a · (λ ⊗ λ′) = a(λg∗(λ′))

for a ∈ H∗(M ;K)g and λ, λ′ ∈ H∗(M ;K).
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The free loop space of the real projective space

▶ On the G-action on PG(M).

For h ∈ G, the G-action on PG(M) induces h∗ : Pg(M) → Phgh−1(M)
which fits in the commutative diagram

Pg(M)

h∗
))

//

��

M [0,1]
h∗

((ε0×ε1

��

Phgh−1(M) //

��

M [0,1]

ε0×ε1

��

M

h **

1×g
// M × M h×h

**

M
1×hgh−1

// M × M.

(3)

Then, the naturality of the EMSS gives rise to a morphism of spectral sequences
which is compatible with the map
(h∗)

∗ : H∗(Phgh−1(M);K) → H∗(Pg(M);K).
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The free loop space of the real projective space

Theorem 2.2 (K. 2023)

Let p be an odd prime or 0, then as algebras,

H∗(LRP 2m+1;Z/p) ∼= H∗(LS2m+1;Z/p) ⊕ H∗(LS2m+1;Z/p)
∼= (∧(y) ⊗ Γ[y])⊕2 and

H∗(LRP 2m;Z/p) ∼= (∧(x ⊗ u) ⊗ Γ[w]) ⊕ Z/p,

where deg y = 2m+1, deg y = 2m, deg(x⊗u) = 4m−1, degw = 4m−2
and Z/0 := Q.

Sketch of Proof. RPn = Sn/(Z/2), G := Z/2. By applying Theorem 1.2 to

the groupoid [G × PG(Sn) //
// PG(Sn)] , we have a spectral sequence

{E∗,∗
r , dr} converging to H∗(LRPn;Z/p) with

E∗,∗
2

∼= Cotor∗,∗H∗(G)(Z/p,H
∗(PG(Sn)))

as an algebra.
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The free loop space of the real projective space

Since G is abelian, it follows that the G action on PG(Sn) is restricted to each
Pg(S

n) for g ∈ G. Then, we see that

L(RPn) 'w EG ×G PG(Sn) =
∐
g∈G

(
EG ×G Pg(S

n)
)

and

Cotor∗,∗H∗(G)(Z/p,H
∗(PG(Sn))) = ⊕g∈GCotor∗,∗H∗(G)(Z/p,H

∗(Pg(S
n))).

We compute the cotorsion functor with the nomalized cobar complex(
Z/p{τ∗}⊗k ⊗ H∗(Pg(S

n)), ∂k = ∇G ⊗ 1 + (−1)k+11 ⊗ ∇τ∗
)
k≥0

,

where τ ∈ G denotes the nontrivial element,

∇τ∗ : H∗(Pg(S
n)) → H̃0(G)⊗H∗(Pg(S

n)) = Z/p{τ∗}⊗H∗(Pg(S
n))

is the coaction induced by the G-action on Pg(S
n) and the projection

G × Pg(S
n) → Pg(S

n) gives rise to the map ∇G. Observe that the complex
is nothing but the E1-term of the spectral sequence {E∗,∗

r , dr}.
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The free loop space of the real projective space

▶ A generalization of the computation above

Let G be a finite group and N a finite dimensional left K[G]∨-comodule. Then
the module N∨ is regarded as a left K[G]-module via the natural map

∇∨ : K[G] ⊗ N∨ → N∨

induced by the left comodule structure ∇ on N . Thus, by using the isomorphism
N ∼= (N∨)∨, we consider N a right K[G]-module.

Lemma 2.3 (cf. Abrams and Weibel, ’02)

Under the setup above, there are isomorphisms of vector spaces

Cotor∗K[G]∨(K, N) ∼= HH∗(K[G],K⊗N) ∼= Ext∗K[G](K,K⊗N) = H∗(G,N).

Here the module N in the Hochschild cohomology is regarded as a right K[G]-
module mentioned above.

▶ Comments
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The free loop space of the real projective space

▶ {E∗,∗
r , dr} : the SS in Theorem 1.2 converging to

H∗(EG ×G PG(M);K) ∼= H∗(L(EG ×G M));K).

Corollary 2.4 (cf. Lupercio, Uribe and Xicotencatl, ’08)

Let G be a finite group acting on a space M and PG(M) the space defined in
(1). Suppose that H∗(PG(M);K) is locally finite and (ch(K), |G|) = 1. Then
as an algebra

H∗(L(EG ×G M);K) ∼= K2K[G]∨H
∗(PG(M);K).

Proposition 2.5 (Benson ’91)

Let G be a finite group. Then as an algebra,

H∗(LBG;K) ∼= Cotor∗K[G]∨(K, (K[G]ad)
∨),

where K[G]ad denotes the adjoint representation of G. Especially, if G is abelian,
then H∗(LBG;K) ∼= H∗(G;K)⊕|G| as an algebra.
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The free loop space of the real projective space

Since the trivial map v : Pg(M) → ∗ gives rise to a G-equivariant map
H0(PG(M);K) → K[G]ad, it follows from Proposition 2.5 that the horizontal
edge (p-axis) E∗,0

2 is a module over the algebra H∗(LBG;K) via the morphism

v∗ : H∗(LBG;K) → Cotorp,0K[G]∨(K,H∗(PG(M);K))

of algebras induced by v. Thus, the spectral sequence admits an
H∗(LBG;K)-module structure on the spectral sequence;

• : Hp(LBG;K) ⊗ E∗,∗
r

v∗⊗1
// Ep,0

2 ⊗ E∗,∗
r

pr⊗1
// // Ep,0

r ⊗ E∗,∗
r

m // E∗+p,∗
r ,

where pr is the canonical projection and m is the product structure on the
Er-term. Thus we see that dr(a • x) = (−1)pa • dr(x) for
a ∈ Hp(LBG;K) and x ∈ E∗,∗

r .

▶ Diagram
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A diffeological counterpart of a result on the cohomology of the free loop space A new de Rham complex

§3. A diffeological counterpart of a result on the
cohomology of the free loop space of a Borel construction

We recall

▶ the singular de Rham complex (K ’20)

▶ the factor map

▶ Chen’s iterated integral map in diffeology

∆n := {(x0, ..., xn) ∈ Rn+1 |
∑n

i=0 xi = 1, xi ≥ 0} : the standard simplex
in the sense of Kihara: In particular,

Λn
k : {(x0, ..., xn) ∈ ∆n | xi = 0 for some i 6= k} ↪→ ∆n

has a smooth retraction for n ≥ 1 and 0 ≤ k ≤ n.

Define a simplicial DGA (A∗
DR)• as follows.

For each n ≥ 0, (A∗
DR)n := Ω∗(An) and define a simplicial set

SD
• (X) := {{σ : ∆n → X | σ : C∞–map}}n≥0
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A diffeological counterpart of a result on the cohomology of the free loop space A new de Rham complex

∆ : objects [n] := {0, 1, ..., n} for n ≥ 0,
morphisms : non-decreasing maps [n] → [m] for n,m ≥ 0

By definition, a simplicial set is a contravariant functor from ∆ to Sets the
category of sets.

A∗
DR(SD

• (X)) :=

 ∆op

SD
• (X)

**

(A∗
DR)•

44�� η Sets

∣∣∣∣∣∣∣ η : a natural transformation


Definition 3.1 (Connecting the singular de Rham to the original one.)

The factor map α : Ω∗(X) → A∗
DR(SD

• (X)aff) is defined by

α(ω)(σ) := σ∗(ω),

where SD
• (X)aff := {{σ : An → X | σ : C∞–map}}n≥0

The inclusion ι : ∆n → An, (ι∗)∗ : A∗
DR(SD

• (X))
≃→ A∗

DR(SD
• (X)aff).
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A diffeological counterpart of a result on the cohomology of the free loop space A new de Rham complex

M : a diff-space, ωi ∈ Ωpi(M) for each 1 ≤ i ≤ k and q : U → MI a plot
of the diff-space MI . ω̃iq := (idU × ti)

∗q∗
♯ωi, where q♯ : U × R → M is

(the composite of a cut-off function and) the adjoint to q, and ti : Rk → R
denotes the projection in the ith factor.

(

∫
ω1 · · ·ωk)q :=

∫
∆k

ω̃1q ∧ · · · ∧ ω̃kq.

Then by definition, Chen’s iterated integral It has the form

It(ω0[ω1| · · · |ωk]) = ev∗(ω0) ∧ ∆̃∗(

∫
ω1 · · ·ωk),

where ∆̃ : L∞M → MI is the lift of the diagonal map M → M × M .

Theorem 3.2 (K. ’20)

Let M be a simply-connected diff-space, dimHi(ADR(SD
• (M))) < ∞ for

each i ≥ 0. Suppose that the factor map for M is a quasi-isomorphism. Then

α ◦ It : Ω∗(M) ⊗ B(A) → Ω∗(L∞M) → A∗
DR(SD

• (L∞M))

is a quasi-isomorphism of Ω∗(M)-modules and algebras
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A diffeological counterpart of a result on the cohomology of the free loop space A new de Rham complex

Let G be a finite group acting freely and smoothly on a manifold M . Then, we

have the principal G-bundle G → M
p→ M/G in the category of manifolds.

Let P∞
G (M) be the diffeological space obtained by applying the construction (1)

in Diff. We consider a smooth map

p̃ : P∞
G (M) → L∞(M/G)

defined by p̃((γ, g)) = p ◦ γ, where L∞(M/G) denotes the diffeological free
loop space on M/G.

For a diffeological space X, we may write H∗
DR(X) for the singular de Rham

cohomology H∗(ADR(SD
• (X))).

Theorem 3.3 (K. ’23)

Under the same setting as above, suppose further that M is simply connected.
Then, the smooth map p̃ gives rise to a well-defined isomorphism

p̃∗ : H∗
DR(L∞(M/G))

∼=→ R2R[G]∨H
∗
DR(P∞

G (M))

of algebras.

From (1) in Section 1, page 6
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A diffeological counterpart of a result on the cohomology of the free loop space A new de Rham complex

▶ The functor D : Diff → Top; (D-topology)

Let M and N be diffeological spaces and C∞(M,N) the space of smooth
maps from M to N with the functional diffeology.

Moreover, the inclusion i : D(C∞(M,N)) → C0(DM,DN) is contiunuous
(Christensen, G. Sinnamon and E. Wu, ’14). Thus, it follows that the functor D
induces a morphism

ξ : SD
• (C∞(M,N))

D( )→ Sing•(DC0(M,N))
i∗→ Sing•(C

0(DM,DN))

of simplicial sets.

Theorem 3.4 (Smoothing theorem, Kihara ’21)

Let M and N be finite dimensional manifolds. Then, the well-defined map ξ :
SD
• (C∞(M,N)) → Sing•(C

0(DM,DN)) is a weak homotopy equivalence.
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A diffeological counterpart of a result on the cohomology of the free loop space A new de Rham complex

For a manifold M , we consider the composite

λ := i ◦ Dj : D(P∞
g (M)) // D(C∞([0, 1],M)) // C0(D[0, 1], DM),

where j is the smooth inclusion. Since DM = M and D[0, 1] is the subspace I
of R, it follows that λ : D(P∞

g (M)) → Pg(M) is continuous. Therefore, the
composite

ξ′ := λ∗ ◦ D( ) : SD
• (P∞

g (M)) → Sing•(Pg(M))

is a morphism of simplicial sets.

Lemma 3.5

Let M be a simply-connected manifold. Then, one has a sequence of quasi-
isomorphisms

APL(Sing•(Pg(M))) ⊗Q R
(ξ′)∗

≃
// APL(S

D
• (P∞

g (M))) ⊗Q R
ζ

≃
// ADR(S

D
• (P∞

g (M))).
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A diffeological counterpart of a result on the cohomology of the free loop space A new de Rham complex

Sketch of Proof. Consider the following commutative diagram.

H∗(ADR(SD
• (P∞

g (M))) Tor∗
ADR(SD(M×2))

(ADR(SD(M)), ADR(SD(MI)))∼=

EM1oo

H∗(APL(S
D
• (P∞

g (M))))R

H(ζ)∼=

OO

Tor∗
APL(SD(M×2))

(APL(S
D(M)), APL(S

D(MI)))R
EM2oo

Tor(ζ,ζ)∼=
OO

H∗(APL(Sing•(Pg(M))))R

H((ξ′)∗)

OO

Tor∗
APL(M×2)

(APL(Sing•(M)), APL(Sing•(M
I))R∼=

EM3oo

Tor(ξ∗,ξ∗)

OO

▶ EMi ; the Eilenberg-Moore map
EM3 : iso. (the oroginal one due to Eilenberg-Moore), EM1 :iso. (K. ’20)

▶ ζ : APL(–) ⊗Q R ≃→ ADR(–) (K. ’20)

We define a quasi-isomorphism ξ̃1 := ζ ◦ (ξ′)∗ the composite in Lemma 3.5.
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A diffeological counterpart of a result on the cohomology of the free loop space A new de Rham complex

Sketch of the proof of Theorem 3.3. For the translation groupoid

[G × P∞
G (M)

t
//

s // P∞
G (M)] , we see that s ◦ p̃ = t ◦ p̃. Then the map

p̃∗ : H∗
DR(L∞(M/G)) → H∗

DR(P∞
G (M)) induced by p̃ factors through

R2R[G]∨H
∗
DR(P∞

G (M)). We show that the morphism p̃∗ of algebras in the
theorem is an isomorphism. Consider a commutative diagram

H∗(C0(S1,M/G);R)
(ξ̃)∗

∼=
// H∗

DR(C∞(S1,M/G))

H∗(L(M/G);R)
(ξ̃)∗

//

(q∗)∗ ∼=
OO

p̃∗ ∼=
��

H∗
DR(L∞(M/G))

(q∗)∗∼=
OO

p̃∗

��

R2R[G]∨H
∗(PG(M);R)

(ξ̃1)
∗
// R2R[G]∨H

∗
DR(P∞

G (M))

in which each ξ̃ is the composite of the morphism induced by ξ in the smooth
theorem and the quasi-isomorphism ζ : APL(K) ⊗Q R → ADR(K) for a
simplicial set K mentioned above.
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A diffeological counterpart of a result on the cohomology of the free loop space Applications

Theorem 3.6 (K. ’23)

One has sequences

H∗
DR(L∞RP 2m+1)

p̃∗

∼=
// R2R[G]∨H

∗
DR(P∞

G (S2m+1))

(
∧ (α ◦ It(v2m+1)) ⊗ R[α ◦ It([v2m+1)]

)⊕2
and

∼=
OO

H∗
DR(L∞RP 2m)

p̃∗

∼=
// R2R[G]∨H

∗
DR(P∞

G (S2m))

(
∧ (α ◦ It(v2m[v2m])) ⊗ R[α ◦ It(1[v2m|v2m])

)
⊕R

∼=
OO

of isomorphisms of algebras, where vn denotes the volume form on H∗
DR(Sn),

It and α are Chen’s iterated integral map and the factor map, respectively.

Note: Chen’s iterated integral map does not work for a non-simply connected
manifold M ! (when considering H∗(LM))
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