
TOWARD RIEMANNIAN DIFFEOLOGY

KATSUHIKO KURIBAYASHI, KEIICHI SAKAI, AND YUSUKE SHIOBARA

Abstract. We introduce a framework for Riemannian diffeology. To this

end, we use the tangent functor in the sense of Blohmann and one of the
options of a metric on a diffeological space in the sense of Iglesias-Zemmour.
With a technical condition for a definite Riemannian metric, we show that
the psudodistance induced by the metric is indeed a distance. As examples of

Riemannian diffeological spaces, an adjunction space of manifolds, a space of
smooth maps and the mixed one are considered.

1. Introduction

Diffeology [35, 18] provides a natural generalization of differential topology and
geometry. The de Rham theory [13, 14, 16, 17, 25, 27, 12], sheaf theory [30, 23],
infinite dimensional geometry for partial differential equations [10] and (abstract)
homotopy theory [9, 21, 22, 26, 34] have also been developed in the diffeological
setting. Moreover, categorical comparisons of diffeology with other smooth and
topological structures are made in [1, 8, 36]. However, it is hard to say that the
development of Riemannian notions of diffeological spaces is sufficient.

In [19], Iglesias-Zemmour has introduced a notion of Riemannian metrics in
diffeology. The definition of the definiteness of the metric on a diffeological space
is described with differential 1-forms on the given space; see [19, Page 3]. Making
a quote from [20, Page 227], “It is not clear what definition is the best, for many
examples built with manifolds and spaces of smooth maps they do coincide. But
they may differ in general and, depending on the problem, one must choose one or
the other.”

This article introduces a weak Riemannian metric of a diffeological space and its
definiteness using the tangent functor due to Blohmann [2, 3]. In particular, the
colimit construction of the tangent functor works well in considering the metrics. As
a consequence, we may deal with Riemannian metrics for a diffeological adjunction
space and the space of smooth maps in our framework simultaneously. A compari-
son between a weak Riemannian metric and the metric due to Iglesias-Zemmour is
made in Propositions 3.5 and 3.10. It is worthwhile mentioning that Goldammer
and Welker introduce another definition of a Riemannian diffeological space in [11]
by using the tangent space in the sense of Vincent [37]. While it is important to
consider the relationship between two frameworks of Riemannian diffeolgy, we do
not pursue the issue in this article.
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Here is a summary of our main results. Let X be a diffeological space. The
pseudodistance d defined by a weak Riemannian metric on X gives the topology
Od of X. Then, Theorem 3.13 allows us to conclude that the D-topology of X is
finer than Od. Theorem 3.19 asserts that the pseudodistance defined by a weak
Riemannian metric on X is indeed a distance if the metric is definite and the diffe-
ology of X is generated by a family of plots which separates points ; see Definition
3.17 for the separation condition. The necessity of the separateness for a diffeology
is clarified in Example 4.4.

Theorem 4.2 yields that an adjunction diffeological space obtained by attaching
two definite weak Riemannian diffeological spaces admits again a definite weak
Riemannian metric. We also see that the space C∞(M,N) of smooth maps endowed
with appropriate diffeology (which may be coarser than the functional diffeology)
admits a weak Riemannian metric, here M is a closed manifold and N is a weak
Riemannian diffeological space; see Section 5.2. Moreover, it turns out that the
pseudodistance on C∞(M,N) is a distance; see Theorem 5.6.

These constructions are mixed. In fact, we obtain a fascinating example of a
definite weak Riemannian diffeological space.

Example 1.1. (See Example 5.9 and Proposition 5.8 for a more general setting.)
Let M be a closed orientable manifold and (N, gN ) a Remannian manifold. The
diffeological adjunction space

C∞(M,N)
∐
N

C∞(M,N)

obtained by the section N → C∞(M,N) of the evaluation map admits a definite
weak Riemannian metric g̃ for which

ι∗(g̃) = (

∫
M

volM )× gN ,

where the left-hand side is the pullback of the metric g̃ by the canonical injection
ι : N → C∞(M,N)

∐
N C∞(M,N) and volM denotes the volume form of M .

By applying Proposition 3.11, which is a result on the pullback of a metric
along an induction, and a general result on a weak Riemannian metric on a map-
ping space, we investigate a special example of mapping spaces, a free loop space.
Proposition 5.11 shows that the concatenation map, that is important in the study
of string topology [4], preserves the metrics on the loop spaces. This result sug-
gests that our weak Riemannian metric might be well-suited to string topology; see
Section 5.3.

The rest of this article is organized as follows. Section 2 recalls the definition of
a diffeological space and gives its examples. In Section 3, we introduce a weak Rie-
mannian metric and the (puseudo-)distance on a diffeological space. As mentioned
above, the metric is related to that in the sense of Iglesias-Zemmour. Sections 4
and 5 address metrics on a diffeological adjunction space and a diffeological map-
ping space, respectively. Section 6 is devoted to considering the warped product
in diffeology. In particular, we investigate a pullback of definite weak Riemannian
diffeological spaces.

1.1. Future work and perspective. The category of diffeological spaces con-
tains manifolds and other spaces with smooth structures; see Example 2.2 below.



TOWARD RIEMANNIAN DIFFEOLOGY 3

Therefore, diffeology together with the notion of Riemannian metrics (Riemannian
diffeology) produces many issues on smooth spaces. Here are some of them.

i) With the framework of Rimannian metrics, we may consider geodesic calculus
in diffeology as seen in [20].

ii) There exists a fully faithful embedding from the category of manifolds modeled
by locally convex spaces in the sense in [24, Section 27] to the category Diff; see [22,
Lemma 2.5]. Then, we are interested in descriptions of weak and strong Riemannian
metrics on manifolds containing mapping spaces with our metrics in diffeology; see,
for example, [33, Section 4.1] for the metrics on infinite-dimensional manifolds.

iii) We expect a new development of convergence theory of smooth spaces with
concepts such as connections, curvatures and the Gromov-Hausdorff distance if the
notion of metrics of diffeological spaces combines with elastic diffeology∗.

iv) Topological data analysis (TDA) begins usually by putting a data set into an
appropriate metric space, in particular an Euclidean space, and investigate shapes
of the data. Thus, future work includes moreover studying TDA by using a Rie-
mannian diffeological space as the stage putting a data set.

2. Preliminaries

In this section, we recall examples of diffeological spaces and important funda-
mental constructions in diffeology which are used throughout this article. We begin
with the definition of a diffeological space. A comprehensive reference for diffeology
is the book by Iglesias-Zemmour [18].

Definition 2.1. We call an open subset U of a Euclidean space (of arbitrary
dimension) a domain. A map from a domain to a set X is called a parametrization
of X. The domain of a parametrization P of X is denoted by UP or dom(P ).

Let X be a set. A set D of parametrizations is a diffeology of X if the following
three conditions hold:

(1) (Covering) Every constant map U → X for all domains U is in D;
(2) (Compatibility) If U → X is in D, then for any smooth map V → U from

another domain V , the composite V → U → X is also in D;
(3) (Locality) If U =

⋃
i Ui is an open cover of a domain U and U → X is a

map such that each restriction Ui → X is in D, then U → X is in D.

An element of a diffeology D of X is called a plot of X. A diffeological space (X,D)
consists of a set X and a diffeology D of X.

For diffeological spaces (X,DX) and (Y,DY ), a map f : X → Y is smooth if the
composite f ◦ P is in DY for each plot P ∈ DX . Then, we have the category Diff
consisting of all diffeological spaces and smooth maps.

A typical example of a diffeological space is a manifold, as in the following
Example 2.2 (1). We also have many other examples each of which is not a manifold
in general.

Example 2.2. (1) Let M be a manifold. Then, the underlying set M and the
standard diffeology DM

std give rise to a diffeological space (M,DM
std), where DM

std is
defined to be the set of all smooth maps U → M from domains to M in the usual
sense. We have a functor m : Mfd → Diff from the category of manifolds defined by
m(M) = (M,DM

std). This functor is fully faithful; see, for example, [1, 2.1 Example].

∗See [2, 5, 6] for Lie brackets of vector fields which are defined in a category with a tangent

structure in the sense of Rosicý [32]. We refer the reader to [7] for connections in tangent categories.
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(2) Let G be a set of parametrizations of X. Then define 〈G〉 to be the set of all
parametrizations P : UP → X satisfying the following condition:

For any r ∈ UP , there exists an open neighborhood Vr of r in UP such that
P |Vr

is a constant plot, or there exist Q ∈ G and a smooth map f : Vr → UQ

such that P |Vr
= Q ◦ f .

Then 〈G〉 is a diffeology of X, called the diffeology generated by G.
Let (X,D) be a diffeological space. A subset G ⊂ D is a generating family of D

if 〈G〉 = D. Examples include generating families Gatlas and Gimm of the standard
diffeology DM

std of a manifold M with an atlas {(Vλ, ϕλ)}λ∈Λ given respectively

by Gatlas = {iλ ◦ ϕ−1
λ : ϕλ(Vλ) → M | iλ is the inclusion, λ ∈ Λ} and the set of

immersions Gimm = {immersions f : U ↬M}.
(3) For a diffeological space (X,DX) and a subset A of X, we define DA

sub by
DA

sub := {P : UP → A | UP is a domain and i ◦ P ∈ DX}, where i : A → X is the
inclusion. Then, the set DA

sub is a diffeology of A, which is called the sub-diffeology.
We call (A,DA

sub) a diffeological subspace of X.
(4) Let {(Xi,Di)}i∈I be a family of diffeological spaces. Then, the product

Πi∈IXi has a diffeology D, called the product diffeology, defined to be the set of all
parameterizations P : UP → Πi∈IXi such that πi ◦ p are plots of Xi for each i ∈ I,
where πi : Πi∈IXi → Xi denotes the canonical projection.

(5) More general, the initial diffeology DY for maps hi : Y → (Xi,Di) for i ∈ I
is defined by DY := {P : UP → Y | hi ◦ P ∈ Di for i ∈ I}. This is the largest
diffeology on Y making all hi smooth. We call an injective map j : X → Y between
diffeological spaces an induction if DX coincides with the initial diffeology for j. It
is immediate that if A is a diffeological subspace of X, then the inclusion A → X
is an induction.

(6) Let (X,DX) and (Y,DY ) be diffeological spaces. Let C∞(X,Y ) denote the
set of all smooth maps from X to Y . The functional diffeology Dfunc is the set
of parametrizations P : UP → C∞(X,Y ) whose adjoints ad(P ) : UP ×X → Y are
smooth.

(7) Let F := {fi : Yi → X}i∈I be a set of maps from diffeological spaces (Yi,DYi)
(i ∈ I) to a set X. Then, a diffeology DX of X is defined to be the set of
parametrizations P : U → X satisfying the following condition; for r ∈ U , (i) there
exists an open neighborhood Vr of r in U such that P |Vr is constant, or (ii) for i ∈ I,
there exists an open neighborhood Vr,i of r in U and a plot (Pi : Vr,i → Yi) ∈ DYi

with P |Vr,i
= fi ◦ Pi. We call DX the final diffeology of X with respect to F . This

is the smallest diffeollogy on X making all fi smooth.
Moreover, by definition, a surjective map π : X → Y between diffeological spaces

is a subduction if the diffeology of Y is the final diffeology with respect to π.
We shall say that a smooth surjection π : X → Y is a local subduction if for a

point x ∈ X and each plot P : UP → Y with P (0) = π(x), there exist an open
neighborhood W of 0 in UP and a plot Q : W → X such that Q(0) = x and
π ◦Q = P |W .

(8) For a family of diffeological spaces {(Xi,Di)}i∈I , the coproduct
∐

i∈I Xi has
the final diffeology with respect to the set of canonical inclusions. The diffeology is
called the sum diffeology.

(9) Let (X,D) be a diffeological space with an equivalence relation ∼. Then,
the final diffeology of X/∼ with respect to the quotient map q : X → X/∼ is called
the quotient diffeology. In particular q is a subduction.
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The constructions (4) and (6) above enable us to obtain an adjoint pair

-×X : Diff ⇆ Diff : C∞(X, -).

Moreover, the limit and colimit in Diff are constructed explicitly by (4) with (3)
and (8) with (9), respectively, via the forgetful functor from Diff to the category of
sets; see also [8, Section 2]. Thus, we have

Theorem 2.3. ([1, 16]) The category Diff is complete, cocomplete and cartesian
closed.

Another adjoint pair is given by the D-topology functor and the continuous
diffeology functor

D : Diff ⇆ Top :C,

where Top is the category of topological spaces and continuous maps, and

• for (X,DX) ∈ Diff, the topological space D(X) consists of the underlying
set X and the set of open sets O defined by

O := {O ⊂ X | P−1(O) is an open set of UP for each P ∈ DX},
• for Y ∈ Top, the diffeological space C(Y ) consists of the underlying set Y
and the diffeology DY := {continuous maps P : UP → Y }.

Example 2.4. The composite of the functor Mfd
m // Diff

D // Top coincides with

the forgetful functor; see [8, Section 3]. We refer the reader to [8, Proposition 3.3],
[34, Proposition 2.1] and [22, Theorem 1.5] for other properties of the adjoint pair.

3. A Riemannian diffeological space

3.1. Diffeological Riemannian metrics. Let Euc denote the category consisting

of domains and smooth maps. Let T̂ : Euc → Euc be the functor defined by

T̂ (U) := U × RdimU

and Y : Euc → Diff the Yoneda functor. We recall the tangent functor T : Diff →
Diff from the category of diffeological spaces to itself in the sense of Blohmann [2, 3],

which is the left Kan extension LYT̂ := LanYYT̂ of the functor YT̂ : Euc → Diff
along the Yoneda functor Y; see also [28]. For a diffeological space (X,D), it turns
out that

T (X) = colim
P∈D

(UP × RdimUP ).

Here, the diffeology D is regarded as a category whose objects are plots of X and
whose morphisms are smooth maps h : UP → UQ with Q ◦ h = P .

By using the functor T̂2 : Euc → Diff defined by T̂2(U) := T̂ (U) ×U T̂ (U) =

U ×RdimU ×RdimU , we have the functor T2 := LYT̂2 : Diff → Diff via the left Kan
extension along the Yoneda functor Y. Observe that as a diffeological space,

T2(X) = colim
P∈D

(UP × RdimUP × RdimUP ).

We may write [x, v1, v2]P for an element in T2(X) which has an element (x, v1, v2)
in UP × RdimUP × RdimUP for some plot P as a representative.

Definition 3.1. A map g : T2(X) → R is a weak Riemannian metric on X if the
composite g ◦πT̂2(UP ) is a symmetric and positive covariant 2-tensor on UP for each

plot P of X, where πT̂2(UP ) denotes the canonical map T̂2(UP ) → T2(X).
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Remark 3.2. In the definition above, each map g ◦ πT̂2(UP ) is smooth in the usual

sense and then g is smooth in the diffeological sense. In fact, T2(X) is endowed
with the quotient diffeology; see Example 2.2 (9).

We introduce the Riemannian metric on a diffeological space described in [19,
Page 3]. To this end, we recall the definition of covariant tensors of a diffeological
space.

Let (X,DX) be a diffeological space and DX(U) ⊂ DX the set of plots whose
domains are the common domain U . Let T k(U) denote the set of covariant k-
tensors on a domain U . A covariant k-tensor ν in the sense in Iglesias-Zemmour is
a natural transformation which fits in the diagram

(3.1) Eucop
DX

**

Tk

44�� ν Sets .

Here, we regard DX as a functor in which DX(f) : DX(V ) → DX(U) is defined by
DX(f)(PV ) = PV ◦ f for a smooth map f : U → V .

We may write ν(P ) for νUP
(P ). A covariant k-tensor ν is (anti-) symmetric if

ν(P ) is (anti-) symmetric in the usual sense for each P . A (differential) k-form on
a diffeological space X is an anti-symmetric k-tensor on X. The set of all k-forms
on X is denoted by Ωk(X).

Definition 3.3 ([19, p. 3]). Let X be a diffeological space. A 2-tensor g on X is
a Riemannian metric on X if it satisfies the following three conditions.

(1) (Symmetric) The tensor g is symmetric.
(2) (Positivity) For all path γ ∈ Path(X) := C∞(R, X), we have g(γ) ≥ 0; that

is, g(γ)t(1, 1) ≥ 0 for t ∈ dom(γ) = R, where 1 = ( d
dt )t is the canonical

base of Tt(dom(γ)) = R.
(3) (Definiteness) If g(γ)t(1, 1) = 0 for γ ∈ Path(X), then we have α(γ)t(1) = 0

for any α ∈ Ω1(X).

Remark 3.4. Another definition of the definiteness is proposed in [19, p. 3] with
“pointed differential forms”.

Proposition 3.5. Let (X,D) be a diffeological space. There exists a one-to-one
correspondence between the set of weak Riemannian metrics g : T2(X) → R and
that of symmetric and positive covariant 2-tensors in the sense of Definition 3.3.

Proof. A natural transformation {g(P )}P∈D consisting of covariant 2-tensors gives
rise to the smooth map g (see Remark 3.2). Given a map g : T2(X) → R such
that g(P ) := g ◦ πT̂2(UP ) is a 2-tensor on UP for each P ∈ D, we obtain a natural

transformation {g(P )}P∈D. Then g and g(P ) fit into the commutative diagram

UP × RdimUP × RdimUP

πT̂2(UP )
��

g(P )

**
T2(X)

g
// R.

(3.2)

It is easy to see that g is symmetric if and only if g(P ) is symmetric for each P .
We consider the equivalence between the positivity of g(P ) and the condition

(2) in Definition 3.3. Suppose that g(P ) is positive for each plot P . Since a path γ
is a plot, it is immediate that the condition (2) holds.
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Conversely, suppose that g(P )r(v, v) = 0, where P ∈ D, r ∈ UP and v ∈ TrUP .
We apply the same argument as in the proof of [20, 243 Exercise 2]. Let γv(t) =
r + tv and γv = P ◦ γv. Then, we see that g(P )r(v, v) = g(γv)0(1, 1). Thus, the
condition (2) implies that g(P ) is positive. As a consequence, the universality of
the colimit yields the result. □

In what follows, we call a diffeological space X endowed with a weak Riemannian
metric g a weak Riemannian diffeological space and denote by (X, g).

Remark 3.6. In order to define a weak Riemannian metric on a diffeological space
X, the elastic conditions on X as in [2, Section 1.2] and [3, Section 2.3.3] are not
assumed. In particular, we do not require the condition that the tangent functor T
is compatible with limits; see [2, Axiom (E1)].

We observe that T2(X) is not diffeomorphic to the pullback T (X)×XT (X) along
the natural map T (X) → X in general; see [3, Examples 2.3.12 and 2.3.13] and [28,
Example 3.9]

Definition 3.7. A weak Riemannian metric g : T2(X) → R is definite if there exists
a generating family G of the diffeology D of X such that the symmetric positive
covariant 2-tensor g(P ), which corresponds to g via the bijection in Proposition
3.5, is definite in the usual sense for every P ∈ G.

Remark 3.8. Let (X,D, g) be a weak Riemannian diffeological space. In general,
if the diffeology D is generated by the empty set, then the metric g is definite. In
this case, the diffeology D is indeed discrete; see [18, 1.67].

Example 3.9. Let N be a Riemannian manifold endowed with a metric gN . We see
that the metric gN is a definite weak Riemannian metric in the sense of Definition
3.7 with respect to both generating families Gatlas and Gimm in Example 2.2 (2).

Proposition 3.10. The definiteness of a weak Riemannian metric in Definition
3.7 induces that in Definition 3.3.

Proof. Let g be a definite weak Riemannina metric. To show that g is definite
in the sense of Definition 3.3, suppose that g(γ)t(1, 1) = 0 for γ ∈ Path(X). By
assumption, there exist an open neighborhood Vt of t in R, a plot Q ∈ G and a
smooth map f : Vt → UQ such that γ|Vt

= Q ◦ f . Then, we see that

0 = g(γ|Vt
)t(1, 1) = g(Q ◦ f)t(1, 1) = g(Q)f(t)

(
df

dt
(t),

df

dt
(t)

)
.

The definiteness of g(Q) yields that
df

dt
(t) = 0. Thus, for any α ∈ Ω1(X), we have

α(γ)t(1) = α(γ|Vt
)t(1) = α(Q)f(t)

(
df

dt
(t)

)
= α(Q)f(t)(0) = 0.

This completes the proof. □

Proposition 3.11. Let (X, g) be a weak Riemannian diffeological space whose met-
ric g is definite with respect to a generating family G and i : A → X an induction.
Then, the map gA defined by the composite

T2(A)
T2(i)

// T2(X)
g

// R
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is a weak Riemannian metric on A which is definite with respect to the generating
family

(3.3) i∗G := {P ∈ DA | i ◦ P ∈ G}.

Proof. We show that 〈i∗G〉 coincides with DA. Since 〈i∗G〉 ⊂ DA is obvious, it
suffices to show that 〈i∗G〉 ⊃ DA. For any P ∈ DA, since i is an induction, we
have i ◦ P ∈ DX . Since G generates DX , it follows that for any r ∈ UP , there
exist an open neighborhood V ⊂ UP of r, an element Q : UQ → X of G, and a
smooth map f : V → UQ with i ◦ P |V = Q ◦ f. Since i is an induction, we have

(A,DA) ∼= (Im(i),DIm(i)
sub ) ([18, 1.36]). Let ī : Im(i) → A be the inverse to i. The

fact that i ◦ ī ◦Q = Q ∈ G enables us to deduce that ī ◦Q ∈ i∗G. Since the image
of Q ◦ f = i ◦ P |V lies in Im(i), we have

P |V = ī ◦ i ◦ P |V = ī ◦Q ◦ f.
This implies P ∈ 〈i∗G〉.

The map T2(i) is smooth. Therefore, we see that gA = g ◦T2(i) is smooth. Thus,
the symmetry and positivity of g imply that gA is a weak Riemannian metric.

To show that gA is definite with respect to i∗G, suppose gA(P )r(v, v) = 0 for
P ∈ i∗G, r ∈ UP and v ∈ TrUP . By definition we have

0 = gA(P )r(v, v) = g(i ◦ P )r(v, v).
Since i ◦ P is in G, it follows from the definiteness of g that v = 0. □

Remark 3.12. We observe that the pullback (3.3) of G is smaller than that in the
sense in [18, 1.75]. But (3.3) is enough to generate DA when i is an induction.

3.2. Riemannian (pseudo-) distance. A weak Riemannian metric g : T2(X) →
R on a diffeological space X gives a pseudodistance d of X by applying the usual
procedure, as in the case of Riemannian manifolds [29]; that is, the pseudodistance
d : X ×X → R≥0 ∪ {∞} is defined by

(3.4) d(x, y) = inf
γ∈Path(X;x,y)

`(γ), where `(γ) =

∫ 1

0

(g(γ)t(1, 1))
1
2 dt

and d(x, y) = ∞ if there is no smooth path connecting x and y. Here Path(X;x, y)
denotes the subset of Path(X) consisting of γ with γ(0) = x and γ(1) = y.

Theorem 3.13. Let d : X×X → R≥0 be the pseudodistance on a diffeological space
X defined by a weak Riemannian metric g : T2(X) → R. Then the D-topology of
X is finer than the topology Od defined by d; that is, the D-topology contains Od.
In particular, the function d on D(X)×D(X) is continuous.

In order to prove the theorem, we need a lemma.

Lemma 3.14. Let dE be the Euclidian metric on UP and x ∈ UP ∩ V for some
domain V ⊂ RdimUP . Then there exists a real number k > 0 and an open ball B of
UP ∩V cenetered at x such that B ⊂ UP ∩V and dP ≤ kdE on B×B, where dP is
the distance defined by the symmetric, positive covariant 2-tensor g(P ). Moreover,
if the 2-tensor g(P ) is definite, then, one has 1

kdE ≤ dP ≤ kdE on B×B for some

open ball B of UP with x ∈ B ⊂ B ⊂ UP ∩ V and k > 0.

Proof. This follows from the proof of [29, Theorem 4.1.8]. The upper bound is given
by the continuity of g(P ). The definiteness of g(P ) yields the lower bound. □
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Proof of Theorem 3.13. We observe that X ∼= colimP∈D UP as a diffeological space.
Since the D-topology functor D : Diff → Top is the left adjoint, it follows that D
preserves colimits. Therefore, natural maps give rise to homeomorphisms

D(X) ∼= D(colim
P∈D

UP ) ∼= colim
P∈D

D(UP ) ∼= colim
P∈D

UP ,

where the last space is endowed with the quotient topology; see also Example 2.4
for the fact that D(UP ) = UP . Let π :

∐
P∈D UP → X be the subduction. Then

π :
∐

P∈D UP → D(X) is the quotient map. We show that, for V ∈ Od, the set

π−1(V ) ∩ UP is open in UP with the usual topology for each P ∈ D.
Let x be in π−1(V )∩UP . Since V ∈ Od, we have a δ-neighborhood Ud(P (x); δ) of

P (x) which is contained in V . Lemma 3.14 yields that dP ≤ kdE on B×B for some
open ball B of UP centered at x with B ⊂ UP and k > 0. Let ε be a positive number
less than min{δ, the radius of B}. Then, we see that UdE

(x; ε
k ) ⊂ UdP

(x; ε) ⊂ B.
The following Claim 3.15 allows one to conclude that

π(UdE
(x;

ε

k
)) ⊂ π(UdP

(x; ε)) ⊂ Ud(P (x); ε) ⊂ Ud(P (x); δ) ⊂ V.

This completes the proof. □
Claim 3.15. π(UdP

(x; ε)) ⊂ Ud(P (x); ε).

Proof. Let q be in UdP
(x; ε). By definition, we see that on UP ,

dP (x, q) = inf
γ∈Path(UP ;x,q)

`P (γ), where `P (γ) =

∫ 1

0

(g(P )γ(t)(γ
′, γ′))

1
2 dt.

Since dP (x, q) < ε, it follows that there exists a path γ ∈ Path(UP ;x, q) such that

dP (x, q) ≤ `P (γ) =: δ̃ < ε. Define a path γ̃ by γ̃ := P ◦ γ = π ◦ γ. Then, we see
that g(γ̃)t(1, 1) = g(P ◦ γ)t(1, 1) = γ∗(g(P ))t(1, 1) = g(P )γ(t)(γ

′, γ′). This implies

that `(γ̃) = δ̃ and then d(P (x), P (q)) ≤ `(γ̃) = δ̃ < ε; see (3.4). It turns out that
π(q) is in Ud(P (x); ε). □
Remark 3.16. In the proof of Theorem 3.13, we do not need the definiteness of the
weak Riemannian metric g. We do not clarify when the topology Od induced by
a weak Riemannian metric g on a diffeological space X contains the D-topology
on X. Suppose that the metric g is definite and a generating family G gives the
definiteness. Let OdP

be the topology of UP defined by the metric g(P ). Then, the
latter half of Lemma 3.14 yields that P−1(O)∩UP ∈ OdP

for every D-open subset
O ⊂ X and every plot P ∈ G.

Definition 3.17. Let X be a diffeological space. A generating family G of a
diffeology of X separates points if for distinct points p and q in X, there exist a
plot P ∈ G and an open ball B with center x such that P (x) = p, B ⊂ B ⊂ UP

and each smooth path γ from p to q admits a local lift γ̃ in UP with γ̃(0) = x and
Im γ̃ 6⊂ B.

Remark 3.18. Both generating families Gatlas and Gimm of a manifold M separate
points.

With the technical condition above, we have the following result.

Theorem 3.19. The pseudodistance d defined by a weak Riemannian metric g is
indeed a distance provided g is definite with respect to a generating family G which
separates points.
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Proof. The proof is verbatim the same as that of [29, Theorem 4.1.6] by replacing
the use of a chart with that of a plot. Suppose that d(p, q) = 0 for distinct points p
and q. We choose a plot P : UP → X in G and an open ball B with center x which
satisfy the condition in Definition 3.17. The proof of [29, Theorem 4.1.6] allows us
to deduce that there exists a positive number k such that

(3.5)
1

k
||v|| ≤ (g(P )a(v, v))

1
2 ≤ k||v||

for (a, v) ∈ B × RdimUP . Let γ be a smooth path from p to q and γ̃ a local lift in
UP stating from a point x with P (x) = p. Then there exists the smallest number
s ∈ (0, 1] satisfying u := γ(s) ∈ γ([0, 1]) ∩ ∂B. Let γ1 := γ|[0,s]. Observe that

s > 0 and
∫ s

0
(g(P )γ̃1(t)(γ̃

′
1, γ̃

′
1))

1
2 dt 6= 0. In fact, if the integration is equal to zero,

then the definiteness condition allows us to conclude that γ̃1 is constant. However,
γ̃1(0) = x 6= u = γ̃1(s). With the radius r of B, we have

`(γ) =

∫ 1

0

(g(γ)t(1, 1))
1
2 dt ≥

∫ s

0

(g(P )γ̃1(t)(γ̃
′
1, γ̃

′
1))

1
2 dt ≥ 1

k
r.

The last inequality follows from (3.5) and a change of variables in the integration.
Then, we see that d(p, q) = inf `(γ) ≥ 1

k r, which is a contradiction. □

Remark 3.20. If π :
∐

P∈D UP → X is a local subduction (Example 2.2 (7), see also
[18, 2.16]), then we may replace the condition “a generating family G separates
points” with a simpler one; “for any distinct p, q ∈ X, there exists a plot P ∈ G
and an open ball B ⊂ UP with center x such that P (x) = p, B ⊂ B ⊂ UP and
q 6∈ P (B).” Indeed, for any distinct p and q, the following two conditions are
equivalent;

(1) for any P ∈ G with p ∈ P (UP ) and any open ball B centered at x (P (x) = p),
we have q ∈ P (B)

(2) d(p, q) = 0

It is easy to see that (1) implies (2). Suppose (1) does not hold and let P ∈ G be
a plot that does not satisfy (1). For any smooth path γ from p to q, we can find a
local lift γ̃ of γ on UP defined near 0. Then, we can prove that `(γ) > r/k (r is the
radius of B, q 6∈ P (B)) as in the proof of Theorem 3.19.

4. A diffeological adjunction space

We introduce an appropriate setting to construct a weak Riemannian diffeological
space by attaching two such spaces. As seen in Example 1.1, the construction of
the metric is applicable to the spaces of smooth maps.

We consider the diffeological adjunction space obtained by two inductions i and
j into weak Riemannian diffeological spaces

(4.1) X A
ioo

j
// Y.

We assume further that

(I) weak Riemannian metrics gX : T2(X) → R and gY : T2(Y ) → R on X and
Y satisfy the condition that gX ◦ T2(i) = gY ◦ T2(j) : T2(A) → R.

Then, we will construct a weak Riemannian metric g : T2(X
∐

A Y ) → R, where
Z := X

∐
A Y is endowed with the quotient diffeology DZ .
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Let f : P → Q be a morphism in DZ . Then, for s ∈ UP , we have a commutative
diagram

W ′ f |W ′
//� _

��

PXY

//

W_�

��

QXY

oo

UP
f

//

P ''

UQ

Qww
Z

X
∐
Y

π
OO

here open neighborhoods W ′ and W of s and f(s) =: r respectively are taken so
that PXY and QXY are plots on X or Y . In fact, plots P and Q are in the quotient
diffeology DZ and then the local lifting condition of the plots gives the diagram.
We define gUP

: T2(UP ) → R by gUP
((s, v1, v2)) = g(PXY )((s, v1, v2)). We observe

that gUP
((s, v1, v2)) = gX([s, v1, v2]); see the diagram (3.2).

Suppose that PXY and QXY are plots PX on X and QY on Y , respectively.
Then, we see that ImPX ⊂ i(A), Im (QY ◦ f) ⊂ j(A) and

(4.2) PA := i−1PX = j−1 ◦QY ◦ f =: ρ.

Observe that an induction gives a diffeomorphism between the domain and its
image; see [18, 1.36]. We write P : T2(U) → T2(Y ) for the canonical inclusion

(4.3) {P} × T2(UP ) → T2(Y ) = colim
P∈DY

(UP × RdimUP × RdimUP )

for a weak Riemannian diffeological space Y .

Lemma 4.1. With the notation above, suppose that f∗ : T2(UP ) → T2(UQ) assigns
(r, u1, u2) to (s, v1, v2). Then, one has gUP

((s, v1, v2)) = gUQ
((r, u1, u2)).

Proof. By the equalities in (4.2), we have the commutative diagram of diffeological
spaces and smooth maps

(4.4) T2(W
′)

(PUP
)∗ --

(f |W ′ )∗

++

(ρ)∗=(PA)∗

// T2(A)
j∗ //

i∗
��

T2(Y )

gY

��

T2(W )
(QUQ

)∗

oo

T2(X)
gX

// R.

Thus, it follows that

gUP
((s, v1, v2)) = gX([s, v1, v2]) = gX(i∗((PA)∗([s, v1, v2])))

= gX(i∗(ρ∗([s, v1, v2]))) = gY (j∗(ρ∗([s, v1, v2])))

= gY ((QUQ
)∗((f |W ′)∗([s, u1, u2]))) = gUQ

((r, u1, u2)).

We have the result. □

Theorem 4.2. Under the assumption (I) for inductions in the diagram (4.1), the
map g : T2(Z) → R defined by g((s, v1, v2)) := gUP

((s, v1, v2)) = gX((s, v1, v2)) for
(s, v1, v2) ∈ T2(UPX

) is a well-defined weak Riemannian metric on the diffeological
adjunction space Z = X

∐
A Y . Moreover, if gX and gY are definite, then so is g.
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Proof. The proof of Lemma 4.1 is valid for the case where PXY and QXY are
both plots on X or Y . Then, the definition gUP

does not depend on the choice of a
neighborhood of s if f is an inclusion. Therefore, the map g is well defined. We show
the smoothness of g. A plot R : UR → T2(Z) locally factors through {P}×T2(UP ).
Moreover, R locally factor through an open subset T2(W

′) of {P} × T2(UP ) which
is used when defining the metric g. We see that g is indeed gX or gY on the open
subset T2(W

′). This implies that g is smooth.
The latter half of the assertion follows from the definition of g. In fact, let GX

and GY be generating families which give the definiteness of gX and gY , respectively.
Then, the definiteness of g is given with the set GX

∐
GY . □

Remark 4.3. For the inductions in (4.1), the universality of the pushout gives the
commutative diagram

T2(A)
j∗ //

i∗
��

T2(Y )

î
��

i∗

$$

T2(X)
ĵ

//

j∗
44

T2(X)
∐

T2(A) T2(Y )
α // T2(X

∐
A Y )

The proof of Theorem 4.2 enables us to obtain the inverse of α. In fact, by replacing
gX and gY in the diagram (4.4) with ĵ and î, respectively, we have the result.

A smooth embedding between manifolds is an induction. Thus, Theorem 4.2
provides a crucial example. An adjunction diffeological space of M and N does not
necessarily have a generating family which separates points even if M and N do.

Example 4.4. We consider the pushout diffeological space Y := R1

∐
(1,∞) R2 of the

induction i : (1,∞) → R along itself, where Ri denotes the copy of R. By virtue of
Theorem 4.2, we see that the usual metric on R gives rise to a weak Riemannian
metric on Y. A point x ∈ Ri is denoted by xi for i = 1, 2. We observe that D(Y)
is non–Hausdorff. In fact, the distinct points [11] and [12] is not separated by any
neighborhoods of the points.

For each ε > 0, we have a smooth path γ from [11] to [12] with `(γ) < ε. This
yields that d([11], [12]) = 0. This example implies that the inverse of the inclusion
relation of the topologies in Theorem 3.13 does not hold in general even if the
metric g is definite.

We will see that the diffeological space Y does not satisfy the condition in Def-
inition 3.17. Let π : R1

∐
R2 → Y be the subduction. We write (a, b)i for the

open interval (a, b) in Ri. Then, the set D(π)((1 − ε, 1 + ε)1) is open in D(Y) for
a positive number ε > 0. However, the set π((1 − ε, 1 + ε)1) is not in Od. In
fact, π((1− ε, 1 + ε)1) does not contain the δ-open ball Ud([11], δ) with center [11]
for every δ with 0 < δ < ε. The element [(1 − δ

2 )2] is in Ud([11], δ) but not in
π((1− ε, 1 + ε)1). This follows from the fact that

d([(1− δ

2
)2], [11]) ≤ d([(1− δ

2
)2], [12]) + d([1]2, [1]1) = d([(1− δ

2
)2], [12]) ≤

δ

2
.

We refer the reader to [15, Section 6] for non-Hausdorff Riemannian manifolds;
see also [31] for many examples of non-Hausdorff manifolds. Moreover, Theorem
4.2 allows us to conclude that the adjunction space M := R

∐
(1,∞) R2 is a definite
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weak Riemannian diffeological space which is not a manifold. Observe that D(M)
is non-Hausdorff.

Example 4.5. We consider the pushout diffeological space + := R1

∐
{0} R2. We

see that the diffeology of + has a generating family which separates points; see
Definition 3.17. Moreover, the usual metrics on R = R1 and R = R2 satisfy the
assumption (I).

5. A diffeological mapping space

5.1. A subdiffeology of the functional diffeology. LetX and Y be diffeological
spaces and G a generating family of DY . Then, the set C∞(X,Y ) of smooth maps
is endowed with the functional diffeology Dfunc; see Example 2.2 (6). We introduce
a subdiffeology of Dfunc. To this end, we consider the following condition (E) for a
plot P ∈ Dfunc.

(E) For r ∈ UP and m ∈ X, there exists an open neighborhood Wr,m of r in

UP such that the composite Wr,m
� � // UP

P // C∞(X,Y )
evm // Y is in

G, where evm denotes the evaluation map at m.

Let FXY
G be the subset of plots in Dfunc each of which satisfies the condition (E).

We may write FG for FXY
G when the domain X and the codomain Y are clear in

the context. Let D′ := 〈FXY
G 〉 be the diffeology generated by FXY

G . It is imme-
diate that D′ is contained in Dfunc and that the identity map (C∞(X,Y ),D′) →
(C∞(X,Y ),Dfunc) is smooth.

Example 5.1. The diffeology D′ does not coincide with Dfunc in general. In fact,
we consider the case where Y = U is an open subset of Rn with n > 1 and
G := {id : U → U}. Then, the standard diffeology of U is generated by G.

Let Q be a plot of the mapping space C∞(U,U) which satisfies the condition (E).
Then, for each r ∈ UQ, there exists an open neighborhood Wr of r in UQ such that
Q|Wr = P ◦ h for some smooth map h and P ∈ FG . Thus, we see that the image of
Q : h−1(U) → C∞(U,U) consists of constant maps. Therefore, the diffeology D′ is
strictly finer than the functional diffeology.

The following lemma describes fundamental properties of the diffeology D′.

Lemma 5.2. Let f : X → Y be a smooh map.

(1) Let Z be a diffeological space with a generating family GZ of the diffeology.
Then, the map

f∗ : (C∞(Y, Z), 〈FY Z
GZ

〉) → (C∞(X,Z), 〈FXZ
GZ

〉)
defined by f∗(ϕ) = ϕ ◦ f is smooth.

(2) Let GY be a generating family of the diffeology of Y and GX be the pullback
f∗GY of GY by f ; see (3.3). Then, for any Z, the map

f∗ : (C
∞(Z, (X, 〈GX〉)), 〈FZX

GX
〉) → (C∞(Z, Y ), 〈FZY

GY
〉)

defined by f∗(ψ) = f ◦ ψ is smooth.

Proof. Since both f : X → Y and f : (X, 〈GX〉) → Y are smooth, it follows that the
maps f∗ and f∗ are smooth with respect to the functional diffeology. Moreover, we
see that evx ◦ (f∗ ◦Q) = evf(x) ◦Q for every Q : UQ → C∞(Y, Z) and x ∈ X. Thus,

if Q ∈ FY Z
GZ

, then the map evx ◦ (f∗ ◦Q) restricted to an appropriate domain is in
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GZ . This implies that f∗ ◦Q ∈ FXZ
GZ

, proving (1). The fact that evz ◦ f∗ = f ◦ evz
and the definition of GX yield that f∗ ◦ P is in FZY

GY
for each P ∈ FZX

GX
. We have

the results. □
Lemma 5.3. Let G be a generating family of the diffeology of a diffeological space
Y . The functional diffeology Dfunc of C∞(∗, Y ) coincides with 〈F∗Y

G 〉.

Proof. It suffices to show that Dfunc ⊂ 〈F∗Y
G 〉. For a plot P ∈ Dfunc, the adjoint

ad(P ) : UP × ∗ → Y is regarded as a plot of Y . Thus, for each r ∈ UP , there exist
a neighborhood Wr of r in UP , Q ∈ G and a smooth map h : Wr → UQ such that

ad(P )|Wr×∗ = Q̃◦ (h×∗), where Q̃ is defined by Q̃ := Q◦pr : UQ×∗ → Y with the

projection pr to the first factor. We see that P |Wr = ad(Q̃)◦h and ev∗◦ad(Q̃) = Q.
This implies that P is in 〈F∗Y

G 〉. □
Let s : Y → C∞(X,Y ) be the section of evx at any x; that is, s(y)(x) = y for

y ∈ Y and x ∈ X.

Lemma 5.4. The section s : (Y, 〈G〉) → (C∞(X,Y ),D′) is an induction.

Proof. The map q : Y → (C∞(∗, Y ),Dfunc) defined by q(y)(∗) = y is smooth.
By Lemma 5.2, we see that the trivial map u : X → ∗ induces the smooth map
u∗ : (C∞(∗, Y ), 〈F∗Y

G 〉) → (C∞(X,Y ), 〈FG〉). Since s = u∗ ◦ q, it follows from
Lemma 5.3 that the section s is smooth.

For a parametrization Q : U → Y , suppose that s ◦ Q ∈ D′ = 〈FG〉. Since evx
is smooth for each x, it follows that Q = evx ◦ s ◦ Q ∈ 〈G〉. We see that s is an
induction. □
5.2. Weak Riemannian metrics on mapping spaces. In this section, the Rie-
mannian metric on the space of smooth maps due to Iglesias-Zemmour [19] is in-
terpreted in our framework.

LetM be a closed orientable manifold and N a definite weak Riemannian diffeo-
logical space with a generating family G which gives the definiteness; see Definition
3.7 and Example 3.9. Let {(Vλ, ϕλ)}λ∈Λ be an atlas of M . Then, for a plot
P ∈ Dfunc, r ∈ UP and tangent vectors v, w ∈ TrUP , we define a smooth map
ΘgN (P )(v, w)(r, –) : M → R by

ΘgN (P )(v, w)(r,m) = gN (ad(P ) ◦ (1× ϕ−1
λ ))(r,φλ(m))(v, w)

for m ∈ Vλ, where u = (u, 0) ∈ TrUP × Tφλ(m)ϕλ(Vλ) = TrUP × RdimM . For the
functional diffeology Dfunc, we define a metric g on C∞(M,N) by

(5.1) g(P )r(v, w) =

∫
M

ΘgN (P )(v, w)(r,m)volM

for r ∈ UP , where volM is a fixed unit (dimM)-form on M .
The following Lemma 5.5 shows the well-definedness of ΘgN .

Lemma 5.5. ΘgN (P )(v, w)(r,m) = gN (evm ◦ P )r(v, w).

Proof. Define jm,λ : UP → UP × ϕλ(Vλ) by jm,λ(x) := (x, ϕλ(m)). Then v =
(jm,λ)∗(v) and

ΘgN (P )(v, w)(r,m) = gN (ad(P ) ◦ (idUP
× ϕ−1

λ ))(r,φ(m))(v, w)

= gN (ad(P ) ◦ (idUP
× ϕ−1

λ ) ◦ jm,λ)r(v, w).

It is easy to see that ad(P ) ◦ (idUP
× ϕ−1

λ ) ◦ jm,λ = evm ◦ P . □
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Since gN is a 2-tensor, it follows that g(P ) is an ordinary symmetric covariant
2-tensor field on UP for a plot P : UP → C∞(M,N).

To see the smoothness of g, let V and W be vector fields on UP . Since gN is
a weak Riemannian metric on N , gN (ad(P ) ◦ (idUP

× ϕ−1
λ )) is a 2-tensor field on

UP ×Uλ, where (Vλ, ϕλ) is a coordinate neighborhood of m ∈M , and the function
on UP × Vλ defined by

(r, ϕ−1(m)) 7→ gN (evm ◦ P )r(V (r),W (r))

is smooth. Thus the map r 7→ g(P )r(V (r),W (r)) on UP is smooth and hence g(P )
is a smooth 2-tensor.

We show that g is compatible with coordinate changes. Let F : V → UP be a
C∞-map. Then, it follows that

gN (evm ◦ (P ◦ F ))r(v, w) = gN (evm ◦ P )F (r)(dFr(v), dFv(w))

Thus, we have

ΘgN (P ◦ F )(v, w)(r,m) = ΘgN (P )(dFr(v), dFr(w))(F (r),m).

Therefore, it follows that

g(P ◦ F )r(v, w) = g(P )F (r)(dFr(v), dFr(w)) = F ∗g(P )r(v, w).

This implies that g is a diffeological covariant 2-tensor field on C∞(M,N). Sym-
metry and positivity follow from the fact that gN is a metric. Moreover, we have

Theorem 5.6. Let g be the weak Riemannian metric on C∞(M,N) defined as
above, where the diffeology is restricted to D′ := 〈FG〉. Then the metric g is definite
with respect to the generating family FG in the sense of Definition 3.7.

Proof. The inclusion of diffeologies gives rise to a natural transformation ι : D′ =⇒
Dfunc. By combining ι with the metric g and applying Proposition 3.5, we have a
weak Riemannian metric on C∞(M,N); see the diagram (3.1).

We show the definiteness of the metric. For a plot P in the generating family
FG of D′, assume that g(P )r(u, u) = 0, where u ∈ TrUp. Since gN is positive, we
see that gN (evm ◦ P )r(u, u) = 0 for each m ∈ M . Since P satisfies the condition
(E), by restricting UP to Wr,m, the map evm ◦ P is in G. The definiteness of gN
enables us to conclude that u = 0. This completes the proof. □

Proposition 5.7. For the weak Riemannian metric g on (C∞(M,N),D′) in (5.1),
the pseudodistance d defined by g is indeed a distance provided the pseudodistance
defined by gN is distance on N .

Proof. Since M is compact, the metric g can be described using a finite set of co-
ordinate neighborhoods {(Vi, ϕi, (x1, . . . , xn))}ki=1 and a partition of unity λi sub-
ordinate to each Vi as

g(P )r(v, w) =

k∑
i=1

∫
φi(Vi)

λi(m)gN (evm ◦ P )r(v, w)ξ(m)dx1 · · · dxn,

where volM = ξdx1 · · · dxn with some smooth function ξ : M → R>0. Now, assume
that dC∞(M,X)(f0, f1) = infγ∈Path(C∞(M,N);f0,f1) `(γ) = 0 for f0, f1 ∈ C∞(M,N).
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By the definition of the Riemannian distance and the property of the infimum,
there exists a sequence of paths {γn}n=1,2,... ⊂ Path(C∞(M,N); f0, f1) such that∫ 1

0

(g(γn)s(1, 1))
1
2 ds ≤ 1

n
.

Then, we have

∫ 1

0

(
k∑

i=1

∫
φi(Ui)

λi(p)gN (evm ◦ γn)s(1, 1)ξ(m)dx1 · · · dxn

) 1
2

ds ≤ 1

n
.

Since gN is positive, this implies that λi(m)ξ(m)gN (evm ◦ γn)s(1, 1) ≤ 1
n2 for any

m ∈M and s. Therefore, we see that

gN (evm ◦ γn)s(1, 1) ≤
1

β
· 1

n2
,

where β := maxm∈M,1≤i≤k{λi(m)ξ(m)}. For any fixed element m ∈M , the smooth
map evm ◦ γn is regarded as a path on N from f(m) to g(m). Then, we see that

`(evm ◦ γn) =
∫ 1

0

(gN (evm ◦ γn)s(1, 1))
1
2 ds ≤ (

1

β
)

1
2 · 1

n
.

This yields that dN (f0(m), f1(m)) = 0 for any m ∈ M . Since dN is a distance, it
follows that f0 = f1. We have the result. □

We recall the section s : (N, 〈G〉) → (C∞(M,N),D′) in Lemma 5.4.

Proposition 5.8. One has the commutative diagram

T2(C
∞(M,N),D′))

g
// R

T2((N, 〈G〉))

s∗

OO

(
∫
M

volM )×gN

66

Proof. This result follows from Lemma 5.5 and the definition of the metric g; see
(5.1). □

Example 5.9. Let (N, 〈G〉) be a weak Riemannian diffeological space whose metric
is definite with respect to G. For example, we can choose the adjunction space
in Theorem 4.2 as such a diffeological space. Let M and M ′ be closed orientable
manifolds with

∫
M

volM =
∫
M ′ volM ′ . Then, Lemma 5.4, Proposition 5.8 and

Theorem 4.2 allows us to obtain a definite weak Riemannian diffeological space of
the form C∞(M,N)

∐
N C∞(M ′, N).

Remark 5.10. Consider the case thatN is a Riemannian manifold. Suppose P : UP →
C∞(M,N) is such that the map ad(P )(−,m) = evm ◦ P : UP ↪→ N is an embed-
ding for any m ∈ M . For example P is such a plot if UP

∼= IntDdimN and
ad(P ) : UP ×M → N is a framed immersion. Then clearly P itself satisfies the
condition (E), and FG is not empty if G contains such a plot.
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5.3. An example: free loop spaces. For a weak Riemannian diffeological space
N , let the free loop space LN := C∞(S1, N) be endowed with the functional
diffeologoy.

We regard S1 = [0, 2π]/(0 ∼ 2π) and define S1∨S1 as the pushout of the diagram

∗ ∗7→1 //

∗7→1
��

S1

i
��

S1

j
// S1 ∨ S1.

(5.2)

Let S1
⋆ ⊂ S1 ∨ S1 (? = left, right) be the image of the first / second copy of S1 via

the subduction π : S1
∐
S1 → S1 ∨ S1. The inclusions i⋆ : S

1
⋆ → S1

∐
S1 give the

smooth map η : C∞(S1
∐
S1, N) → LN×LN defined by η(f) = (f ◦ ileft, f ◦ iright).

It is readily seen that η is a diffeomorphism.
Moreover, the subduction π gives rise to an induction π∗ : C∞(S1 ∨ S1, N) →

C∞(S1
∐
S1, N). This follows from the definition of functional diffeology and the

fact that the product preserve a subduction. We will see in Section 6 that a weak
Riemannian metric g⊕g is induced on the product space LN ×LN , and by Propo-
sition 3.11 the metric g ⊕ g restricts to that on C∞(S1 ∨ S1, N). The restricted
metric is denoted by g∨.

Fix a monotonically increasing smooth function b : R → [0, 2π] (in a weak sense)
satisfying b(s) = 0 if s ≤ π/4 and b(s) = 2π if s ≥ 3π/4. Define p : S1 → S1 ∨ S1

by

p(θ) :=

{
b(θ) ∈ S1

left 0 ≤ s ≤ π,

b(θ − π) ∈ S1
right π ≤ s ≤ 2π.

Then p is smooth. Therefore, we have a smooth map

(5.3) c := p∗ : C∞(S1 ∨ S1, N) → C∞(S1, N)

which is called the concatenation map.

Proposition 5.11. The map c preserves the metrics; that is, c∗g = g∨.

Proof. For a plot P : UP → C∞(S1∨S1, N), we define a plot P⋆ : UP → C∞(S1, N)
(? = left, right) by P⋆ = (i⋆)

∗ ◦ P . Then

(evθ◦(c◦P ))(r) = (evp(θ)◦P )(r) = P (r)(p(θ)) =

{
P (r)left(b(θ)) 0 ≤ θ ≤ π,

P (r)right(b(θ − π)) π ≤ θ ≤ 2π.

Thus for v, w ∈ TrUP ,

(c∗g)(P )r(v, w) = g(c ◦ P )r(v, w)

=

∫ π

0

gM (evp(θ) ◦ P )r(v, w)dθ +
∫ 2π

π

gM (evp(θ) ◦ P )r(v, w)dθ

=

∫
S1
left

gM (evθ ◦ Pleft)r(v, w)dθ +

∫
S1
right

gM (evθ ◦ Pright)r(v, w)dθ

= g(Pleft)r(v, w) + g(Pright)r(v, w) = g∨(P )r(v, w).

Observe that the second equality follows from Lemma 5.5. □
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Suppose that N admits a definite weak Riemannian metric g with respect to a
generating family G of the diffeology of N . Lemma 5.2 enables us to deduce that
the concatenation map (5.3) is restricted to the smooth map

c : (C∞(S1 ∨ S1, N), 〈FS1∨S1N
G 〉) → (C∞(S1, N), 〈FS1N

G 〉).

The proof of Lemma 5.2 implies that that c ◦ P is in FS1N
G for each P ∈ FS1∨S1N

G .
Moreover, the proof of Proposition 5.11 allows us to deduce that g∨(P )r(v, v) =

g(c ◦ P )r(v, v) for each plot P ∈ FS1∨S1N
G and v ∈ TrUP . By virtue of Theorem

5.6, we have the following result.

Proposition 5.12. The metric g∨ on (C∞(S1 ∨ S1, N), 〈FS1∨S1N
G 〉) is definite.

6. The warped product of Riemannian diffeological spaces

This section introduces the warped product in diffeology. Given weak Rie-
mannian diffeological spaces (X, gX) and (Y, gY ), we consider T2(X), T2(Y ) and
T2(X × Y ). Let f : X → R be a positive smooth map, π1 : T2(X × Y ) → T2(X)
and π2 : T2(X × Y ) → T2(Y ) the projections. Then, we see that the map

gX ◦ π1 + (f ◦ ρ ◦ π1) · (gY ◦ π2) : T2(X)× T2(Y ) → R
is smooth on T2(X)× T2(Y ), where ρ : T2(X) → X is the natural map. Moreover,
by the universality of the product, there exists a smooth map i : T2(X × Y ) →
T2(X)× T2(Y ). We define a map gX×fY : T2(X × Y ) → R by

gX×fY = (gX ◦ π1 + (f ◦ ρ ◦ π1) · (gY ◦ π2)) ◦ i.
It is readily seen that, by the definition, gX×fY is a weak Riemannian metric on
X × Y . We shall call gX×fY the warped product of weak Riemannian metrics gX
and gY with respect to f .

Remark 6.1. The natural map i : T2(X × Y ) → T2(X)× T2(Y ) mentioned above is
a diffeomorphism; see [3, Proposition 2.2.12].

Proposition 6.2. If gX and gY are definite, then so is gX×fY .

Proof. Let GX and GY be generating families of the diffeologies on X and Y , re-
spectively. Let πX : X × Y → X and πY : X × Y → Y be the projections. Then,
the product diffeology on X × Y is generated by the family

F := {P : UP → X × Y | πX ◦ P ∈ GX , πY ◦ P ∈ GY }.
This implies that gX×fY is definite with respect to F . □
Example 6.3. By applying Proposition 3.11, we obtain examples of definite weak
Riemannian diffeological spaces.

(i) The induction + → R2 (Example 4.5) induces a definite weak Riemannian
metric on +.

(ii) Moreover, consider a pullback diagram

Y ×B X //

��

X

��

Y // B

in which X and Y are weak Riemannian diffeological spaces with definite metrics.
Then, by combining Proposition 3.11 with Proposition 6.2, we see that the pullback
Y ×B X admits a definite weak Riemannian metric.
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Let N be a weak Riemannian diffeological space. We introduce another weak
Riemannian metric on C∞(S1 ∨ S1, N) endowed with the functional diffeology.

We recall the smooth maps i, j : S1 → S1 ∨ S1 in the pushout diagram (5.2),
where S1 ∨S1 denotes the one point union of two circles; see Section 5.3. Then, we
have a diagram of the form

C∞(S1 ∨ S1, N)
l̃ // LN ×N LN

��

q
// LN × LN

(ev0,ev1)
��

N
∆

// N ×N,

(6.1)

where the square is the pull-back of the diagonal map ∆, and l̃ is defined by

l̃(γ) = (γ(∗), γ ◦ i, γ ◦ j).

Lemma 6.4. The map l̃ is a well-defined diffeomorphism with respect to the func-
tional diffeology.

Since LN ×N LN is a diffeological subspace of N × (LN × LN), it follows from
Proposition 3.11 that C∞(S1∨S1, N) admits a weak Riemannian metric gN⊕(g⊕g).

Proof of Lemma 6.4. First, we see that LN×N LN = {(n, γ1, γ2) | γ1(0) = γ2(0) =
n} ⊂ N ×LN ×LN and Z = {(γ1, γ2) | γ1(0) = γ2(0)} ⊂ LN ×LN are diffeomor-
phic. This is because the smooth maps

pr2 × pr3 : LN ×N LN → Z, pr2 × pr3(n, γ1, γ2) = (γ1, γ2), and

(ev0 ◦ pr1, idZ) : Z → LN ×N LN, (ev0 ◦ pr1, idZ)(γ1, γ2) = (γ1(0), γ1, γ2),

are clearly inverses of each other. Under this identification, the map l̃ is interpreted
as the map

l = i∗ × j∗ : C∞(S1 ∨ S1, N) −→ Z, γ 7→ (γ ◦ i, γ ◦ j).
Since i and j are smooth, it follows that the maps i∗ and j∗ are also smooth.

Therefore, the map l = i∗ × j∗, and hence l̃, are also smooth.
Moreover, for any (γ1, γ2) ∈ Z, by the universality of the product, there exists a

map γ : S1 ∨ S1 → N such that the diagram

S1

γ1 ++

i
// S1 ∨ S1

∃! γ
��

S1

j
oo

γ2ssN

commutes. Let ν : Z → C∞(S1∨S1, N) be the map that assigns to each (γ1, γ2) ∈ Z
its universal morphism γ. Conversely, given a map γ : S1∨S1 → N , by the universal
property, there exist unique maps γ1, γ2 : S

1 → N such that γ1 = γ◦i and γ2 = γ◦j.
Therefore, we see that ν and l are inverse mappings of each other. We show the
smoothness of ν. Consider the adjoint ad(ν) : Z × (S1 ∨ S1) → N to ν. Then, we
have a commutative diagram

Z × (S1
∐
S1) �

�
//

idZ×π

��

LN × LN × (S1
∐
S1)

∼=��
LN × LN × S1

∐
LN × LN × S1

pr1×idS1
∐

pr2×idS1��

Z × (S1 ∨ S1)
ad(ν)

// N LN × S1
∐
LN × S1.

ev
∐

ev
oo
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Observe that the quotient map π : S1
∐
S1 → S1 ∨ S1 is a subduction and then

idZ × π is also a subduction. Thus, ν : Z → (C∞(S1 ∨ S1, N),Dfunc) is smooth.
Hence, the map l is a diffeomorphism with respect to the functional diffeology. □
Remark 6.5. We consider the weak Riemannian metric g on LN described in Section
5.2. Observe that we do not require the definiteness of g. The definition of the
metric gN ⊕ (g⊕ g) on LN ×N LN seems natural but is different from that in §5.3.
When we measure the length of a given curve in C∞(S1 ∨ S1, N) with the present
metric, the length of the trajectory of the attaching point is added twice. This
reflects that the map from S1 ∨ S1 passes through the attaching point twice.

We conclude this section with a problem. Let X and N be diffeological spaces
and G a generating family of the diffeology of N . In Section 5.1, we introduce a
subdiffeology D′ of the functional diffeology Dfunc of C∞(X,N). The diffeology
D′ defined by G with the property (E) in Section 5.1 plays a crucial role when
considering the definiteness of a weak Riemannian metric on C∞(X,Y ). Suppose
that N is a Riemannian manifold. Then, we propose question on the subdiffeology.

P1. Is the bijection l : C∞(S1 ∨S1, N) → LN ×N LN in Lemma 6.4 diffeomor-
phism with respect to the subdiffeology?

Acknowledgements. The authors thank David Miyamoto for valuable comments
on the first version of this article and for showing them the generating family in
Example 5.1.
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