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On Félix–Tanré rational models for polyhedral products

by

Katsuhiko Kuribayashi (Matsumoto)

Abstract. The Félix–Tanré rational model for the polyhedral product of a fibre
inclusion is considered. In particular, we investigate the rational model for the polyhedral
product of a pair of Lie groups corresponding to on arbitrary simplicial complex and the
rational homotopy group of the polyhedral product. Furthermore, it is proved that for
a partial quotient N associated with a toric manifold M , the following conditions are
equivalent: (i) N = M . (ii) The odd-degree rational cohomology of N is trivial. (iii) The
torus bundle map from N to the Davis–Januszkiewicz space is formalizable.

1. Introduction. Toric varieties are fascinating objects in the study of
algebraic geometry, combinatorics, symplectic geometry and topology. Non-
singular toric varieties, so-called toric manifolds, are given as the quotient
of a moment-angle manifold by a torus action with Cox’s construction. By
generalizing the construction of moment-angle manifolds, we obtain moment-
angle complexes and more general polyhedral products [1, 12, 15], which are
defined to be the colimits of spaces with gluing data obtained from a sim-
plicial complex.

Félix and Tanré [10] have given a rational model for a polyhedral product
of a tuple of spaces corresponding to an arbitrary simplicial complex. One
of the aims of this article is to construct a tractable rational model for
a polyhedral product by refining the model due to Félix and Tanré. By
applying the construction to a polyhedral product for a pair of Lie groups, we
obtain a result on the rational homotopy groups of the polyhedral product;
see Theorem 1.2 and Proposition 4.1.

Moreover, the formality of a toric manifold and the nonformalizability
for a partial quotient which is not a toric manifold are discussed, with their
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models induced by the Félix and Tanré rational models for polyhedral prod-
ucts; see Theorems 1.6, 5.1 and 5.5 for more details.

Throughout this article, each space X is assumed to be connected and
(Q-)locally finite, that is, the rational cohomology group H i(X;Q) is of finite
dimension for i ≥ 0. In the rest of this section, we describe our main results
more precisely. Following Kishimoto and Levi [15], we define a polyhedral
product with the homotopy colimit instead of the colimit; see also [16] for the
study of the Davis–Januszkiewicz space with the homotopy colimit functor.

Definition 1.1 ([15, Definition 1.2]). Let

(X,A) := ((X1, A1), . . . , (Xm, Am))

be a tuple of spaces with Ai ⊂ Xi for each i, and K a simplicial complex with
m vertices. The polyhedral product (X,A)K of the tuple (X,A) corresponding
to K is defined by

(X,A)K := hocolimσ∈K(X,A)σ,

where (X,A)σ = Y1 × · · · × Ym with

Yi =

{
Ai, i /∈ σ,

Xi, i ∈ σ.

We write (X,A)K for (X,A)K if there is a space X and a subspace A such
that Xi = X and Ai = A for each i.

In what follows, we assume that a simplicial complex K has no ghost
vertices unless otherwise specified.

Suppose that each (Xi, Ai) is a pair of CW-complexes. Then the natural
map colimτ∈∂(σ)(X,A)τ → (X,A)σ is a cofibration. Thus, in view of [17, §2
and Proposition 4.8] and also [5, Proposition 8.1.1], we have a weak homotopy
equivalence

(X,A)K
≃w−−→ colimσ∈K(X,A)σ =

⋃
σ∈K

(X,A)σ =: ZK(X,A).

In particular, by definition, the moment-angle complex ZK(D2, S1) corre-
sponding to a simplicial complex K is the colimit

⋃
σ∈K(D2, S1)σ and so it

is weak homotopy equivalent to the polyhedral product (D2, S1)K .
Our first result concerns the rational homotopy groups of a polyhedral

product of a pair of Lie groups. We denote by π∗(X)Q the rational homotopy
group π∗(X)⊗Q for a pointed connected space X whose fundamental group
is abelian.

Theorem 1.2. Let G be a connected compact Lie group and i :H→G
the inclusion of a maximal rank subgroup. Suppose that G/H is simply-
connected and (Bi)∗(xk) is decomposable in H∗(BH;Q) for each generator
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xk of H∗(BG;Q). Then one has a short exact sequence of rational homotopy
groups

0→ π∗((G,H)K)Q
q∗−→ π∗((G/H, ∗)K)Q

∂∗−→ π∗−1(
∏mH)Q → 0

for an arbitrary simplicial complex K with m vertices, where ∂∗ denotes
the connecting homomorphism of the homotopy exact sequence of the middle
vertical sequence in (1.1) below.

We stress that the exactness in the theorem above does not depend on
any property of the given simplicial complex K.

Remark 1.3. While we do not pursue questions about the cohomology
H∗((G,H)K ;K) with coefficients in an arbitrary field K, in order to compute
the cohomology algebra, we may use the commutative diagram

(1.1)

(H,H)K

��

(H,H)K

��

∏mH

��

(EG,H)K

��

(G,H)K //oo

q
��

∏mG

��

(BH, ∗)K (G/H, ∗)K //
j
oo

∏m(G/H)

in which vertical sequences are fibrations; see [7, Lemma 2.3.1]. We can
regard the lower squares as pullback diagrams.

Before describing our main result on partial quotients, we recall some
terminology of rational homotopy theory.

A commutative differential graded algebra (henceforth CDGA) (A, d) con-
sists of a nonnegatively graded algebra A and a differential d on A with
degree +1. Let APL(X) be the CDGA of polynomial differential forms on a
space X; see [8, 10(c)]. It is worth mentioning that there exists a morphism
of cochain complexes from APL(X) to the singular cochain algebra of X with
coefficients in Q which induces an isomorphism of cohomology algebras; see
[8, 10(e), Remark].

By definition, a Sullivan algebra (A, d) is a CDGA whose underlying
algebra A is the free algebra

∧
W generated by a graded vector space W

and for which the vector space W admits a filtration W0 ⊂ W1 ⊂ · · · with
W =

⋃
iWi, d(W0) = 0 and d : Wk →

∧
Wk−1 for k ≥ 1. We say that a

Sullivan algebra (
∧

W,d) is minimal if d(w) is decomposable for each v ∈W .
A morphism φ : (A, d) → (B, d′) of CDGAs is a quasi-isomorphism if

φ induces an isomorphism on cohomology. A rational model (A, d) for a
space X is a CDGA which is connected to APL(X) by a sequence of quasi-
isomorphisms. We call the rational model (A, d) a (minimal) Sullivan model
for X if it is a (minimal) Sullivan algebra. Observe that each space has a
unique minimal Sullivan model; see [8, 14(b), Corollary]. A space X is formal
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if there exists a sequence of quasi-isomorphisms between a Sullivan model
for X and the cohomology H∗(X;Q) which is regarded as a CDGA with zero
differential. We refer the reader to the books [13, 8, 9] for rational homotopy
theory and its applications to topology and geometry.

Definition 1.4 (cf. [18, V]). A map p : E → B is formalizable if there
exists a diagram commutative up to homotopy,

APL(B)
APL(p)

// APL(E)

(
∧
W,d)

l //

≃
��

≃
OO

(
∧

Z, d′)

≃
��

≃
OO

H∗(B;Q)
p∗
// H∗(E;Q)

in which (
∧
W,d) and (

∧
Z, d′) are minimal Sullivan algebras and the vertical

arrows are quasi-isomorphisms; see [8, 12(b)] and [14, Chapter 5] for the
homotopy relation.

For a simplicial complex K, define ZK(C,C∗) as the colimit

colimτ∈K(C,C∗)τ .

Then we have weak equivalences

(D2, S1)K
≃w−−→ colimτ∈K(D2, S2)τ

i−→
≃
ZK(C,C∗),

where i is the inclusion; see [5, Theorem 4.7.5]. Let XΣ be a compact toric
manifold associated with a complete and smooth fan Σ; see [6, §3.1]. We then
have a homeomorphism XΣ

∼= ZK(C,C∗)/H via Cox’s construction of the
manifold XΣ , where K is the simplicial complex with m vertices associated
with the fan Σ and H is a subgroup of the torus (C∗)m which acts on
ZK(C,C∗) canonically and freely; see [6, Theorem 5.1.11] and [5, Theorem
5.4.5, Proposition 5.4.6]. The quotient ZK(C,C∗)/H ′ by a subtorus H ′ ⊂ H
is called a partial quotient.

We recall the pullback diagram in [11, proof of Proposition 3.2]. Let XΣ

be a toric manifold associated with a fan Σ, and let ZK(C,C∗)/H be Cox’s
construction of XΣ mentioned above. Then we have a commutative diagram
consisting of two pullbacks

(1.2)
EG×H ZK(C,C∗)

p
//

πH
��

(EG)/H //

��

EL

��

EG×G ZK(C,C∗)
q

// BG
Bρ

// BL

where G = (C∗)m and L = (C∗)m/H. We observe that the two nonlabelled
vertical maps are principal L-bundles and that the maps p and q are fibra-
tions associated with the universal H-bundle and the universal G-bundle,
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respectively. Since the group H acts on ZK(C,C∗) freely, it follows that the
Borel construction EG ×H ZK(C,C∗) is homotopy equivalent to the toric
manifold XΣ .

Let H ′ be a subtorus of H. Then we may replace H and L in the diagram
(1.2) with H ′ and L′ := (C∗)m/H, respectively. With this replacement, the
upper left corner in the diagram can be regarded as the partial quotient
ZK(C,C∗)/H ′ ≃ EG×H′ ZK(C,C∗).

Remark 1.5. It follows from [5, Theorems 4.3.2, 4.7.5] that the Borel
construction EG×GZK(C,C∗) is homotopy equivalent to the Davis–Janusz-
kiewicz space DJ(K) := (BS1, ∗)K . Since the fan we consider is complete,
it follows from [6, Theorem 12.1.10] that XΣ is simply-connected. Then we
have an exact sequence

0→ π∗(XΣ)
(πH)∗−−−−→ π∗(DJ(K))

∂∗−→ π∗−1(G/H)→ 0.

By considering the center vertical fibration mentioned in (1.1), the exact
sequence in Theorem 1.2 can be regarded as an analogy of the sequence
above.

The following result characterizes the toric manifolds among the associ-
ated partial quotients.

Theorem 1.6. Let ZK(C,C∗)/H be a toric manifold and H ′ a subtorus
of H. For the partial quotient ZK(C,C∗)/H ′, the following conditions are
equivalent.

(i) H = H ′.
(ii) Hodd(ZK(C,C∗)/H ′;Q) = 0.
(iii) The map πH′ : ZK(C,C∗)/H ′ → DJ(K) in the diagram (1.2) is for-

malizable.

Remark 1.7. As seen in Theorem 5.1, a toric manifold is formal. How-
ever, we do not know whether every partial quotient is formal.

An outline of the article is as follows. Section 2 recalls the construction
of the Félix–Tanré rational model for a polyhedral product and discusses the
naturality of the models. In Section 3, we give a tractable rational model for
a polyhedral product and some examples for the model. Section 4 constructs
a rational model for the polyhedral product (G,H)K of a pair of a Lie group
and a closed subgroup corresponding to an arbitrary simplicial complex K.
With this model, we prove Theorem 1.2. In Section 5, we show that every
compact toric manifold is formal. Section 6 is devoted to proving Theo-
rem 1.6.

2. A recollection of the Félix–Tanré rational models for poly-
hedral products. While the construction of a rational model in [10] for a
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polyhedral product is defined by the colimit construction, it is also applica-
ble to constructing a rational model for (X,A)K obtained by the homotopy
colimit as in Definition 1.1. In this section, we summarize this construction.

Let ιj : Aj → Xj be the inclusion and φj : Mj → M′
j a surjective

model (1) for ιj , namely, an epimorphism of CDGAs which fits in a commu-
tative diagram

(2.1)

∧
Wj

φj
//

u ≃
��

∧
Vj

v≃
��

APL(Xj)
ι∗j
// // APL(Aj)

with quasi-isomorphisms u and v. We observe that ι∗j is surjective; see [8,
Proposition 10.4, Lemma 10.7]. For each τ /∈ K, let Iτ denote the ideal of⊗m

i=1Mi defined by Iτ = E1 ⊗ · · · ⊗ Em, where

Ei =

{
Mi, i /∈ τ,

Kerφi, i ∈ τ.

Theorem 2.1 ([10, Theorem 1]). There is a sequence of quasi-isomor-
phisms connecting the CDGA APL((X,A)K) and (

⊗m
i=1Mi)/J(K), where

J(K) :=
∑

τ /∈K Iτ ; that is, the quotient is a rational model for (X,A)K .

In what follows, we may call the quotient CDGA in Theorem 2.1 the
Félix–Tanré (rational) model for the polyhedral product (X,A)K .

Remark 2.2. We observe that the polyhedral product (X,A)K is de-
fined by the homotopy colimit of the diagram associated to the simplicial
complex K. While the nilpotency of each space in the pairs (Xi, Ai) of CW
complexes for 1 ≤ i ≤ m is assumed in [10, Theorem 1], this condition is not
required in Theorem 2.1. In fact, for each inclusion ιj : Aj → Xj , we have a
commutative diagram

(2.2)
Aj

ιj
// Xj

|S(Aj)|
|S(ι)|
//

≃
OO

|S(Xj)|
≃
OO

with the singular simplex functor S( ) and the realization functor | |. This
enables us to obtain a sequence of weak homotopy equivalences

(2.3) (X,A)K
≃w←−− (X ′, A′)K

≃w−−→ colimσ∈K(X ′, A′)σ =
⋃
σ∈K

(X ′, A′)σ,

(1) The existence of the model: We consider a Sullivan representative for ιj ; see [8,
p. 154]. The proof of [8, Lemma 13.4] enables us to replace the homotopy commutative
diagram of the representative with a strictly commutative diagram. By applying the sur-
jective trick [8, §12(b)], we have a surjective model for the inclusion.
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where (X ′
i, A

′
i) denotes the pair (|S(Xi)|, |S(Ai)|); see the paragraph after

Definition 1.1. A surjective model for each inclusion Aj → Xj is regarded as
that for the inclusion A′

j → X ′
j . Thus, with these models and by applying

[8, Proposition 13.5] inductively as in [10, proof of Theorem 1], we can prove
Theorem 2.1 without assuming that the spaces Xi and Ai are CW-complexes
and nilpotent.

In order to prove the naturality of the model in Theorem 2.1 with respect
to inclusions of simplicial complexes and also given surjective models, the
outline of the proof of Theorem 2.1 is presented below.

By using surjective models φj :Mj → M′
j , for each σ ∈ K, we have a

CDGA D̃σ :=
⊗

i∈σMi⊗
⊗

i/∈σM′
i and a map ξσ : (

⊗m
i=1Mi)/J(K)→ D̃σ

of CDGAs defined by

ξσ(xi) =

{
xi, i ∈ σ,

φi(xi), i /∈ σ.

It is readily seen that ξσ is well-defined. The induction argument in [10,
proof of Theorem 1] shows that the maps ξσ of CDGAs give rise to a quasi-
isomorphism

α :
( m⊗
i=1

Mi

)
/J(K)

≃−→ lim
σ∈K

D̃σ.

We also observe that this fact is proved by using [8, Lemma 13.3] which gives
a well-defined quasi-isomorphism between appropriate pullback diagrams in
the category of CDGAs. Thus, with the same notation as in Remark 2.2, we
have a sequence of quasi-isomorphisms
(2.4)

APL((X,A)K)
≃ // A∗

PL((X
′, A′)K) APL(colimσ∈K(X ′, A′)σ)

η
≃

qq

≃oo

limσ∈K APL((X
′, A′)σ) limσ∈K D̃σΦ

≃
oo (

⊗m
i=1Mi)/J(K)

α
≃

oo

in which the first two quasi-isomorphisms are induced by the weak equiva-
lences in (2.3), Φ is defined by the surjective models φi, and η is induced by
the natural maps (X,A)σ → (X,A)K . It follows from [17, Proposition 4.8]
and [5, Proposition 8.1.4] respectively that Φ and η are quasi-isomorphisms.
This enables us to obtain the rational model for the polyhedral product
(X,A)K in Theorem 2.1. Moreover, the above construction of the model
yields the following proposition.

Proposition 2.3. The Félix–Tanré rational models are natural with re-
spect to surjective models which are used in constructing the models of poly-
hedral products and inclusions of simplicial complexes.
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The rational cohomology of the moment-angle complex ZK(D2, S1) is iso-
morphic to the torsion product TorQ[t1,...,tm](Q[t1, . . . , tm]/I(K),Q), where
deg ti = 2 and I(K) denotes the ideal generated by monomials ti1 · · · tis for
{i1, . . . , is} /∈ K, which is called the Stanley–Reisner ideal associated with K;
see [11, 10.1]. Thus, a CDGA of the form

(2.5) (
∧
(xi, . . . , xm)⊗Q[t1, . . . , tm]/I(K), d(xi) = ti)

computes the cohomology algebra H∗(ZK(D2, S1);Q). Here SR(K) denotes
the Stanley–Reisner algebra Q[t1, . . . , tm]/I(K).

Remark 2.4. The inclusion i : S1 → D2 admits a surjective model of
the form π : (

∧
(x, t), d) → (

∧
(x), 0), where π is the projection, d(x) = t

and deg x = 1. By virtue of Theorem 2.1, we see that the CDGA (2.5) is a
rational model for ZK(D2, S1).

Example 2.5. Let K be a simplicial complex with m vertices and j :
K → 2[m] be the inclusion. The map j induces the inclusion j̃ : (BS1, ∗)K →∏m(BS1). We choose the projection (

∧
(t), 0)→ Q as a surjective model for

the inclusion ∗ → BS1, where deg ti = 2 for i = 1, . . . ,m. It follows from
Theorem 2.1 and Proposition 2.3 that we have a model (

∧
(t1, . . . , tm), 0)→

(
∧
(t1, . . . , tm)/I(K), 0) = (SR(K), 0) for which j̃ is the natural projection.

As a consequence, we see that the inclusion j̃ is formalizable in the sense of
Definition 1.4.

3. Comparatively tractable rational models for polyhedral
products. The Félix–Tanré rational model for a polyhedral product
(X,A)K depends on the choice of surjective models for the inclusions in
the given tuple (X,A). While the model is complicated in general, the un-
derlying algebra is adjustable in the sense of Theorem 3.1 below. In fact, we
show that the underlying algebra of the model has a particular form which
can be regarded as a generalization of the rational model for a moment-angle
complex; see Remark 2.4.

We recall the CDGA in (2.5). With this mind, we may call a CDGA
(A, d) a Stanley–Reisner (SR) K-type if the underlying algebra A is of the
form ( m⊗

j=1

(
∧
Vj ⊗Bj)

)/
(bj1 · · · bjs | bj ∈ B+

j , {j1, . . . , js} /∈ K),

where Bj is a free commutative algebra. The ‘K-’ may be omitted if it is
clear from the context.

Theorem 3.1. Each polyhedral product (X,A)K has an SR type CDGA
model; that is, there is a sequence of quasi-isomorphisms of CDGAs connect-
ing APL((X,A)K) and a Stanley–Reisner K-type CDGA.
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Proof. For each j, let φj :
∧
Wj →

∧
Vj be a surjective model for the

inclusion ιj : Aj → Xj . Since φj is surjective, the vector space Wj ad-
mits a decomposition Wj

∼= W ′
j ⊕ W ′′

j which satisfies the condition that

φj |W ′
j
: W ′

j

∼=→ Vj is an isomorphism and φj |W ′′
j
≡ 0. In fact, we choose inde-

composable elements wλ of
∧
Wj so that φj(wλ) = vλ for a basis {vλ}λ∈Λ

for Vj . Then we have a decomposition

Wj
∼= Q{wλ | λ ∈ Λ} ⊕Q{w′′

γ | γ ∈ Γ}

with some index set Γ . Let P (vλ) be the polynomial in vλ’s which represents
φj(w

′′
γ) in

∧
Vj . Putting W ′′

j := Q{w′′
γ −P (wλ)}, we have the decomposition

required above. Theorem 2.1 yields the result.

We now provide a more tractable SR type model for a polyhedral product
of a fibre inclusion. For 1 ≤ j ≤ m, let Fj

ιj−→ Xj
pj−→ Yj be a fibration

with a simply-connected base. Assume that H∗(Yj ;Q) is locally finite for
each j. Then a relative Sullivan model p̃j for the map pj gives a commutative
diagram of CDGAs∧

Wj
p̃j
//

≃
��

(
∧
Vj ⊗

∧
Wj , dj)

ι̃j
//

≃
��

(
∧
Vj , dj)

≃
��

APL(Yj)
p∗j

// APL(Xj)
ι∗j

// APL(Fj)

in which the vertical maps are quasi-isomorphisms; see [14, 20.3, Theorem].
The upper sequence is called a model for the fibration. It follows from the
construction that ι̃j is a surjective model for ιj . If p̃j is minimal, by definition,
we see that d(Vj) ⊂ (

∧≥2 Vj)⊗
∧
Wj+

∧
Vj⊗

∧+Wj in the SR type CDGA.
By virtue of Theorem 2.1, we have

Proposition 3.2. With the same notation as above, the polyhedral prod-
uct (X,F )K for the tuple of fibre inclusions ιj has an SR type CDGA model
of the form

M((X,F )K)

:=
(( m⊗

j=1

(
∧
Vj ⊗

∧
Wj)

)/
(bj1 · · · bjs | bj ∈Wj , {j1, . . . , js} /∈ K), d

)
for which d(Wj) ⊂

∧
Wj and d(Vj) ⊂ (

∧≥2 Vj)⊗
∧
Wj +

∧
Vj ⊗

∧+Wj.

Remark 3.3. The model in Proposition 3.2 is not a Sullivan model in
general. However, if we construct a Sullivan model by using this model, then
for example, we may obtain information on the rational homotopy group of
(X,F )K ; see Example 4.3 below.
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Example 3.4. (i) Let S1 → ES1 → BS1 be the universal S1-bundle
and K be a simplicial complex with m vertices. Then we have a model for
the bundle of the form

∧
(dx) →

∧
(dx) ⊗

∧
(x)

ι̃→
∧
(x), where ι̃ is the

canonical projection and deg x = 1. It follows from Proposition 3.2 that
M((ES1, S1)K) ∼= (

∧
(x1, . . . , xm) ⊗ SR(K), d) where d(xj) = dxj ; see Re-

mark 2.4. Observe that ZK(D2, S1) ≃ ZK(ES1, S1) ≃w (ES1, S1)K ; see [7,
p. 33] for the first homotopy equivalence.

(ii) Let X be a simply-connected space and LX the free loop space, that
is, the space of maps from S1 to X endowed with the compact-open topology.
The rotation action of S1 on the domain of maps in LX induces an S1-action
on the free loop space. Thus we have the Borel fibration LX

i→ ES1 ×S1

LX
p→ BS1. We write (LX)h for the Borel construction ES1 ×S1 LX. Let

(
∧
V, d) be the minimal model for X. Then [20, Theorem A] asserts that the

sequence ∧
(t)

p̃→ (
∧
(t)⊗

∧
(V ⊕ V ), δ)

ĩ→ (
∧
(V ⊕ V ), δ′)

is a model for the Borel fibration, where δ′(v) = d(v), δ′(v) = −sd(v)
and δu = δ′(u) + ts(u) for u ∈ V ⊕ V . The map ĩ is the projection and
hence a surjective model for i. Thus Proposition 3.2 enables us to obtain
a Félix–Tanré model for the polyhedral product ((LX)h, LX)K of the form⊗m

i=1(
∧
(Vi ⊕ V i)⊗ SR(K),

⊗
i δi).

(iii) We can apply Theorem 2.1 to an explicit surjective model for an
inclusion. Let X be a space as in (ii) and (

∧
V, d) a minimal model for X.

Then the projection (
∧
(V ⊕ V ), δ′)→ (

∧
V, d) is a surjective model for the

inclusion X → LX defined by assigning the constant loop at x to a point x.
In fact, this inclusion is a section of the evaluation map ev0 : LX → X at
zero. The inclusion (

∧
V, d)→ (

∧
(V ⊕ V ), δ′) gives rise to a model for ev0.

By considering rational homotopy groups, the result follows. Thus, Theorem
2.1 allows us to construct a model for the polyhedral product (LX,X)K of
the form ( m⊗

i=1

∧
(Vi ⊕ Vi)

)/
(vi1 · · · vis | vj ∈ Vj , {i1, . . . , is} /∈ K)

for which d(Vi) ⊂
∧
Vi.

Proposition 3.2 enables us to deduce the following result.

Corollary 3.5. Let K be a simplicial complex with m vertices. For
1 ≤ j ≤ m, let Fj → Xj → Yj be a fibration with a simply-connected base Yj.
Then there is a first quadrant spectral sequence converging to H∗((X,F )K ;Q)
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as an algebra with

E∗,∗
2
∼=

( m⊗
j=1

H∗(Fj ;Q)
)
⊗H∗((Y , ∗)K ;Q)

as a bigraded algebra, where Ep,q
2
∼=
((⊗m

j=1H
∗(Fj ;Q)

)
⊗Hp((Y , ∗)K ;Q)

)p+q.

Proof. With the same notation as in Proposition 3.2, we give the CDGA
M((X,F )K) a filtration associated with the degrees of elements in

⊗
j

∧
Wj .

This filtration gives rise to the spectral sequence; see [8, 18(b), Example 2].

Let HH∗(APL(X)) denote the Hochschild homology of APL(X). There
exists an isomorphism HH∗(APL(X)) ∼= H∗(LX;Q) of algebras; see [20]
and [8, 15(c), Example 1]. Therefore, Example 3.4(ii) allows us to obtain the
following result.

Corollary 3.6. Let X be a simply-connected space. Then there exists
a first quadrant spectral sequence converging to H∗(((LX)h, LX)K ;Q) as an
algebra with

E∗,∗
2
∼= HH∗(APL(X))⊗m ⊗ SR(K)

as a bigraded algebra, where bideg x = (0,deg x) for x ∈ HH∗(APL(X)) and
bideg ti = (2, 0) for the generator ti ∈ SR(K).

Remark 3.7. Let Fj
ij−→ Xj

pj−→ Bj be a fibration for each 1 ≤ j ≤ m.
Suppose further that each (Xj , Fj) is a pair of CW-complexes. Then the
Félix and Tanré rational model for (X,F )K in Proposition 3.2 associated
with the fibre inclusions is nothing other than the relative Sullivan model
for the pullback

(F , F )K

��

∏mF

��

(X,F )K //

��

∏mX

��

(B, ∗)K //
∏mB

which is introduced in [7, Lemma 2.3.1]. In fact, this follows from [14, 20.6].

4. A rational model for the polyhedral product of a pair of Lie
groups. In this section, we consider a more explicit model for the poly-
hedral product (G,H)K for a pair of a Lie group and a closed subgroup
corresponding to an arbitrary simplicial complex K. In particular, we have
a manageable SR type model for (G,H)K . Indeed, the rational model is de-
termined by the image of the characteristic classes of BG under the map
(Bi)∗ : H∗(BG;Q) → H∗(BH;Q) for the inclusion i : H → G; see Propo-
sition 4.1 for more details on the model. By using this model, we prove
Theorem 1.2.
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Let G be a connected Lie group and H a closed connected subgroup of G.
Let H i→ G

π→ G/H be the principal H-bundle. In order to obtain a rational
model for (G,H)K , we first construct an appropriate surjective model for the
fibre inclusion i.

Consider the fibration EH → EH ×H G
q→ G/H associated with the

bundle π. Since EH is contractible, it follows that the map q is a weak
homotopy equivalence. Moreover, we have a homotopy pullback diagram

(4.1)

G
ι
��

= // G

��

EH ×H G

��

h // EG
pG��

BH
Bi // BG

where vertical sequences are the associated fibration and the universal G-
bundle, respectively, and h is defined by h([x, g]) = Ei(x)g. There exists a
model for the universal bundle of the form

(
∧
VBG, 0) //

≃ mBG
��

(
∧
VBG ⊗

∧
PG, d) //

≃ mEG
��

(
∧
PG, 0)

≃
��

APL(BG)
p∗G // APL(EG) // APL(G)

such that d(xi) = yi and mEG
(xi) = Ψi for xi ∈

∧
VG, where Ψi ∈ APL(EG)

with dΨi = p∗GmBG(yi). Then, by applying the pushout construction [8,
Proposition 15.8] to the model of the bundle pG, we obtain a model

(
∧
VBH , 0) //

≃
��

(
∧
VBH ⊗

∧
PG, d)

ι //

≃ m
��

(
∧
PG, 0)

≃ mG
��

APL(BH) // APL(EH ×H G)
APL(ι)

// APL(G)

of the fibration of the left hand side in the diagram (4.1) in which d(xi) =
(Bi)∗yi. Furthermore, the maps π, ι and q mentioned above fit in the com-
mutative diagram

G

ι
%%

≃ // EH ×G

��

≃ // G

π
��

EH ×H G ≃
q
// G/H

where the horizontal arrows are (weak) homotopy equivalences. Thus, the
lifting lemma [8, Proposition 14.6] implies that a Sullivan model [8, 15(a)]
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for ι can be regarded as that for π. Consider a commutative diagram

(
∧
VBH ⊗

∧
PG, d)

m≃
��

j
// (
∧
VBH ⊗

∧
PG ⊗

∧
PH , ∂)

γ

≃
// (
∧
PG, 0)

mG

≃
tt

APL(EH ×H G)
APL(ι)

// APL(G)

of CDGAs in which j is an extension, γ is the projection and the differential
∂ is defined by ∂(ui) = ti for ui ∈ PH , ti ∈ VBH and ∂(xi) = (Bi)∗(yi) for
xi∈PG. Observe that H∗(

∧
PG, 0) ∼= H∗(G;Q) and γ is a quasi-isomorphism.

Then, we see that the projection γ : (
∧
VBH ⊗

∧
PG⊗

∧
PH , ∂)→ (

∧
PH , 0)

is a surjective model for the inclusion H → G. Thus, Proposition 3.2 yields
the following result.

Proposition 4.1. One has a rational model of the form

(4.2)
(
(
∧
PH)⊗m ⊗ ((

∧
VBH ⊗

∧
PG)

⊗m
/
I(K)), ∂

)
for the polyhedral product (G,H)K , where I(K) denotes the Stanley–Reisner
ideal generated by elements in (

∧
VBK ⊗

∧
PG)

⊗m.

Example 4.2. With the same notation as above, suppose further that
rankG = rankH = N . Then the sequence (Bi)∗(yj) for j = 1, . . . , N is reg-
ular. This enables us to deduce that G/H is formal. There exists a sequence
of quasi-isomorphisms

APL(G/H)
≃←−

∧
VBH ⊗

∧
PG =:M ≃−→

u
H∗(G/H)

= (
∧
VBH/(Bi)∗(yi), d = 0).

The naturality (Proposition 2.3) of the rational model in Theorem 2.1 gives
rise to a commutative diagram

limσ∈K APL((G/H, ∗)σ) limσ∈K D̃σΦ

≃
oo

≃ u1

��

(
⊗mM)/I(K) =: B1

α

≃
oo

u2

��

APL((G/H, ∗)K)

η ≃
OO

limσ∈K H∗(G/H)σ (
⊗m

H∗(G/H))/I(K) =: B2
α

≃
oo

where H∗(G/H)σ :=
⊗

i∈σ H
∗(G/H)σ ⊗

⊗
i/∈σ Q and u1 and u2 are maps

of CDGAs induced by u; see (2.4). By virtue of [17, Proposition 4.8], we see
that the map u1 is a quasi-isomorphism. Thus, commutativity implies that
u2 is also a quasi-isomorphism. Observe that I(K) = J(K) in the case that
we deal with; see Section 2. We consider the pushout diagram of ℓ along u2:

(4.3)
B1

≃u2

��

ℓ // ((
∧
PH)⊗m ⊗ (

⊗mM)/I(K), ∂)

ũ2
��

B2
ℓ̃ // ((

∧
PH)⊗m ⊗ (

⊗mH∗(G/H))/I(K), ∂) =: C
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where ℓ is the KS-extension induced by the rational model for (G,H)K in
(4.2); see [14, Chapter 1] for the definition of a KS-extension. It follows from
[8, Lemma 14.2] that ũ2 is a quasi-isomorphism and hence C is also a rational
model for (G,H)K .

In particular, for the unitary group U(n), the maximal torus T and ev-
ery simplicial complex K with m vertices, we have a rational model for
(U(n), T )K of the form(

(
∧
(xi, . . . , xn))

⊗m ⊗
( m⊗

i=1

Q[t1, . . . , tn]/(σ1, . . . , σn)
)/

I(K), ∂
)
,

where ∂(xi) = ti and σk denotes the kth elementary symmetric polynomial.

Example 4.3. Let K be an arbitrary simplicial complex with m vertices.
By virtue of Propositions 2.3 and 4.1, we see that the projection

q : (SU(n), SU(k))K → (SU(n)/SU(k), ∗)K

admits a model given by

q̃ : (
∧
(xk+1, . . . , xn)

⊗m/I(K)), 0)

→
(∧

(x2, . . . , xk)
⊗m ⊗ (

∧
(xk+1, . . . , xn)

⊗m/I(K)), 0
)
,

where q̃(xi) = xi for k+1 ≤ i ≤ n, and deg xi = 2i−1. Since the domain of q̃
admits the structure of a Sullivan algebra, we can construct a KS-extension
for q̃. Then it follows from Lemma A.1 that the projection q is formalizable
in the sense of Definition 1.4.

Suppose further that the 1-skeleton of K does not coincide with that
of ∆m. Then the minimal model for (SU(n)/SU(k), ∗)K has a nontrivial
differential whose quadratic part is also nontrivial; see [8, pp. 144–145] for a
way to construct a minimal model for a CDGA. Therefore, [8, Theorem 21.6]
implies that the rational homotopy groups π∗((SU(n)/SU(k), ∗)K)Q and
π∗((SU(n), SU(k))K)Q have nontrivial Whitehead products. Observe that
the Whitehead product on π∗(SU(n)/SU(k))Q vanishes.

Let X be a pointed space and π∗(X) := H∗(Q(
∧
V ), d0) the homology of

the vector space of indecomposable elements of a Sullivanmodel (
∧
V, d) forX,

where Q(
∧
V ) is the vector space of indecomposable elements and d0 denotes

the linear part of the differential d. There is a natural map νX from π∗(
∧
V ) to

Hom(π∗(X),Q) provided π∗(X) is abelian. Moreover, νX is an isomorphism
if X is a nilpotent space whose fundamental group is abelian; see [4, 11.3].

It follows from [8, proof of Proposition 15.13] that the natural map ν( ) is
compatible with the connecting homomorphisms of the dual to the homotopy
exact sequence for a fibration and the homology exact sequence for π∗( ) if
the fundamental groups of the spaces of the fibration are abelian. Then, by
considering the middle vertical fibration F in (1.1), we arrive at



Félix–Tanré rational models 15

Lemma 4.4. For each space X in the fibration F , the map νX is an
isomorphism.

Proof of Theorem 1.2. We first observe that (G/H, ∗)K is simply-con-
nected. This follows from the Seifert–van Kampen theorem. Then we see
that π1((G,H)K) is an abelian group.

In what follows, we consider a Sullivan model for (G,H)K with the same
notation as in Example 4.2. Let β0 :

⊗mM→ (
⊗mH∗(G/H))/I(K) =: B2

be the composition of the quasi-isomorphism u2 : B1 → B2 mentioned
above and the projection

⊗mM → (
⊗mM)/I(K). Observe that M =∧

(VBH ⊕ PG). Extending β0, we define a quasi-isomorphism

β : A1 := (
⊗mM)⊗

∧
V =

∧
((
⊕m(VBH ⊕ PG))⊕ V )

≃−→ B2.

Let d0 denote the linear part of the differential of A1. In order to construct
a minimal Sullivan model for A1, we apply the procedure from [8, proof of
Theorem 14.9]. As a consequence, there exists an isomorphism (

∧
W,d′) ⊗∧

(U ⊕ dU) ∼= A1 for which
∧
(U ⊕ dU) is a contractible CDGA, (

∧
W,d′) is

minimal, (
⊕m(VBH⊕PG))⊕V = U⊕Ker d0 = U⊕d0U⊕W and d0(W ) = 0.

By the construction, we may assume that
⊕m(VBH ⊕ PG) ⊂ W . Then we

have a quasi-isomorphism β′ : (
∧
W,d′)

≃−→ B2 and a pushout diagram

(4.4)

(
∧
W,d′)

I //

β′ ≃
��

(
(
∧
PH)⊗m ⊗

∧
W,∂

)
β′′

��

B2
ℓ̃ // (

∧
PH)⊗m ⊗B2

in which ∂(xk) = tk ∈ VBH for xk ∈ PH and I is the canonical inclusion.
Therefore, the map β′′ is a quasi-isomorphism. Moreover, we see that the
bottom right CDGA in the square above is nothing other than the CDGA
C from Example 4.2.

By applying Lemma A.1 repeatedly to the diagram obtained by combin-
ing the diagrams (4.3) and (4.4) and to a commutative square given by the
naturality of maps in (2.4), we obtain a commutative diagram

(4.5)

(
∧
W,d′)

I //

≃
��

((
∧
PH)⊗m ⊗

∧
W,∂)

≃
��

APL((G/H, ∗)K)
APL(q)

// APL((G,H)K)

Recall that
⊕m(VBG ⊕ PG) is a subspace of W . Then we may write

(
∧

VBH⊗
∧
PG)

⊗m⊗
∧
W ′ for

∧
W . Thus, the upper sequence in the diagram

(4.5) gives rise to a short exact sequence of complexes

0 (
⊕m PH , 0)oo ((

⊕m(PH ⊕ VBH ⊕ PG))⊕W ′, ∂0)oo (W, 0)oo 0oo
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in which the linear part ∂0 of ∂ satisfies ∂0 :
∧
PH →

∧
VBH , ∂0(tk) = yk and

∂0|PG⊕W ′ = 0. The last equality follows from the assumption that (Bi)∗xk is
decomposable for each k. The homology long exact sequence is decomposed
into a short exact sequence of the form

0 H(
⊕m(PH ⊕ VBH ⊕ PG))⊕W ′, ∂0)oo (W, 0)oo (

⊕m PH , 0)
d′0oo 0,oo

where d′0 denotes the connecting homomorphism. In fact, the linear map d′0

coincides with the composition
⊕mPH

∂0−→
⊕m(PH⊕VBH⊕PG)⊕W ′ pr−→W ,

where pr is the projection; see [8, proof of Proposition 15.13]. Thus, Lemma
4.4 yields the desired result.

Remark 4.5. Let G be a compact Lie group and H be a closed sub-
group for which G/H is simply-connected and (Bi)∗(xk) is indecomposable
in H∗(BH;Q) for some generator xk of H∗(BG;Q). Then we see that the
connecting homomorphism

∂∗ : π∗((G/H, ∗)K)Q → π∗−1(
∏mH)Q

is not surjective. Indeed, the connecting homomorphism is natural with re-
spect to maps between spaces. Thus it suffices to show that the connecting
homomorphism ∂∗ : π∗(H) → π∗+1(G/H) is not injective; see the diagram
(1.1). To this end, we show that the map i∗ : π∗(G)→ π∗(H) is nontrivial.

Recall the surjective model ρ : (
∧
VBH ⊗

∧
PG ⊗

∧
PH , ∂) → (

∧
PH , 0)

for the inclusion H → G used in the construction of the model (4.2). Suppose
that (Bi)∗(xk) =

∑
i λiti+(decomposable element) for some generator xk in

H∗(BG;Q), where λi ̸= 0 for some i. Then it follows that xi +
∑

i λiui is a
cocycle in the cochain complex (Q(

∧
VBH ⊗

∧
PG ⊗

∧
PH), ∂0) and

i∗
(
xi +

∑
i

λiui

)
=

∑
i

λiui ̸= 0

for i∗ = H(Q(ρ)) : H(Q(
∧
VBH ⊗

∧
PG ⊗

∧
PH), ∂0) → H(Q(

∧
PH), 0)

= PH .
For example, we see that ∂∗ : π∗((U(n)/T, ∗)K)Q → π∗−1(

∏mT )Q is not
surjective for a maximal torus T of U(n).

5. The formality of a compact toric manifold. We prove the fol-
lowing result by using the commutative diagram (1.2).

Theorem 5.1. Every compact toric manifold XΣ is formal.

This result is proved in [17, 3]; see also [5, Theorem 8.1.10]. The proof of
[3, Proposition 3.1] indeed uses the algebra structure of the cohomology of
the toric manifold. We will use the Félix–Tanré model for DJ(K) in order
to give another proof.
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We will also use a result due to Baum characterizing regular sequences.

Proposition 5.2 ([2, 3.5 Proposition]). Let A be a connected commu-
tative algebra and a1, . . . , at be elements of A>0. Set Λ = K[x1, . . . , xt] with
deg xi = deg ai and consider A to be a Λ-module through the map f : Λ→ A
defined by f(xi) = ai. Then the following are equivalent:

(i) a1, . . . , at is a regular sequence.
(ii) Tor−1,∗

Λ (K, A) = 0.
(iii) Tor−j,∗

Λ (K, A) = 0 for all j ≥ 1.
(iv) A is a projective Λ-module.
(v) As a Λ-module, A is isomorphic to Λ⊗ (A/(a1, . . . , at)).

The following result gives a rational model for the toric manifold XΣ in
the proof of Theorem 5.1.

Lemma 5.3. The map (Bρ) ◦ q : DJ(K) → BL′ in the diagram (1.2) is
formalizable (see Definition 1.4 and the paragraph after the diagram (1.2)).

Proof. This follows from the same argument as in Example 2.5.

Proof of Theorem 5.1. Let {vj}mj=1 be the set of 1-dimensional cones of
the fan Σ of dimension n. Each vi is in the lattice N of Rn which defines
the fan Σ. Then it follows from the construction of the diagram (1.2) that
H∗(BL) ∼= Q[t′1, . . . , t

′
n] as algebras. Observe that dimL = dimΣ = n.

Moreover, we see that for i = 1, . . . , n,

(Bρ)∗(t′i) =
m∑
j=1

⟨mi, vj⟩tj ,

where tj denotes the generator of H∗(BG) ∼= Q[ti, . . . , tm] and mi is the
dual basis for M := Hom(N,Z). The Félix–Tanré model for DJ(K) is of the
form (SR(K) = Q[ti, . . . , tm]/I(K), 0) for which q∗(tj) = tj for j = 1, . . . ,m.
Consider the pushout construction of models [14, 8] for the pullback (1.2).
Then, by Lemma 5.3 and [19, Proposition 2.3.4], we have a rational model
for XΣ of the form

C :=
(∧

(x1, . . . , xn)⊗ SR(K), d(xi) = q∗(Bρ)∗(t′i) =
m∑
j=1

⟨mi, vj⟩tj
)
,

where deg xi = 1. This also computes the torsion functor

Tor∗,∗H∗(BL)(H
∗(DJ(K)),Q)

if we assign bidegree (−1, 2) to each xi. Then [6, Theorem 12.3.11] asserts
that Hodd(XΣ ;Q) = 0. This implies that Tor−1,∗

H∗(BL)(H
∗(DJ(K)),Q) = 0. It

follows from Proposition 5.2 that q∗(Bρ)∗(t′1), . . . , q
∗(Bρ)∗(t′n) is a regular
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sequence in SR(K). Thus, we have a quasi-isomorphism

f : C → SR(K)/(d(xi); i = 1, . . . , n) = H∗(XΣ ;Q)

defined by f(tj) = tj and f(xi) = 0.

Remark 5.4. We can also obtain the rational cohomology of the compact
toric manifold by using the Eilenberg–Moore spectral sequence for the pull-
back (1.2). In fact, it follows from the computation of the spectral sequence
that, as algebras,

H∗(XΣ) ∼= TorH∗(BL)(H
∗(DJ(K)),Q)

∼= SR(K)
/( m∑

j=1

⟨mi, vj⟩tj
)
.

The consideration above for the polyhedral product (C,C∗)K is applica-
ble to more general ones, for example, (EG,G)K for a connected Lie group G.
In fact, for a simplicial complex K with m vertices, we have (homotopy) pull-
back diagrams

(5.1)
XK,(G,H) := E(

∏mG)×H (EG,G)K
p
//

π
��

E(
∏mG)/H //

��

EL

��

E(
∏mG)×∏mG (EG,G)K

q
// B(

∏mG)
Bρ
// BL

where H is a normal (not necessarily connected) closed subgroup of
∏mG

and L = (
∏mG)/H. Then [7, Lemma 2.3.2] implies that the natural map

E(
∏mG)×∏mG (EG,G)K

≃→ (BG, ∗)K is a homotopy equivalence. Thus, we
arrive at

Theorem 5.5. Suppose that Hodd(XK,(G,H);Q) = 0. Then XK,(G,H) is
formal.

Theorem 1.6 asserts that among partial quotients associated with M the
condition in Theorem 5.5 is satisfied only by the toric manifold M .

Corollary 5.6. With the notation as above, suppose further that
Hodd(XK,(G,H);Q) = 0 and H∗(XK,(G,H);Q) ∼= H∗(XK′,(G′,H′);Q). Then
XK,(G,H) ≃Q XK′,(G′,H′) if the spaces are nilpotent.

Remark 5.7. Suppose that H∗(BL) ∼= Q[t′1, . . . , t
′
n]. Under the same

assumption as in Theorem 5.5, we see that XK,(G,H) admits a rational model
of the form(∧

(x1, . . . , xn)⊗ (
⊗mH∗(G;Q)

/
I(K)), d(xi) = q∗(Bρ)∗(t′i)

)
in which q∗(Bρ)∗(t′1), . . . , q

∗(Bρ)∗(t′n) is a regular sequence.

We observe that, for a compact smooth toric manifold XΣ , there is a ho-
motopy equivalence XΣ ≃ XK,((C∗)m,H) for which K is a simplicial complex
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associated with the fan Σ and ZK(C,C∗)/H is Cox’s construction for XΣ .
Moreover, the toric manifold XΣ is simply-connected and hence nilpotent.
Thus, Corollary 5.6 is regarded as an answer to the rational cohomological
rigidity problem for toric manifolds.

6. The (non)formalizability of partial quotients. We begin by con-
sidering formalizability for toric manifolds.

Proposition 6.1. The map πH : XΣ → DJ(K) in (1.2) is formalizable.

Proof. By considering the sequence (2.4) for (X,A) = (BS1, ∗), we
find quasi-isomorphisms connecting APL(DJ(K)) to the Stanley–Reisner al-
gebra SR(K). We can construct a minimal model ϕ :

∧
W → SR(K) for

SR(K) so that W = Q{t1, . . . , tm} ⊕ V , where t1, . . . , tm give the genera-
tors of SR(K), ϕ(V ) = 0 and V = V ≥2. The lifting lemma [8, Proposition
12.9] produces a quasi-isomorphism ϕ′ :

∧
W → APL(DJ(K)). Thus, in

particular, the Davis–Januszkiewicz space DJ(K) is formal. The pushout
construction in the proof of Theorem 5.1 gives rise to a commutative dia-
gram

APL(DJ(K))
APL(πH)

// APL(XΣ)∧
W

i //

≃ϕ′
OO ∧

(x1, . . . , xn)⊗
∧
W

≃
OO

where i is a KS-extension. Moreover, we have a commutative diagram of
CDGAs ∧

W
i //

≃ϕ
��

∧
(x1, . . . , xn)⊗

∧
W

≃ f
��

H∗(DJ(K);Q)
(πH)∗

// H∗(XΣ ;Q)

in which ϕ is a quasi-isomorphism defined by ϕ(tj) = tj and ϕ|V ≡ 0, the
map i is an extension and f is the quasi-isomorphism given at the end of the
proof of Theorem 5.1.

Proof of Theorem 1.6. Let ZK denote the space ZK(C,C∗). Suppose that
H = H ′. Then the partial quotient ZK/H ′ is nothing other than the toric
manifold XΣ . Then [6, Theorem 12.3.11] implies (ii).

We recall the proof of Theorem 5.1. We have a rational model

(6.1) C ′ := (
∧
(x1, . . . , xl)⊗ SR(K), d(xi) = q∗(Bρ)∗(t′i))

for ZK/H ′. Under the assumption (ii), by Proposition 5.2, we see that the
sequence d(x1), . . . , d(xl) is regular. Thus the same argument as in the proof
of Proposition 6.1 yields (iii).

Suppose that H ′ is a connected proper subgroup of H. We show that πH′

is not formalizable. We may replace ZK and the tori H and H ′ acting on the
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moment-angle manifold with the polyhedral product (D2, S1)K , a compact
Lie group T k and its subtorus with an appropriate integer k, respectively.
Assume that the fan Σ has m rays and hence K is a simplicial complex with
m vertices. If the fan is of dimension n, then we have an exact sequence
1→ T k → Tm ρ→ Tn → 1 via Cox’s construction of the toric manifold XΣ .
With the same notation as in the proof of Theorem 5.1, since d(x1), . . . , d(xn)
is a regular sequence, it follows from Proposition 5.2 that H∗(DJ(K)) ∼=
Q[t1, . . . , tn]⊗H∗(XΣ) as a Q[t1, . . . , tn]-module.

For a proper subgroup H ′ of T k, the quotient L′ of the inclusion H ′ → Tm

is a torus of dimension l greater than n. Consider the rational model (6.1) for
ZK/H ′. We assume that d(x1), . . . , d(xl) is a regular sequence. Then, by the
same argument as in the proof of Theorem 5.1 with the diagram (1.2), we
find that H∗(DJ(K)) ∼= Q[t1, . . . , tl]⊗H∗(ZK/H ′) as a Q[t1, . . . , tl]-module.
By considering the Poincaré series of H∗(DJ(K)) in two ways, we see that

1∏l−n(1− t2)
P1(t) = P2(t),

where P1(t) and P2(t) are the Poincaré series of H∗(ZK/H ′) and H∗(XΣ) ∼=
H∗(ZK/H), respectively. Since the partial quotients are manifolds of finite
dimensions it follows that P1(t) and P2(t) are polynomials. This contradicts
the equality above and hence d(x1), . . . , d(xl) is not a regular sequence.

Suppose that the map πH′ : ZK/H ′ → DJ(K) is formalizable. By virtue
of [19, Proposition 2.3.4], we have a commutative diagram

APL((DJ(K))
APL(πH′ )

// APL(ZK/H ′)

∧
W

i //

≃ϕ
��

ϕ′ ≃
OO ∧

(x1, . . . , xl)⊗
∧
W

≃η
��

≃
OO

H∗(DJ(K);Q)
(πH′ )∗

// H∗(ZK/H ′;Q)

Consider the fibration ZK → EG×H′ ZK
p−→ (EG)/H ′ which fits in the

diagram (1.2). The argument in [7, 4.1] enables us to conclude that ZK is 2-
connected; see also [5, Proposition 4.3.5]. Thus, the homotopy exact sequence
of the fibration above implies that ZK/H ′ ≃ EG×H′ZK is simply-connected
and hence H1(ZK/H ′) = 0.

By Lemma 5.3 and [19, Proposition 2.3.4], we see that

Tor∗Q[t1,...,tl]
(Q, SR(K)) ∼= Tor∗Q[t1,...,tl]

(Q,
∧
W ).

This implies that the spectral sequence converging to the torsion group
Tor∗Q[t1,...,tl]

(Q,
∧
W ) with E∗,∗

2
∼= Tor∗,∗Q[t1,...,tl]

(Q, SR(K)) collapses at the
E2-page. This fact allows us to obtain a sequence

Tor−1,∗
P (Q, SR(K)) ∼= E−1,∗

0
p←− F−1Tor∗−1

P (Q,
∧
W )

ι−→ Tor∗−1
P (Q,

∧
W ).
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Here {F j} denotes the filtration associated to the spectral sequence, P is
the polynomial algebra Q[t1, . . . , tl], p and ι are the canonical projection and
the inclusion, respectively. Since d(x1), . . . , d(xl) is not a regular sequence,
it follows from Proposition 5.2 that there is a nonexact cocycle

w =
l∑

j=1

ujxj − z

in F−1Tor∗Q[t1,...,tl]
(Q,

∧
W ), where ui and z are in

∧
W . Observe that the

torsion algebra Tor∗Q[t1,...,tl]
(Q,

∧
W ) is isomorphic to the cohomology

H∗(
∧
(x1, . . . , xl)⊗

∧
W,d)

as an algebra. We see that deg xj = 1 and then η(xj) = 0 for each j. The
element z is of odd degree and is in the image of the map i. Thus, since
Hodd(DJ(K);Q) = 0, it follows that

H∗(η)([w]) = [η(w)] = η(w) =

l∑
j=1

η(uj)η(xj)− (π′)∗ϕ(z) = 0,

a contradiction.

Appendix A. A lifting lemma. In this section, we describe an alge-
braic result obtained by the lifting lemmas [8, Lemma 12.4 and Proposition
14.6].

Lemma A.1. For the commutative diagram (A.1) below with a Sullivan
algebra A1 and a KS-extension I, one has a commutative diagram (A.2) in
which ũi is a quasi-isomorphism if ui is, for i = 1 or 2.

(A.1)

A1

u1
��

I // A1 ⊗
∧
W1

u2
��

B2
ℓ2 // C2

B1

≃v
OO

ℓ1 // C1

≃ v′
OO

(A.2)
A1

ũ1
��

I // A1 ⊗
∧
W1

ũ2
��

B1
ℓ1 // C1

Proof. By applying the surjective trick [8, p. 148] to v, we obtain a dia-
gram

B1

≃v
��

ℓ1 // C1

v′≃
��

B2
ℓ2 // C2

A1
ξ
//

u1

77

B1 ⊗
∧
S

λ ≃

77

≃ṽ
OOOO

ℓ1⊗1
// C1 ⊗

∧
S

ṽ′≃
OO

λ′≃

gg

of solid arrows in which the three squares are commutative. We observe that
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S ∼= B2 ⊕ dB2 and that ṽ′ is defined by ṽ′(c1) = v′(c1) for c1 ∈ C1 and
ṽ′(s) = ℓ2(s) for s ∈ S. Since A1 is a Sullivan algebra, the lifting lemma [8,
Lemma 12.4] enables us to obtain the map ξ which fits in the commutative
triangle. Thus we have a commutative diagram of solid arrows

A1

I
��

ξ
// B1 ⊗

∧
S

ℓ1⊗1
// C1 ⊗

∧
S

ṽ′≃
��

A1 ⊗
∧
W1 u2

//

u2

33

C2

Since the map I is a KS-extension, by using [8, Proposition 14.6] we find a
dotted arrow u2 which makes the upper triangle commutative and the lower
triangle commutative up to homotopy relative to A1. Define ũ1 := λ ◦ ξ
and ũ2 := λ′ ◦ u2. Then we obtain the commutative diagram (A.2). By the
construction of the map ũi, we see that ũi is a quasi-isomorphism if ui is for
i = 1 or 2.
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