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§1. Interleaving distances

Consider the functor category C(R,≤) for a category C. For a real number ε ≥ 0,
define a functor Tε : (R,≤) → (R,≤) by Tε(a) = a+ ε. Moreover, the shift
functor ( )ε : C(R,≤) → C(R,≤) is defined by ( )ε(F ) = F ε := FTε.

Definition 1.1

Objects F and G in C(R,≤) are ε-interleaved if there exist natural transforma-
tions φ and ψ which fit in the commutative diagrams

F //

φ

##

F ε //

φε

$$

F 2ε

G //

ψ

;;

Gε

ψε

::

// G2ε,

(1)

where horizontal arrows are the natural transformations defined by the structure
maps of F and G. Such a pair (φ,ψ) is called an ε-interleaving of F and G.
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The natural transformations in Definition 1.1 give the commutative diagrams

F (i)
F (i→i+2ε)

//

φ(i) %%

F (i+ 2ε) and F (i+ ε)
φ(i+ε)

''

G(i+ ε)
ψ(i+ε)

77

G(i)
G(i→i+2ε)

//

ψ(i) 99

G(i+ 2ε)

(2)

for all i ∈ R. We observe that F is isomorphic to G in C(R,≤) if and only if F
and G are 0-interleaved.

Definition 1.2

For objects F and G in C(R,≤), the interleaving distance dI(F,G) between F
and G is defined by

dI(F,G) := inf{ε ≥ 0 | F and G are ε-interleaved}.

Proposition 1.3 (Bubenik–Scott ’14)

The interleaving distance dI is an extended pseudometric on the class of objects
of C(R,≤).

Katsuhiko Kuribayashi Interleavings of spaces over BS1 4 / 18



For an interval J , we define a persistence module χJ by

χJ(x) =

{
K if x ∈ J ,
0 otherwise,

χJ(x ≤ y) =

{
idK if x, y ∈ J ,
0 otherwise.

Then, the barcode BM associated with a graded K[t]-module M gives rise to the

object χ(BM) in Mod
(R,≤)
K defined by ⊕J∈BMχJ .

Definition 1.4

Let S and T be two barcodes, namely, multisets of intervals. Define the bottle-
neck distance between S and T (with matchings S ↔ T between them) by

dB(S, T ) := inf
f :S↔T

sup
I∈dom(f)

dI(χI , χf(I)),

where χR and χ∅ denote the constant functors K and 0, respectively.

Theorem 1.5 ((The isometry theorem) Chazal–Cohen-Steiner–Glisse–
Guibas–Oudot ’09, Bubenik–Scott ’14)

For locally finite K[t]-modules M and N (persistence modules), one has

dI(χ(BM), χ(BN)) = dB(BM ,BN).

Katsuhiko Kuribayashi Interleavings of spaces over BS1 5 / 18



1.2 Interleavings up to homotopy

Let M be a cofibrantly generated model category (e.g. Top, ChK) and M(R,≤)

the model category endowed with the projective model structure.

Definition 1.6 (Blumberg–Lesnick ’23, Lanari–Scoccola ’23)

(1) For objects X and Y in M(R,≤), we say that X and Y are ε-homotopy
interleaved if there exist X ≃ X′ and Y ≃ Y ′ such that X′ and Y ′ are
ε-interleaved in M(R,≤). Here W ≃ W ′ means that there is a zigzag of
weak equivalences connecting W and W ′.

(2) We say that objects X and Y in M(R,≤) are ε-interleaved in the homotopy
category if they are ε-interleaved in Ho(M(R,≤)).

(3) Let q∗ : M(R,≤) → Ho(M)(R,≤) be the functor induced by the localiza-
tion functor. We say that X and Y in M(R,≤) are ε-homotopy commuta-
tive interleaved if q∗X and q∗Y are ε-interleaved in Ho(M)(R,≤)
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Let X and Y be objects in M(R,≤). Blumberg and Lesnick (’23) introduce the
homotopy interleaving distance and the homotopy commutative interleaving
distance defined by

dHI(X,Y ) := inf{ε ≥ 0 | X, Y are ε-homotopy interleaved} and

dHC(X,Y ) := inf{ε ≥ 0 | X, Y are ε-homotopy commutative interleaved},
respectively. Moreover, Lanari and Scoccola (’23) introduce the interleaving
distance in the homotopy category define by

dIHC(X,Y ) := inf{ε ≥ 0 | X, Y are ε-interleaved in the homotopy category}.

Ho(M)(R,≤) Ho(M(R,≤))
θoo M(R,≤)πoo

q∗

tt

dHC ≤ dIHC ≤ dHI ≤ 2dHC.

[Lanari–Sococcola]

Theorem 1.7 (Lanari–Scoccola, ’23)

Let Top be the category of topological spaces. Suppose that dHI ≤ cdHC on
Top(R,≤). Then c ≥ 3

2
. Hence dHI ̸= dHC in general.
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Let ChK be the category of dg modules over a field K of arbitrary characteristic.

We say that a persistence object X in Ch
(Z,≤)
K is bounded below if there exists an

integer k such that
⊕
i+n≤kX(i)n = 0.

Theorem 1.8 (K. -Naito-Wakatsuki-Yamaguchi)

One has the equalities dHC = dIHC = dHI in the class of the objects bounded

below in Ch
(Z,≤)
K .

Proof.

Let ηk(H)∗ : Ch
(R,≤)
K → Mod

(R,≤)
K be the functor defined by the homology

functor.

dHI(X,Y ) = dHI(H(X),H(Y ))

(∵ X, Y are formal as cochain complexes of K[t]-modules)

≤ sup{dI(ηk(H)∗(X), ηk(H)∗(Y )) | k ∈ Z}
≤ dHC(X,Y ) ≤ dIHC(X,Y ) ≤ dHI(X,Y ).
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§2. Interleavings of DG K[u]-modules (deg u = 2)
For a dg K[u]-module K = {Kl, ∂}, that is, ⊕lK

l is a K[u]-module and
(u×) ◦ ∂ = ∂ ◦ (u×).

Define a functor C : K[u]-Ch → Ch
(Z,≤)
K by C({Kl, ∂})(i) = Σ2iK and

C({Kl, ∂})(i → i+ 1) : C({Kl, ∂})(i) ×u−→ C({Kl, ∂})(i+ 1).

· · ·Σ−2K
×u

// K
×u

// Σ2K
×u

// Σ4K · · ·
...

...
...

K0

OO

K2

OO

K4

OO

...

K−1

OO

K1

OO

K3

OO

K5

OO

· · · K−2

OO

K0

OO

K2

OO

K4

OO

· · ·
...

OO

K−1

OO

K1

OO

K3

OO
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Interleavings up to homotopy, barcodes, dg K[u]-modules

We have a commutative diagram

K[u]-Ch
C //

hk:=Skhq

%%

q

��

Ch
(Z,≤)
K (H)∗

//

(⌊ ⌋)∗
''

grMod
(Z,≤)
K

ηk

��

Ch
(R,≤)
K

ηk(H)∗
��

π

&&

q∗ // Ho(ChK)(R,≤)

D(K[u])

h

�� µ

33
K[t]-grMod

B( )

��

Mod
(Z,≤)
K

(⌊ ⌋)∗

embedding
//

∼=

γ
oo Mod

(R,≤)
K

��

Ho(Ch
(R,≤)
K )

ξk
oo

θ

OO

K[u]-grMod

Sk

99

(BAR, dB) χ
/ / (Mod

(R,≤)
K , dI).

(3)

Here ηk is defined by (ηk)(V )(i) = V (i)k, D(K[u]) denotes the derived
category of dg K[u]-modules, q is the localization, h is the homology functor, Sk

is the functor defined by S0(K) = ⊕iK
2i and S1(K) = ⊕iK

2i+1.

Let α : K[u]-Ch → Ch
(R,≤)
K be the functor (⌊ ⌋)∗ ◦ C.
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Definition 2.1 (K. -Naito-Wakatsuki-Yamaguchi)

Let M and N be dg K[u]-modules. The even cohomology interleaving distance
d0CohI(M,N) and the odd cohomology interleaving distance d1CohI(M,N) are
defined by

dI(η
0(H∗)α(M), η0(H∗)α(N)) and dI(η

1(H∗)α(M), η1(H∗)α(N)),

respectively.

Theorem 2.2 (K. -Naito-Wakatsuki-Yamaguchi)

The equalities

dHC(αM,αN) = dIHC(αM,αN) = dHI(αM,αN)

= max{dkCohI(M,N) | k = 0, 1}

hold for formal dg K[u]-modules M and N . In particular, for dg K[u]-modules
M and N whose gradings are bounded below, one has the equalities.
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§3. The cohomology interleaving of spaces over BS1

For spaces p : X → BS1 and q : Y → BS1 over BS1, the cohomology
groups H∗(X;K) and H∗(Y ;K) are regarded as K[u] = H∗(BS1;K)-
modules with the maps p∗ and q∗, respectively.

In fact, the map X → BS1 gives rise to the morphism K[u] → C∗(X;K)
of DGA’s, where deg u = 2. Then, the cochain complex C∗(X;K) is
considered a dg K[u]-module.

Definition 3.1 (The cohomology interleaving distance between spaces
X and Y over BS1)

dkCohI,K(X,Y ) := dkCohI(C
∗(X;K), C∗(Y ;K)) for k = 0 and k = 1,

dCohI,K(X,Y ) := max{dkCohI(M,N) | k = 0, 1}.

Katsuhiko Kuribayashi Interleavings of spaces over BS1 12 / 18



The cup-length cup(f)K of a map f : X → Y
:= the length of the longest non-zero product in the image of the homomorphism

f∗ : H̃∗(Y ;K) → H̃∗(X;K).

Proposition 3.2

Let v1 : X → BS1 and v2 : Y → BS1 be spaces over BS1. Then, it holds
that for k = 0 and 1,

dkCohI,K(X,Y ) ≤
1

2
max{cup(v1)K + 1, cup(v2)K + 1}.

Proposition 3.3 (A shriek map gives rise to an interleaving)

Let u : X → BS1 and v : Y → BS1 be connected closed oriented manifolds
over BS1. Suppose that there exists a continuous map f : X → Y with
v ◦ f = u. Then

(i) dCohI,K(X,Y ) ≤ 1
2
(dimY − dimX) if dimX and dimY are even and

dimY ≥ 2 dimX, and

(ii) dCohI,K(X,Y ) < 1
2
(dimY − dimX) if dimX and dimY are odd and

dimY > 2 dimX.
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§4. Toy examples

Proposition 3.4

Let X and Y be formal spaces, more general BV-exact spaces (KNWY ’24).
Then, it holds that for k = 0 and 1,

dkCohI,Q((LX)hS1 , (LY )hS1) =


0 if hkC∗((LX)hS1 ,Q)

∼= hkC∗((LY )hS1 ,Q) as a Q[t]-mod.,
1
2

otherwise.

In particular, dCohI,Q((LX)hS1 , (LY )hS1) = 0 if and only if
C∗((LX)hS1 ;Q) ∼= C∗((LY )hS1 ;Q) in D(Q[u]).

Proposition 3.5

Let fn : CPn → BS1 be a map which represents 1 in [CPn, BS1] ∼=
H2(CPn;Z) ∼= Z. Then,

d0CohI,K((CP
n, fn), (CPm, fm)) = min

{
|n−m|,max

{
m+ 1

2
,
n+ 1

2

}}
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Proposition 3.6

For j = 0, 1, let vj : Mj → BS1 be a space over BS1 whose relative Sullivan
model has the form (∧u, 0) → (∧(x, y, z, u), d) with dz = jxyu + u4 and
dx = 0 = dy, where deg x = deg y = 3, deg z = 7 and deg u = 2. Then,
one has

d0CohI,Q(M0,M1) = 3 and d1CohI,Q(M0,M1) = 0.

Remark 3.7

Let ι : (∧(u), 0) → (∧W ⊗∧(u), d) be a relative Sullivan algebra. We have a
fibration |ι| : |(∧W ⊗ ∧(u), d)| → |(∧(u), 0)|. The pullback of the fibration
along the rationalization map ℓ : BS1 → |(∧(u), 0)| gives

F
≃ // X′ //

q
��

ES1

p��

F // X //

��

BS1

ℓ��

|(∧W,d)| // |(∧W ⊗ ∧(u), d)|
|ι|

// |(∧(u), 0)|

in which p is the universal S1-bundle and the right-hand upper squares is also
pullback.
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Remark 3.8

Let X and Y be spaces over BS1. Then, the triangle inequality of the interleav-
ing distance allows us to deduce an inequality∣∣ dkCohI,K(X,CPn) − dkCohI,K(Y,CP

n)
∣∣ ≤ dkCohI,K(X,Y )

for each n ≥ 1, k = 0 and 1.

Assertion 3.9

Let vj : Mj → BS1 be the space over BS1 in Proposition 3.6 for each j = 0
and 1. Then, cup(v0)Q = 3 and cup(v1)Q = 6.

The equalities in Proposition 3.2 and Remark 3.8 do not hold in general. We have∣∣ d0CohI,Q(M0,CP 6) − d0CohI,Q(M1,CP 6)
∣∣

= 3 −
1

2

< d0CohI,Q(M0,M1) = 3

<
7

2
=

1

2
max{cup(v0)Q + 1, cup(v1)Q + 1}.
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Future work and perspective

Applying applied topology, we develop methods for computing the cohomology
interleaving distances between spaces over BS1.

We consider

the interleaving distance in (CDGAop)(R,≤) (Hess, Lavenir and Maggs ’24)
in order to deal with the rational homotopy interleaving distance of R-spaces,
multiparameter persistence theory and spaces over BTn, such as appearing
in toric topology, from the view point of persistence theory.
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