
ON MULTIPLICATIVE SPECTRAL SEQUENCES FOR NERVES

AND THE FREE LOOP SPACES

KATSUHIKO KURIBAYASHI

Abstract. We construct a multiplicative spectral sequence converging to the
cohomology algebra of the diagonal complex of a bisimplicial set with coef-

ficients in a field. The construction provides a spectral sequence converging

to the cohomology algebra of the classifying space of a category internal to
the category of topological spaces. By applying the machinery to a Borel con-

struction, we explicitly determine the mod p cohomology algebra of the free
loop space of the real projective space for each odd prime p. This example
is emphasized as an important computational case. Moreover, we represent

generators in the singular de Rham cohomology algebra of the diffeological
free loop space of a non-simply connected manifold M with differential forms
on the universal cover of M via Chen’s iterated integral map.

1. Introduction

A stack is a generalization of a sheaf. More precisely, it is a weak 2-functor from
a site to the category of groupoids which satisfies the gluing conditions on objects
and morphisms. In particular, differentiable and topological stacks are obtained
by Lie and topological groupoids, respectively, via the stakifications of prestacks
associated with such groupoids; see [5, Section 2], [20] and [6, Chapter 1] for more
details. In [39], loop stacks are investigated by using diffeological groupoids; see
[22] and Appendix B for diffeological spaces. It is worthwhile mentioning that the
study of orbifolds is developed with those Lie groupoid presentations; see [1, 35].

In [4], Behrend introduced the de Rham cohomology and the singular homology
for a differentiable stack, which are those of the classifying space of a Lie groupoid
presenting the stack. In particular, the cohomology is invariant under Morita equiv-
alence. Thus, such results on stacks and groupoids motivate us to consider how to
compute the cohomology of such a classifying space; see Remark 3.3.

This manuscript aims to introduce multiplicative spectral sequences computing
the cohomology algebras of the classifying spaces of topological categories with
coefficients in a field K; see Theorems 2.1 and 2.2. Although there is no application
for a stack in this study, the product structure demonstrates its power in giving
more additional structure to the spectral sequence and in the computations of the
cohomology algebras of non-simply connected spaces. To be more precise, let LX
denote the free loop space of a space X, BG the classifying space of a finite group G
and EG×GM the Borel construction of a G-space M . Then, Remark 5.11 enables
one to obtain a multiplicative spectral sequence endowed with an H∗(LBG;K)-
module structure converging to the cohomology algebra of L(EG×GM). We also
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refer the reader to Corollaries 5.4 and 5.7, Theorem 5.2 and Proposition 5.9 each of
which provides a method for computing the Borel cohomology algebra of a G-space.

As a computational example, we explicitly determine the cohomology algebra
of the free loop space of the real projective space with coefficients in Z/p and Q,
where p is an odd prime; see Theorem 4.1. To our knowledge, this result is novel.
Despite the lack of nontrivial information in the rational cohomology of the even-
dimensional projective space, the cohomology algebra of the free loop space can be
beneficial.

A diffeological space is a generalization of a manifold. Therefore, it is crucial to
consider smooth (homotopy) invariants of the generalized objects. In particular,
the de Rham complex and its singular variant of a diffeological space are introduced
in [43] and [29], respectively. In this manuscript, we moreover attempt to represent
generators in the singular de Rham cohomology of the free loop space of a non-
simply connected manifoldM by using differential forms on the universal cover ofM
within the framework of diffeology; see Theorem 6.1 and subsequent comments. As a
consequence, because of Theorem 4.1, we can describe generators of the singular de
Rham cohomology algebra of the diffeological free loop space of n-dimensional real
projective space with the volume form on the sphere Sn via Chen’s iterated integral
map; see Theorem 6.4. While the original iterated integrals due to Chen work
well for the cohomology of the free loop space of a simply connected manifold, the
diffeological argument above shows that we can also deal with non-simply connected
manifolds in Chen’s theory for free loop spaces. That is an advantage of considering
manifolds in diffeology.

An outline of this manuscript is as follows. Section 2 introduces a spectral se-
quence with a multiplicative structure for a bisimplicial set. The spectral sequence
gives rise to those for topological categories, Borel constructions, and diffeological
categories. In Section 3, we establish Theorems 2.1 and 2.2. Section 4 describes the
computational example mentioned above. In Section 5, by generalizing the com-
putations in Section 4, we present results of the cohomology algebras of Borel con-
structions. Moreover, we consider spectral sequences for transformation groupoids
including an inertia groupoid. In Section 6, we investigate the singular de Rham
cohomology of the diffeological free loop space of a non-simply connected manifold
by applying results concerning Borel constructions in Section 5.

Appendix A gives a weak homotopy equivalence between a Borel construction
and the free loop space of a quotient space, which is used in the computation
in Section 4. In Appendix B, we briefly recall the category of diffeological spaces
together with adjoint functors between the category of topological spaces. Appendix
C proves that the diffeological free loop space of smooth maps from S1 is weak
homotopy equivalent to the pullback of the evaluation map from a path space
along the diagonal map in the category of diffeological spaces. This result is critical
for proving Theorem 6.1.

2. A multiplicative spectral sequence for a bisimplicial set and its
variants

We introduce multiplicative spectral sequences associated with a bisimplicial set
by explicitly describing the product structure.

For a simplicial set K, we denote by C∗(K;K) and H∗(K;K) the cochain algebra
and the cohomology algebra of K with coefficients in a field K, respectively. Let
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Sing•(X) be the singular simplicial set of a space X. We may write H∗
sing(X;K) or

simply H∗(X;K) for the singular cohomology algebra H∗(Sing•(X);K).
Let S = S•• be a bisimplicial set. Then, the vertical face maps give rise to a

differential (dv)∗ by the alternating sum on the graded algebra Cp,∗ := C∗(Sp•;K)
with the usual cup product ∪ for any p ≥ 0. Moreover, we have a double complex
{{Cp,q}p,q≥0, (d

h)∗, (dv)∗}, where the differential (dh)∗ is induced by the horizontal
face maps of the bisimplicial set S••. A product ∪T on the total complex TotC∗,∗

is defined by

ω ∪T η = (−1)qp
′
(dhp+1 · · · dhp+p′)∗ω ∪ (dh0 · · · dhp−1)

∗η(2.1)

for ω ∈ Cp,q and η ∈ Cp
′,q′ . Observe that the differential on TotC∗,∗ is given by

δ(ω) = (dh)∗(ω)+(−1)p(dv)∗(ω) for ω ∈ Cp,q. Thus, we obtain a spectral sequence
{E∗,∗

r , dr} associated with the total complex.

Theorem 2.1. The first quadrant spectral sequence {E∗,∗
r , dr} with the multiplica-

tive structure defined by (2.1) converges to H∗(diagS••;K) as an algebra with

E∗,∗
2

∼= H∗(H∗(S••, (d
v)∗), (dh)∗)

as a bigraded algebra, where diagS•• denotes the diagonal simplicial set of S••;
see, for example, [18, Chapter IV, 1]. Therefore, for a simplicial space X• =
{Xn, ∂i, sj}, one has a first quadrant spectral sequence converging to the singular
cohomology algebra H∗

sing(||X•||;K) with E∗,∗
2

∼= H∗(H∗
sing(X•,K),

∑
i(−1)i∂∗i

)
as

a bigraded algebra, where || || denotes the fat geometric realization in the sense of
Segal [40].

A prototype of the spectral sequence in Theorem 2.1 is one stated in [34, II
6.8. Corollary]; see also [40, Proposition (5.1)] for a generalized cohomology. The
novelty here is that we explicitly provide an algebraic structure in the spectral
sequence.

Let C = [C1
t
//

s // C0] be a category internal to Top the category of topological

spaces; that is, structure maps containing the source map s and the target map
t are continuous. We may drop the maps s and t in the notation of an internal
category. The nerve functor gives rise to a cosimplicial cohain complex

n 7→ C∗(NervenC,K)

and then this induces a cosimplicial abelian group n 7→ Hq(NervenC,K) for any
q. In what follows, for a cosimplicial abelian group A•, we denote by H∆(A

•) the
cohomology of A•. Let BC be the classifying space, namely, BC = ||Nerve•C||,
which is the fat geometric realization of the simplicial space Nerve•C; see [40]. The
multiplicative spectral sequence in Theorem 2.1 is adaptable to many situations.
The following results illustrate it with crucial examples.

Theorem 2.2. (cf. [4], [34, II 6.8.Corollary, IV 4.1.Theorem], [17, Corollary 3.10])

i) Let C = [C1 //
// C0] be a category internal to Top. Then there exists a spectral

sequence {E∗,∗
r , dr} converging to H∗(BC;K) as an algebra with

Ep,q2
∼= Hp

∆(H
q(Nerve•C;K)).

ii) Let G be a topological group and X a G-space. Then there exists a spectral
sequence converging to the Borel cohomology H∗

G(X;K) := H∗(EG×GX;K) as an



4 KATSUHIKO KURIBAYASHI

algebra with Ep,q2
∼= Hp(Hq(Nerve•G;K)). Here G := [G×X //

// X] denotes the

transformation groupoid associated to the G-space X whose source map and target
map are the projection on the first factor and the action of G on X, respectively.
In particular, one has an isomorphism

Ep,q2
∼= Cotorp,qH∗(G)(K,H

∗(X))

provided H∗(G) and H∗(X) are locally finite; see Remark 5.11 for a more structure
of the spectral sequence in the case where G is a finite group.

iii) Let C = [C1 //
// C0] be a category internal to the category Diff of diffeo-

logical spaces; that is, the sets C0 and C1 of objects and morphisms are diffeolog-
ical spaces, respectively, and structure maps in C are smooth; see Section B. Let
A∗
DR(S

D
• (Nerve•(C))) denote the cosimplicial de Rham complex of the nerve of C

introduced in [29, §2]; see Remark 3.2 and Appendix B. Then, there exists a spectral
sequence converging to H∗(diagSD• (Nerve•(C));R) as an algebra with

Ep,q2
∼= Hp

∆(H
q
DR(Nerve•(C))).

Here H∗
DR(Nerve•(C)) denotes the cohomology of the complex A∗

DR(S
D
• (Nerve•(C))).

One might expect that the target of the spectral sequence in Theorem 2.2 iii) is
replaced with the cohomology of a more familiar object. We discuss the topic in
Remarks 3.1, 3.2 and 3.3.

Remark 2.3. Let C be a category internal to Top. Then, by using the polynomial
de Rham functor APL (see, for example, [15, II 10 (a), (b) and (c)] and Appendix
B.1) instead of the singular cochain functor in Theorem 2.2 i), we have a spectral
sequence converging to the rational cohomology of BC. In this case, an appropriate
Sullivan model for each NervenC may be useful when computing the E2-term as
an algebra; see, for example, [15, Part II] for Sullivan models. Observe that the
product ∧T on APL(Nerve•C) is of the form

ω ∧T η = (−1)qp
′
π∗
1ω ∧ π∗

2η(2.2)

for ω ∈ AqPL(NervepC) and η ∈ Aq
′

PL(Nervep′C), where π1 and π2 are maps assigning
(f1, . . . , fp) and (fp+1, . . . , fp+p′) to (f1, . . . , fp, fp+1, . . . , fp+p′), respectively; see
[4, (6)].

The spectral sequences in Theorem 2.2 i) and ii) are variants of that in Theorem
2.1. Therefore, each of them converges to the cohomology of the total complex
TotC∗(Nerve•(C);K) as an algebra. The spectral sequence described in Theorem
2.2 iii) is also constructed by applying Theorem 2.1. Then, it converges to the
cohomology algebra of the total complex TotA∗

DR(S
D
• (Nerve•(C))) with the same

product ∧T as in (2.2). These targets of the convergences are isomorphic to the
cohomology algebras described in Theorem 2.2. This follows from the proof of
Theorem 2.2. Thus, it may be possible to reconstruct the algebra structure of the
target from that of the E∞-term in the same way as in [30, Section 7] with the
formula of the product; that is, we may solve extension problems in the spectral
sequences in Theorem 2.2.

Moreover, the formulae (2.1) and (2.2) enable us to explicitly consider the mul-
tiplication on the E2-term of the spectral sequence; see the proof of Proposition 4.4
in which the cohomology algebra of the free loop space of a Borel construction is
investigated for low degrees.
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The spectral sequence in [17, Corollary 3.10] converging to the homology of the
Borel construction EG×GM for a G-spaceM has a differential coalgebra structure,
and the condition on local finiteness for the homology groups H∗(G) and H∗(M) is
not required in constructing the spectral sequence. Indeed, the torsion product of
chain complexes is used in the construction. In contrast, in proving Theorem 2.2 ii),
we consider the nerve of a category internal to Top and apply the Künneth theorem.
Then, the local finiteness for cohomology groups H∗(G) and H∗(X) is required in
our theorem. We stress that the multiplicative structure in our spectral sequence
is given explicitly by (2.1) without an argument on dualizing the homology.

3. Constructions of the spectral sequences

The goal of this section is to construct the spectral sequences described in The-
orems 2.1 and 2.2.

Proof of Theorem 2.1. We observe that the decreasing filtration {F pTotC∗,∗}p≥0

defined by (F pTotC∗,∗)n =
⊕

i+j=n,i≥p C
i,j provides the spectral sequence. Since

the product ∪T in (2.1) preserves the filtration, it induces a multiplicative structure
in the spectral sequence. Thus, for proving the first assertion, it suffices to show
that the product inH∗(TotC∗,∗) given by ∪T is compatible with the cup product on
H∗(diagS••;K) under an appropriate isomorphism between the cohomology groups.
To this end, we use an argument with universal δ-functors; see [45, Chapter 2].

The simplicial identities for the horizontal face maps of S•• enable us to deduce
that the cup product ∪T on TotC∗,∗ is a cochain map. A direct computation gives
the fact. We show that a diagram

(3.1) H∗(TotC∗,∗)⊗H∗(TotC∗,∗)

H(AW∗)⊗H(AW∗) ∼=
��

∪T // H∗(TotC∗,∗)

H(AW∗)∼=
��

dualπ∗(diagK(S••))⊗ dualπ∗(diagK(S••)) ∪
// dualπ∗(diagK(S••))

is commutative, where ∪ is the usual cup product and AW denotes the Alexander-
Whitney map; see, for example, [45, 8.5.4]. The diagram

H∗(dual (TotCA))⊗H∗(dual (TotCA))

H(AW∗)⊗H(AW∗)
��

// H∗(dual (TotCA)⊗ dual (TotCA))

H(AW∗⊗AW∗)
��

π∗(dual diagA)⊗ π∗(dual diagA) // π∗(dual diagA⊗ dual diagA))

is commutative, where the horizontal maps are the canonical ones, A is the bisim-
plicial vector space K(S••) and C denotes the double complex functor; see [45, 8.5].
Then, in order to prove the commutativity of the diagram (3.1), we show that the
diagram

(3.2) H∗(dual (TotCA)⊗ dual (TotCA))

H(AW∗⊗AW∗) ∼=
��

∪T // H∗(dual (TotCA))

H(AW∗)∼=
��

π∗(dual diagA⊗ dual diagA)) ∪
// π∗(dual diagK(S••))

is commutative. It is proved that F ( ) := H∗(dual (TotC( ))⊗dual (TotC( ))) and
π∗(dual diag( )) are universal δ-functors from the category of bisimplicial K-vector
spaces to the opposite category of graded K-vector spaces. In fact, functors dual( )
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and dual( )⊗dual( ) are exact and preserve projectives. Moreover, functors TotC( )
and diag( ) are also exact and preserve projectives; see [45, 8.5.2 and the proof of
8.5.1]. Thus, it follows that

π∗(dual diag( )) = (L∗π0) ◦ (dual ◦ diag)( ) = L∗(π0 ◦ dual ◦ diag)( ) and

F ( ) = (L∗H0)(dual (TotC( ))⊗ dual (TotC( )))

= (L∗H0) ◦ (dual⊗ dual ◦ (TotC))( )

= L∗(H0 ◦ dual⊗ dual ◦ TotC))( ).

The result [45, Theorem 2.4.7] allows us to deduce that F ( ) and π∗(dual diag( ))
are universal δ-functors.

Since the map H0(AW
∗) is induced by the identity map on A00 and the product

∪T is nothing but the cup product, it follows that the diagram (3.2) is commutative
on H0. Therefore, the universality of the functor F ( ) enables us to conclude that
the diagram (3.2) is commutative. Thus, the double complex TotC∗,∗ induces the
multiplicative spectral sequence in the assertion.

In order to prove the latter half of the assertion, we deal with bisimplicial
sets and their geometric realizations. For a simplicial space X•, we see that
|(|Sing•′(X•)|•′)| ' |diag Sing•′(X•)| by the Eilenberg-Zilber theorem; see, for ex-
ample, [38, Lemma, page 94] and [16, 7. Theorem].

Let Y denote the simplicial space |Sing•′(X•)|•′ which is the geometric realization
with respect to indices •′. Since Y is good in the sense that each degeneracy map
is a closed cofibration, it follows that there exists a natural homotopy equivalence

||Y || ≃−→ |Y |; see [40, Proposition A.1. (iv)]. Moreover, the counit of the geometric

realization functor gives a natural weak homotopy equivalence Yn
≃w−→ Xn for each

n. Therefore, the equivalence induces a homology isomorphism ||Y || → ||X||; see
[14, Lemma 5.16]. It turns out that H∗(diag Sing(X•),K) ∼= H∗(||X||,K) as an
algebra by a natural map; see [10, Lemmas 1.2 and 1.3] for a homotopical proof of
the fact. □

Remark 3.1. One may expect a version of Theorem 2.1 for a simplicial diffeological
space. The isomorphism in the proof of the latter half of the theorem appears
to be well known. To obtain this fact, we take advantage of the Eilenberg–Zilber
theorem, which is also applied in [10]. The key to proving the powerful theorem is
the use of the homeomorphism |K×∆[n]| ∼= |K|× |∆[n]| for a simplicial set K and
the standard simplicial set ∆[n]. However, the diffeological realization functor | |D
in the sense of Kihara [24, Remark 22.1] or Christensen and Wu [13, Proposition
4.13] does not preserve the product even if K is the standard simplicial set in the
example above. Thus, we cannot prove verbatim a diffeological version of Theorem
2.1. Indeed, it is not easy to replace the target of the spectral sequence in Theorem
2.2 iii) with a more familiar one for a general category internal to Diff. To explain
this inconvenience, we have described the proof of the isomorphism.

Proof of Theorem 2.2. The assertion i) follows from the direct application of The-
orem 2.1. As for the assertion iii), we recall the result [29, Proposition 3.4] which
yields that for any simplicial set K, there exists a sequence of quasi-isomorphisms
of cochain algebras between C∗(K;K) and A∗

DR(K). Then, by applying the first
half of Theorem 2.1 to the bisimplicial set SD• (Nerve•(C)), we obtain iii).
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To demonstrate the assertion ii), we recall the proof of the result in [4, Equivari-
ant homology] which describes an equivalence between the Borel cohomology and
the cohomology of a groupoid.

Let G be the transformation groupoid [G×X //
// X]. The principal G-bundle

π : EG × X → XG := EG ×G X defined by the quotient map gives rise to the

banal groupoid G̃ := [(EG×X)×XG
(EG×X)

π1

//
π1 // (EG×X)] , where πi is the

projection in the ith factor. Then, the groupoid G̃ is isomorphic to a transformation

groupoid of the form [G× (EG×X) //
// (EG×X)]. In fact, we have a bundle

isomorphism

G× (EG×X)
µ

∼=
//

pr **UUU
UUUU

(EG×X)×XG
(EG×X)

π2ssggggg
ggggg

EG×G

which is defined by µ(g, (e, x)) = ((eg−1, gx), (e, x)). Here pr denotes the projection
in the second factor.

Since the quotient map π is a topological submersion, it follows from [4, Lemma

32] that the edge homomorphism H∗
G(X) = H∗(XG)

∼=→ H(TotC∗(Nerve•G̃)) is
an isomorphism of algebras. The projection EG × X → X in the second fac-

tor induces a morphism h : G̃ → G of groupoids. Since EG is contractible,
it follows from the spectral sequence argument that h induces an isomorphism

h∗ : H(TotC∗(Nerve•G))
∼=→ H(TotC∗(Nerve•G̃)). As a consequence, we have the

spectral sequence converging to H∗
G(X) in ii). The local finiteness of H∗(G) and

H∗(X) allows us to conclude that the chain complex {H∗(NervenG)}n with the
horizontal differential is nothing but the cobar complex computing the cotorsion
functor. We have the result. □

As an input datum, our spectral sequence admits the nerve of a category internal
to Diff. Thus, it is expected that the machinery widely contributes to the calculation
of cohomology algebras for not only topological categories but also diffeological ones;
see Remark 3.2 below.

We recall the D-topology functor D : Diff → Top from the category Diff of
diffeological spaces to that of topological spaces that admits the right adjoint C;
see Appendix B. Let VD be the class consisting of diffeological spaces M for each of
which the identity map id : M → CDM is a weak equivalence in Diff. Especially,
the result [24, Theorem 11.2] implies that a C∞-manifold in the sense of [26, Section
27] and hence each component of the nerve of a Lie groupoid G is in VD. In
particular, paracompact manifolds modeled on Hilbert spaces and the space of
smooth maps between finite-dimensional manifolds are also in VD; see [24, Chapter
11.4] for more details.

Remark 3.2. Given a diffeological space X, let SDn (X) be the set of smooth maps
to X from the standard n-simplex ∆n

st endowed with the diffeology in the sense of
Kihara [23, 1.2]. Then, the cosimplicial set structure on ∆n

st gives a simplicial set
SD• (X) := {SDn (X)}.

It follows from [23, Proposition 3.2] that D(∆n
st) is the standard simplex which is

a subspace of Rn+1. Thus, for a category C internal to Diff, the smoothing theorem
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[24, Theorem 1.7] implies that the natural map

η : SD• (Nerve•(C)) → Sing•(D(Nerve•(C)))

induced by the functor D is a weak homotopy equivalence of simplicial sets pro-
vided each A := Nerven(C) is in the class VD; see Theorem 6.2 for a particular
version of the smoothing theorem. Therefore, by [18, Chapter IV, Proposition
1.7], we see that diagSD• (Nerve•(C)) 'w diag Sing•(D(Nerve•(C))). It turns out
that the spectral sequence in Theorem 2.2 iii) converges to the cohomology algebra
H∗(||D(Nerve•(C))||;R).

We apply the argument above to a transformation diffeological groupoid G :=

[G×N //
// N ] for which G is a Lie group and N is in VD. It follows from [12,

Lemma 4.1] that the natural map D(X×Y ) → D(X)×D(Y ) is a homeomorphism if
D(X) is locally compact Hausdorff. This implies that D(G×n×N) ∼= G×n×D(N).
Moreover, the functor C is the right adjoint to D and hence C preserves the prod-
ucts. We conclude that each component Nerven(G) = G×n × N of the nerve of G
is in VD. As a consequence, the spectral sequence in Theorem 2.2 iii) converges
to H∗(||D(Nerve•(G))||;R) ∼= H∗(||Nerve•(DG)||;R) ∼= H∗(EG ×G DN ;R) as al-

gebras, where DG denotes a topological groupoid of the form [G×DN //
/ / DN ] ;

see the proof of Theorem 2.2 for the second isomorphism. Thus, we may describe
the generators of H∗(EG ×G D(N);R) with differential forms on N , although we
do not pursue such a topic in this article; see Section 6 for a related topic.

Remark 3.3. Let G be a Lie groupoid presenting a differentiable stack X. By defini-
tion, the de Rham cohomology H∗

DR(X) of the stack is the cohomology of the total
complex of the bigraded de Rham complex A := ∧∗(Nerve•(G)); see [4, Definition
9]. By Proposition B.4, the factor map α : ∧∗(Nerve•(G)) → A∗

DR(S
D
• (Nerve•(G))

is a natural quasi-isomorphism.
Moreover, the result [29, Proposition 3.4] asserts that there exists a sequence of

natural quasi-isomorphisms of cochain algebras between C := C∗(SD• (Nerve•(G);K)
and A∗

DR(S
D
• (Nerve•(G)). Thus, we have a sequence of quasi-isomorphisms between

the total complexes (TotC,∪T ) and (TotA,∧T ) which preserve products; see (2.1)
and (2.2) for the formulae of ∪T and ∧T , respectively. Therefore, because Nerve•(G)
is a manifold, the proof of the latter half of Theorem 2.1 and the same argument as
in Remark 3.2 enable us to conclude that H∗

DR(X)
∼= H∗(BG,R) as an algebra. We

observe that the product ∧T coincides with that in the total complex mentioned in
[4, (6)].

4. Computational examples

The aim of this section is to compute the cohomology algebra of the free loop
space of the real projective space. Let G be a discrete group acting on a topological
space M . For g ∈ G, we define Pg(M) := {γ : [0, 1] → M | γ(1) = gγ(0)} which

is a subspace of the space of continuous paths M [0,1] from the interval [0, 1] to M
with the compact-open topology. Moreover, we put

PG(M) :=
∐
g∈G

(Pg(M)× {g}).(4.1)

Then, the space PG(M) admits a G-action defined by h · (γ, g) = (hγ, hgh
−1),

where hγ(t) = h · γ(t). For a space X, let LX denote the free loop space of X,
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namely, the space of continuous maps from the circle S1 to X. Let G→M
p→M/G

be a principal G-bundle. Proposition A.1 enables us to obtain a weak homotopy
equivalence

(4.2) p : EG×G PG(M)
≃w−→ L(M/G)

which is induced by the projection p : M → M/G. Thus, we see that the spectral
sequence in Theorem 2.2 ii) computes the cohomology algebra of a transformation

groupoid of the form G = [G× PG(M) //
// PG(M)] and hence that of L(M/G).

Suppose thatM is simply connected. For each g ∈ G, to compute H∗(Pg(M);K)
with coefficients in a field K, we may use the Eilenberg–Moore spectral sequence
(henceforth EMSS for short) for the pullback diagram

Pg(M) //

��

M [0,1]

ε0×ε1
��

M
1×g

// M ×M,

(4.3)

where εi is the evaluation map at i for i = 0, 1 and g denotes the map induced
by the action on M with the element g. We observe that the EMSS {E∗,∗

r , dr}
converges to H∗(Pg(M);K) as an algebra with

E∗,∗
2

∼= Tor∗,∗H∗(M ;K)⊗H∗(M ;K)(H
∗(M ;K)g,H

∗(M ;K))

as a bigraded algebra. Here H∗(M ;K)g denotes the cohomology algebra H∗(M ;K)
endowed with the right H∗(M ;K) ⊗ H∗(M ;K)-action defined by a · (λ ⊗ λ′) =
a(λg∗(λ′)) for a ∈ H∗(M ;K)g and λ, λ′ ∈ H∗(M ;K).

For an element h, the G-action on PG(M) induces the map h∗ : Pg(M) →
Phgh−1(M) which fits in the commutative diagram

Pg(M)

h∗
((RR

RR
//

��

M [0,1]
h∗

((QQ
QQQ

ε0×ε1

��

Phgh−1(M) //

��

M [0,1]

ε0×ε1
��

M

h **TTT
TTTT

TT
1×g

// M ×M h×h
))SSS

M
1×hgh−1

// M ×M.

(4.4)

Then, the naturality of the EMSS gives rise to a morphism of spectral sequences
that is compatible with the map (h∗)

∗ : H∗(Phgh−1(M);K) → H∗(Pg(M);K).
In the rest of this section, by utilizing the spectral sequence in Theorem 2.2

ii), we determine the cohomology algebra of the free loop space LRPn of the real
projective space with coefficients in Z/p for p 6= 2. Moreover, we investigate the
mod 2 cohomology algebra of LRPn in a more general context; see Proposition 4.4.

A portion of the computations, in general, follows from a description of the
cotorsion functor with the cohomology of a group; see Lemma 5.1, Theorem 5.2
and Corollary 5.4 below. However, we here compute the functor with the cobar
complex to see what is happening in the E1-term of the spectral sequence that we
apply in the computation.
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Theorem 4.1. Let p be an odd prime or 0 and m a positive integer, then as
algebras,

H∗(LRP 2m+1;Z/p) ∼= H∗(LS2m+1;Z/p)⊕H∗(LS2m+1;Z/p)
∼= (∧(y)⊗ Γ[y])⊕2 and

H∗(LRP 2m;Z/p) ∼= (∧(x⊗ u)⊗ Γ[w])⊕ Z/p,

where deg y = 2m + 1, deg y = 2m, deg(x ⊗ u) = 4m − 1, degw = 4m − 2 and
Z/0 := Q.

Before starting the proof of Theorem 4.1, we recall a result on a right G action
on a vector space and the right G-coaction associated with the action. Let G be
a finite group and η : K[G] ⊗ V → V a G-action on a finite-dimensional vector
space V . The left G-action gives rise to the right G-action φ : V ∨ ⊗ K[G] → V ∨

defined by φ(f ⊗ g)(v) = f(η(g ⊗ v)) for v ∈ V . Moreover, we see that the adjoint
ad(φ) : V ∨ → K[G]∨⊗V ∨ coincides with the dual coaction η∨ : V ∨ → K[G]∨⊗V ∨.
We use the fact in the computation below without mentioning that.

In what follows, we may omit the coefficients in the cohomology groups that we
deal with.

Proof of Theorem 4.1. The antipodal action of G := Z/2 on the sphere Sn gives
rise to the real projective space RPn = Sn/G. By applying Theorem 2.2 ii) to

the groupoid [G× PG(Sn) //
// PG(Sn)] , we have a spectral sequence {E∗,∗

r , dr}
converging to H∗(LRPn;Z/p) with E∗,∗

2
∼= Cotor∗,∗H∗(G)(Z/p,H

∗(PG(Sn))) as an

algebra. Since G is abelian, it follows that the G action on PG(Sn) is restricted
to each Pg(Sn) for g ∈ G. Then, we see that L(RPn) 'w EG ×G PG(Sn) =∐
g∈G

(
EG×G Pg(Sn)

)
and

Cotor∗,∗H∗(G)(Z/p,H
∗(PG(Sn))) = ⊕g∈GCotor∗,∗H∗(G)(Z/p,H

∗(Pg(Sn))).

We compute the cotorsion functor with the normalized cobar complex(
Z/p{τ∗}⊗k ⊗H∗(Pg(Sn)), ∂k = ∇G ⊗ 1 + (−1)k+11⊗∇τ∗

)
k≥0

,

where τ ∈ G denotes the nontrivial element, ∇τ∗ : H∗(Pg(Sn)) → H̃0(G) ⊗
H∗(Pg(Sn)) = Z/p{τ∗} ⊗ H∗(Pg(Sn)) is the coaction induced by the G-action
on Pg(Sn) and the projection G × Pg(Sn) → Pg(Sn) gives rise to the map ∇G.
Observe that the complex is nothing but the E1-term of the spectral sequence
{E∗,∗

r , dr}.
In what follows, we may write K for the underlying field Z/p. We consider the

EMSS associated with the fibre square (4.3) for M = Sn.
For the case n = 2m + 1, the action on H∗(S2m+1) ∼= ∧(y) induced by the

nontrivial element τ is given by τ∗(y) = y. Therefore, the computation in [31,
Theorem 2.1] allows us to conclude that the cohomology algebra H∗(Pg(Sn)) is
isomorphic to H∗(LS2m+1) for each g ∈ G. The naturality of the EMSS implies
that the action by g∗ on H∗(LS2m+1) is trivial and then so is the coaction. This

yields that E0,∗
2

∼= Cotor0,∗H∗(G)(Z/p,H
∗(PG(Sn))) ∼= H∗(LS2m+1)⊕2 and Ep,∗2 = 0

for p > 0. Then, it follows that E∗,∗
2

∼= E∗,∗
∞ and there is no extension problem.

The explicit form of H∗(LS2m+1) follows from [31, Theorem 2.1]. This enables us
to obtain the first assertion.
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We consider the case where n = 2m. In order to compute the torsion functor
which gives the E2-term of the EMSS, we recall a Koszul–Tate resolution of the
form

F = (Λ⊗ Λ⊗ ∧(u)⊗ Γ[w], d)
ε→ Λ → 0

of Λ := H∗(S2m) = K[x]/(x2) as a left Λ⊗Λ-module, where ε is the multiplication
on Λ, d(Λ⊗ Λ) = 0, d(u) = x⊗ 1− 1⊗ x, d(γr(w)) = (x⊗ 1 + 1⊗ x)u⊗ γr−1(w),
bideg u = (−1, deg x) and bideg γr(w) = r(−2, 2 deg x); see [41, Proposition 3.5]
and [27, Proposition 1.1]. The complex (Λ⊗Λ⊗ΛF , 1⊗d) computes the Hochschild
homology of Λ. Using the resolution, we determine H∗(P0(S

n)) and H∗(Pτ (Sn))
for the nontrivial element τ ∈ G

Claim 4.2. i) H∗(P0(S
2m)) ∼= {K[x]/(x2)⊗∧(u)/(xu)A}⊕{(x, u)A/(xu)A}⊗Γ+[w]

as an algebra, where (S)A denotes the ideal of A := K[x]/(x2)⊗ ∧(u) generated by

a set S. Moreover, τ∗(z) = −z for z ∈ H̃∗(P0(S
n)).

ii) H∗(Pτ (S2m)) ∼= ∧(x ⊗ u) ⊗ Γ[w] as an algebra and τ∗(z) = z for each element
z ∈ ∧(x⊗ u)⊗ Γ[w].

It follows from Claim 4.2 i) that Cotor∗,∗H∗(G)(Z/p,H
∗(P0(S

2m))) = Z/p. More-

over, Claim 4.2 ii) enables us to conclude that

Cotori,∗H∗(G)(Z/p,H
∗(Pτ (S2m))) ∼=

{
∧(x⊗ u)⊗ Γ[w] for i = 0
0 for i 6= 0

We have the result. □

Proof of Claim 4.2. Let n be an even integer 2m. i) Since P0(S
n) is nothing but

the free loop space LSn, the result on the algebra structure follows from the results
in [37, 4.1] and [31, Theorem 2.2]. In order to prove the latter assertion on the
action, we represent elements in the Koszul–Tate resolution with the bar resolution
B∗,∗ of Λ as a left Λ ⊗ Λ-module. Let ψ : B∗,∗ → F be the chain map constructed
in the proof of [27, Lemma 1.5], which induces an isomorphism between the torsion
functors. We see that ψ(x) = x, ψ(u) = [x⊗ 1− 1⊗ x] and

Ψ(1Λ⊗Λ[x⊗ 1+1⊗x | x⊗ 1− 1⊗x | · · · | x⊗ 1+1⊗x | x⊗ 1− 1⊗x]1Λ) = γr(w).

Since τ∗(x) = −x for x ∈ H∗(Sn), it follows that τ∗(u) = −u and τ∗(γr(w)) =
γr(w). Consider the morphism of spectral sequences induced by the diagram
(4.4). Then, the naturality of the EMSS and the forms of algebra generators of
H∗(P0(S

n)) enable us to obtain the latter half of i).
ii) To compute the cohomology algebra H∗(Pτ (Sn)) for the nontrivial element

τ ∈ G, we consider the EMSS {Ẽ∗,∗
r , d̃r} associated with the pullback diagram

(4.3) converging to the cohomology H∗(Pτ (Sn)). As mentioned in the proof of i),
the τ -action on Hn(Sn) is nothing but the multiplication by −1. Thus, the right
Λ⊗Λ-module structure on Λτ := H∗(Sn) is given by a ·(λ⊗λ′) = −aλλ′ for a ∈ Λτ
and λ⊗ λ ∈ Λ⊗ Λ. This yields that

Ẽ∗,∗
2

∼= TorΛ⊗Λ(Λτ ,Λ) ∼= (Λτ ⊗Λ⊗ΛF , d′(u) = 2x, d′(γr(w)) = 0) ∼= ∧(x⊗u)⊗Γ[w]

as bigraded algebras, where bideg(x ⊗ u) = (−1, 2n). For degree reasons, we see
that the EMSS collapses at the E2-term. In fact, the possibility of a nontrivial
differential appears as ds(γpf (w)) = αx ⊗ u · γl(w) for some positive integers s, f ,
l and some α ∈ K. We observe that s ≥ 2. Comparing the total degrees of both
elements in the equality, we have (2n − 1)pf + 1 = (2n − 1) + (2n − 2)l and then
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pf = l+1. By comparing the filtration degree, we see that −2pf+s = −1−2(pf−1)
and s = 1, which is a contradiction.

We have to show that γfp (w)
p = 0 in H∗(Pτ (Sn)) for f ≥ 0. The extension

problems are solved by degree reasons. It turns out that H∗(Pτ (Sn)) ∼= TotẼ∗,∗
∞

∼=
TotẼ∗,∗

∞ as algebras.
By using the chain map Ψ : B∗,∗ → F as mentioned above, we see that τ∗(x⊗u) =

(−1)(−1)x ⊗ u and τ∗(γr(w)) = γr(w). Thus, by considering again the morphism
of spectral sequences induced by the diagram (4.4), we have the result on the
action. □

Remark 4.3. The path space P0(S
n) is nothing but the free loop space LSn. Then,

the inclusion LSn = P0(S
n) → EG × P0(S

n) defines a natural map α : LSn →
EG×G P0(S

n). Moreover, we have a commutative diagram

LSn
Lp

//

α

,,

LRPn
∐
g∈G(EG×G Pg(Sn))

p

≃w

oo EG×G P0(S
n)oo

Sn
s
OO

p
// RPn,

s
OO

where p is the universal cover and s denotes the map that assigns the constant loop
at r to each element r in Sn and RPn, respectively. Thus, it follows that LSn is
weak homotopy equivalent to the path component of LRPn consisting of constant
loops under the equivalence (4.2). In particular, the proof of Theorem 4.1 allows
us to conclude that the cohomology of the component with coefficients in Z/p is
isomorphic to Z/p if n is even.

We here attempt to compute the cohomology of the free loop space of a Borel
construction with coefficients in Z/2 by using the same method as above. We indeed
use the multiplicative structure of the spectral sequence that we apply.

Let G be the cyclic group Z/2 and M a simply-connected, mod 2 homology
n-sphere that admits a G-action, where n ≥ 2. Further assume that the Borel
cohomology H∗(EG ×GM ;Z/2) is of finite dimension. Let L0(EG ×GM) be the
connected component of the free loop space L(EG×GM) containing the constant
loops. Then, we have the following result.

Proposition 4.4. As an algebra, H∗(L0(EG×GM);Z/2) ∼= Γ[y]⊗
(
Z/2[t]/(tn+1)

)
for ∗ ≤ 2n− 3, where deg y = n− 1 and deg t = 1.

Proof. To obtain the isomorphism, we compare spectral sequences given by the

groupoid G1 := [G× P0(EG×M) //
// P0(EG×M)] and the translation groupoid

G2 := [G× (EG×M) //
// EG×M ] , respectively. Let ẽv0 : G1 → G2 be the mor-

phism of groupoids induced by the evaluation map ev0 : P0(EG×M) → EG×M
at 0 ∈ I, where ev0 is the evaluation map at 0. Observe that ev0 is a G-equivariant
map. Thus, we have a commutative diagram

EG×G P0(EG×M)

1×ev0
��

p

≃w

// L0(EG×GM)

ev0
��

EG×G (EG×M) ≃w

q
// EG×GM,
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where p is the weak equivalence described in Proposition A.1 and q is induced by
the natural projection. Let {1E∗,∗

r , 1dr} and {2E∗,∗
r , 2dr} be the spectral sequences

in Theorem 2.2 ii) with coefficients in Z/2 constructed by groupoids G1 and G2,
respectively. We observe that P0(EG×M) = L(EG×M) ' LM .

By the assumption on M , we see that H∗(LM) ∼= Z/2[xn]/(x2n) ⊗ Γ[y] as an
algebra, where deg xn = n and deg y = n − 1. In fact, the isomorphism for n odd
follows from [31, Theorem 2.1]. Moreover, the computation in [37, 4.1] gives the
result for n even. Indeed, we need an explicit form of the mod 2 cohomology group
of ΩM as an input datum; that is, H∗(ΩM ;Z/2) ∼= Γ[y], where deg y = n−1. This
fact follows from the computation of the EMSS converging to H∗(ΩM ;Z/2) with
E,∗2

∼= Tor∗,∗H∗(M)(Z/2,Z/2).
Since each dimension of Ai := Hi(P0(EG × M)) is one or zero. Thus, the

G-action on Ai is trivial. This fact and the formula (2.1) allow us to deduce that

1E
∗,∗
2

∼= Cotor∗,∗H∗(G)(Z/2, A
∗) ∼= A∗ ⊗ Z/2[t] ∼= Z/2[xn]/(x2n)⊗ Γ[y]⊗ Z/2[t]

as algebras, where bideg t = (1, 0). The same argument as above is applicable to
the spectral sequence {2E∗,∗

r , 2dr}. Then, it follows that

2E
∗,∗
2

∼= Cotor∗,∗H∗(G)(Z/2,H
∗(M)) ∼= Z/2[xn]/(x2n)⊗ Z/2[t]

as algebras.
We consider the morphism {fr} : {2E∗,∗

r , 2dr} → {1E∗,∗
r , 2dr} of spectral se-

quences induced by ẽv0. The construction of the spectral sequence yields that
f2(xn) = xn and f2(t) = t. By assumption, the vector space H∗(EG ×G M)
is of finite dimensional. Therefore, we see that 2dn+1(xn) = tn+1 and hence

1dn+1(xn) = tn+1. To complete the proof, it remains to show that 1dn−1(y) = 0
but not 1dn(y) = tn. Since ev0 : L0(EG ×G M) → EG ×G M has a section, it
follows that the map ev∗0 induced on the cohomology is a monomorphism. This
implies that 1dn−1(y) = 0. □

Remark 4.5. In the spectral sequence {1E∗,∗
r , 1dr} above, there is a possibility that

1dn(γ2(xn)) = xn ⊗ tn. In the computation above, we can use the Leray–Serre
spectral sequence for a Borel fibration of the form X → EG ×G X → BG instead
of the spectral sequence in Theorem 2.2 ii). However, the same possibility of the
non-trivial differential as above remains.

Remark 4.6. We observe that Proposition 4.4 is applicable to the real projective
space. Let M be the 3-dimensional real projective space RP 3 which is regarded as
the homogeneous space of S3 = SU(2) by the center Z/2. SinceM is an H-space, it
follows that L(M) ' Ω[e]M ×M ' (ΩeS

3
∐

ΩeS
3)×M , where e ∈ S3 denotes the

unit; see the proof of Proposition A.1 for the second weak homotopy equivalence.
Then it turns out that H∗(LM ;Z/2) ∼= (Γ[s−1x])⊕2 ⊗

(
Z/2[t]/(t4)

)
as an algebra.

5. A spectral sequence for a Borel construction

In the previous section, we apply the spectral sequence in Theorem 2.2 ii) to a
computation of the cohomology of a transformation groupoid. In this section, the
result is generalized with a description of the cotorsion functor by the cohomology
of a finite group. Moreover, we give a spectral sequence for computing the cohomol-
ogy of the classifying space of inertia groupoids, while there is no computational
example.
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We begin with a lemma relating the cotorsion functor to the cohomology of a
group. Let G be a finite group and N a finite-dimensional left K[G]∨-comodule.
Then the module N∨ is regarded as a left K[G]-module via the natural map ∇∨ :
K[G]⊗N∨ → N∨ induced by the left comodule structure ∇ on N . Thus, by using
the isomorphism N ∼= (N∨)∨, we consider N a right K[G]-module.

For a Hopf algebra A with antipode S, we have an injective algebra homomor-
phism δ : A → Ae = A ⊗ Aop defined by δ(a) =

∑
a1 ⊗ S(a2); see [46, Lemma

9.4.1].

Lemma 5.1. Under the setup above, there are isomorphisms of vector spaces

Cotor∗K[G]∨(K, N) ∼= HH∗(K[G],K⊗N) ∼= Ext∗K[G](K,K⊗N) = H∗(G,N).

Here the module N in the Hochschild cohomology is regarded as a right K[G]-module
mentioned above. Moreover, the module K⊗N in the group cohomology is considered
a left K[G]-module via the monomorphism δ.

Proof. The first isomorphism follows from [2, Theorem 3.4]. As for the second
isomorphism, we repeat the proof of [46, Theorem 9.4.5] verbatim. For a general
Hopf algebra A, the result [46, Lemma 9.4.2] enables us to conclude that the map
f : A → Ae ⊗A K defined by f(a) = a ⊗ 1 ⊗ 1 is an isomorphism of Ae-modules,
where Ae denotes the enveloping algebra of A. Then, it follows that ExtnAe(A, T ) ∼=
ExtnAe(Ae ⊗A K, T ) ∼= ExtnA(K, T ) for a left Ae-module T . We observe that the
latter isomorphism is given by Eckmann-Shapiro Lemma; see, for example, [46,
Lemma A.6.2]. This completes the proof. □

We can generalize the computation in Section 4.

Theorem 5.2. (cf. [9, Chapter II, Theorem 19.2]) Let G be a finite group acting
on a space X whose cohomology with coefficients in K is locally finite. Suppose that
ch(K) the characteristic of K is coprime with |G|. Then as an algebra

H∗(EG×G X;K) ∼= K2K[G]∨H
∗(X;K),

where the right-hand side algebra denotes the cotensor product of the trivial right
K[G]∨-comodule K and the left K[G]∨-comodule H∗(X;K).

Proof. In view of Theorem 2.2 ii), we have a spectral sequence {E∗,∗
r , dr} converging

toH∗(EG×GX) with E∗,∗
2

∼= Cotor∗,∗H∗(G)(K,H
∗(X)) as an algebra. Since H∗(G) =

H0(G) = K[G]∨ and the characteristic of K is coprime with |G|, it follows from
Lemma 5.1 that

Cotorp,qH∗(G)(K,H
∗(X)) ∼= CotorpK[G]∨(K,H

q(X)) =

{
K2K[G]∨H

q(X) for p = 0
0 for p 6= 0.

We see that the coalgebra structure ∇ : H∗(X) → H∗(G)⊗H∗(X) is a morphism
of algebras. Then, the cotensor product K2K[G]∨H

∗(X) is a subalgebra of H∗(X).
It turns out that the spectral sequence of algebras collapses at the E2-term and
there is no extension problem. We have the result. □

Remark 5.3. Let G be a finite group acting on a space X. Then, the inclusion

from the unit to G gives rise to a morphism ι : [{e} ×X //
// X] // [G×X //

// X]

of the translation groupoids, whose domain is the trivial one. The naturality of
the spectral sequence in Theorem 2.1 and the proof of Theorem 2.2 ii) enable us
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to obtain a morphism {ι∗r} : {E∗,∗
r , dr} → {‵E∗,∗

r , ‵dr} of spectral sequences and a
commutative diagram

H∗(EG×G X;K)

j∗

��

// // E0,∗
∞

ι∗∞
��

// // E0,∗
2

ι∗2
��

∼= // K2K[G]∨H
∗(X;K)

inclusion
��

H∗(X;K) =
// ‵E0,∗

∞ =
// ‵E0,∗

2 =
// H∗(X;K),

where j is the composite X → E{e} × X → EG × X → EG ×G X. The proof
of Theorem 5.2 shows that the upper arrows are isomorphisms if the characteristic
of K is coprime with |G|. Then, the isomorphism of algebras in the theorem is
regarded as the map induced by j : X → EG×G X mentioned above.

Theorem 5.2 allows us to compute the cohomology algebra of the free loop space
of a Borel construction.

Corollary 5.4. (cf. [32, Corollary 6.5]) Let G be a finite group acting on a space
M and PG(M) the space defined in (4.1). Suppose that H∗(PG(M);K) is locally
finite and (ch(K), |G|) = 1. Then as an algebra

H∗(L(EG×GM);K) ∼= K2K[G]∨H
∗(PG(M);K).

Proof. Theorem 5.2 and Corollary A.2 imply the assertion. □

Remark 5.5. Let M be a simply-connected G-space whose cohomology with coef-
ficients in a field K is locally finite. Then, the total complex of the bar complex,
which computes the E2-term of the EMSS for the fibre square (4.3), is locally finite
and hence so is H∗(PG(M);K) if G is finite.

Remark 5.6. Let G→M
p→M/G be a principal G-bundle with finite fibre G. The

projection p induces natural maps p̃ : PG(M) → L(M/G) and p : EG×GPG(M) →
L(M/G) with p ◦ j = p̃, where j is the map described in Remark 5.3. By virtue
of Proposition A.1 and Theorem 5.2, we see that p̃ gives rise to an isomorphism

p̃∗ : H∗(L(M/G);K)
∼=−→ K2K[G]∨H

∗(PG(M);K) of algebras if (ch(K), G) = 1.

Corollary 5.7. Let G be a finite group and M a simply-connected G-space whose
rational cohomology is locally finite. Assume further that M is formal and for each
g ∈ G, the map g :M →M induced by g via the G-action is formal in the sense of
[44, Définition 2.3.3]; see also [3, Definition 2.3]. Then as an algebra

H∗(L(EG×GM);Q) ∼= Q2Q[G]∨
(
⊕g∈G HH∗(H

∗(M ;Q),H∗(M ;Q)g)
)
,

where HH∗(A,H) denotes the Hochschild homology of a graded commutative algebra
A with coefficients in an Ae-algebra H.

Proof. The assumption on the map g implies that the map 1× g :M →M ×M is

formal. In fact, let MM
≃→ A∗

PL(M) be a minimal model for M , where APL(M)
denotes the complex of polynomial forms on M ; see Appendix B.1. Suppose that

g is (φM )-(φ′
M )-formal with quasi-isomorphisms φM : MM

≃→ H∗(MM ) and φ′
M :

MM
≃→ H∗(MM ). Then the map 1 × g is (φM ⊗ φ′

M )-(φ′
M )-formal. This fact

enables us to deduce that

H∗(Pg(M);Q) ∼= HH∗(A
∗
PL(M), A∗

PL(M)g
) ∼= HH∗(H

∗(M ;Q),H∗(M ;Q)g
)

as algebras. Corollary 5.4 yields the result. □
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We consider a spectral sequence for the inertia groupoid associated with a topo-
logical groupoid G; see [6, Chapters 11 and 16] for such a groupoid and its impor-
tance in string topology for stacks. In particular, we have a canonical morphism
from the inertia groupoid of G to the loop groupoid; see [6, 12.4].

Let G = [G1 //
// G0] be a topological groupoid. By definition, a space X with a

map p : X → G0 is a G-space if X is endowed with an action G1
t×pG0

X → X, where

G1
t×pG0

X denotes the pullback of p along the target map t : G1 → G0. Then,
the translation groupoid associated with the G-space X is defined by G ⋉ X :=

[G1
t×pG0

X //
// X] whose source and target maps are defined by the projection in

the second factor and the action, respectively.
For a topological groupoid G, we define a subspace SG of G1 and map p : SG →

G0 by SG := {g ∈ G1 | s(g) = t(g)} and p(g) = s(g), respectively. Then, the
conjugation on G1 gives rise to an action G1

t×pG0
SG → SG . The translation

groupoid ΛG := G ⋉ SG is called the inertia groupoid associated with G. We also
define the evaluation map

ev0 : ΛG = [G1
t×pG0

SG //
// SG ] → G = [G1 //

// G0]

by the projection in the first factor in morphisms and by the source map of G in
the objects.

Let G be a finite group and G⋉M := [G×M //
// M ] a translation groupoid.

Applying the construction above, we have the inertia groupoid Λ(G⋉M). Moreover,
we see that the groupid has the form

Λ(G⋉M) = [G×
∐
g∈G(M

g × {g}) //
// ∐

g∈G(M
g × {g})] ,

where Mg denotes the space of fixed points of g. Observe that the source map
is the projection of the second factor and the conjugation gives rise to the target
map t, more precisely, t(h, (m, g)) = (hm, hgh−1); see [6, (17.2.1)]. By virtue of
Theorem 2.2 ii), we have the following result.

Proposition 5.8. Let G⋉M be a transformation groupoid for which G is a finite
group and H∗(Mg) is locally finite for each g ∈ G. Then there exists a spectral
sequence {Er, dr} converging to the cohomology of the classifying space BΛ(G⋉M)
of the inertia groupoid Λ(G⋉M), as an algebra with

Ep,q2
∼= Cotorp,qH0(G)(K,⊕g∈GH

∗(Mg;K)).

Moreover, the evaluation map gives rise to a morphism from the spectral sequence
in Theorem 2.2 ii) to {Er, dr}. Assume further that (ch(K), |G|) = 1, then one has
H∗(BΛ(G⋉M);K) ∼= K2K[G]∨(⊕g∈GH∗(Mg;K)) as an algebra.

Let G be a discrete group. We consider the free loop space LBG of the classifying
space BG = EG/G = EG×G ∗.

Proposition 5.9. (cf. [32, Example 6.2] and [7, Proposition 2.12.2]) Let G be a
finite group. Then as an algebra,

H∗(LBG;K) ∼= Cotor∗K[G]∨(K, (K[G]ad)
∨),

where K[G]ad denotes the adjoint representation of G. Especially, if G is abelian,
then H∗(LBG;K) ∼= H∗(G;K)⊕|G| as an algebra.
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Proof. It follows that H∗(Pg(∗);K) = K for each g ∈ G. By the definition of the G-
action on PG(∗), we see that H∗(PG(∗);K) ∼= K[G]ad. Then, the weak equivalence
in (4.2) and the spectral sequence {E∗,∗

r , dr} in Theorem 2.2 ii) enable us to deduce
the first assertion. Observe that E∗,q

2 = 0 for q > 0.
The latter half follows from the fact that the G-action on K[G]ad is trivial. In

particular, the explicit formula (2.1) of the multiplication on the cotorsion product
yields the result on the algebra structure. □

Remark 5.10. If G is abelian, then the classifying space BG is an H-space. This

allows us to obtain a homotopy equivalence BG × ΩBG
≃→ LBG induced by the

product on BG. The latter half of Proposition 5.9 also follows from the fact.

We conclude this section with comments on a spectral sequence converging to
the free loop space of a Borel construction, which is obtained by Theorem 2.2 ii).

Remark 5.11. Let G be a finite group with an action on a space M and {E∗,∗
r , dr}

the spectral sequence in Theorem 2.2 ii) for the Borel construction EG×GPG(M).
By Corollary A.2, we see that L(EG ×G M) is connected to EG ×G PG(M) with
weak homotopy equivalences. Thus, under the same condition as in Corollary 5.4
but (ch(K), |G|) = 1, the spectral sequence converges to H∗(L(EG ×G M);K) as
an algebra.

The form of the E2-term enables us to deduce that the vertical edge (q-axis) E0,∗
2

is isomorphic to the cotensor product K2K[G]∨H
∗(PG(M);K), which is a subspace

of H∗(PG(M);K) detected by the transfer homomorphism if (ch(K), |G|) = 1; see
[9, Chapter II, Theorem 19.2] and Lemma 5.1.

We consider the horizontal edge (p-axis). Since the trivial map v : Pg(M) → ∗
gives a G-equivariant mapH0(PG(M);K) → K[G]ad, it follows from Proposition 5.9

that the edge E∗,0
2 is a module over the cotorsion product Cotor∗K[G]∨(K, (K[G]ad)

∨)

and hence H∗(LBG;K) via the morphism

v∗ : H∗(LBG;K) → Cotor∗,0K[G]∨(K,H
∗(PG(M);K))

of algebras induced by v. Observe that the v∗ is an isomorphism of algebras if
M is simply-connected. In fact, we see that each Pg(M) is connected in that
case. We remark that the underlying algebra H∗(LBG;K) is indeed the Hochschild
cohomology of the group ring K[G]; see [7, Proposition 2.12.2].

Each differential on E∗,0
r for r ≥ 2 is trivial. Therefore, the multiplicative struc-

ture on the spectral sequence gives rise to an H∗(LBG;K)-module structure on the
spectral sequence; that is, each term E∗,∗

r admits an H∗(LBG;K)-module structure
defined by

• : Hp(LBG;K)⊗ E∗,∗
r

v∗⊗1
// Ep,02 ⊗ E∗,∗

r

pr⊗1
// // Ep,0r ⊗ E∗,∗

r
m // E∗+p,∗

r ,

where pr is the canonical projection and m is the product structure on the Er-term.
Thus we see that dr(a • x) = (−1)pa • dr(x) for a ∈ Hp(LBG;K) and x ∈ E∗,∗

r .

6. The de Rham cohomology of the diffeological free loop space of
a non-simply connected manifold

Let G be a finite group acting freely and smoothly on a manifold M . Then, a

principal G-bundle of the form G → M
p→ M/G in the category of manifolds is
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obtained. Let P∞
G (M) be the diffeological space obtained by applying the construc-

tion (4.1) in Diff the category of diffeological spaces; see Appendix B. We consider a
smooth map p̃ : P∞

G (M) → L∞(M/G) defined by p̃((γ, g)) = p◦γ, where L∞(M/G)
denotes the diffeological free loop space of M/G; see the pullback diagram (4.3).

For a diffeological space X, we may write H∗
DR(X) for the singular de Rham

cohomology H∗(ADR(S
D
• (X))); see Appendix B. The purpose of this section is to

prove the following theorem.

Theorem 6.1. Under the same setting as above, suppose further that M is simply
connected. Then, the smooth map p̃ gives rise to a well-defined isomorphism

p̃∗ : H∗
DR(L

∞(M/G))
∼=→ R2R[G]∨H

∗
DR(P∞

G (M))

of algebras.

Each component P∞
g (M) of P∞

G (M) is constructed with a pullback of the form
(4.3). Then, by utilizing Theorem B.5, we may represent algebra generators in the
de Rham cohomology H∗

DR(L
∞(M/G)) with differential forms on M via Chen’s

iterated integral map and the factor map, which connects the Souriau-de Rham
complex and the singular de Rham complex; see Appendix B.1. Indeed, the idea is
realized in Theorem 6.4.

Before proving Theorem 6.1, we recall the smoothing theorem due to Kihara for
a particular case. Let M and N be diffeological spaces and C∞(M,N) the space
of smooth maps from M to N with the functional diffeology. We recall the functor
D : Diff → Top from Appendix B. Then, we see that D(∆n

st) is homeomorphic to
∆n the standard n simplex which is a subspace of Rn+1; see [24]. Moreover, the
inclusion i : D(C∞(M,N)) → C0(DM,DN) is continuous; see [12, Proposition
4.2]. Thus, it follows that the functor D induces a morphism ξ : SD• (C∞(M,N)) →
Sing•(C

0(DM,DN)) of simplicial sets.

Theorem 6.2. (Smoothing theorem [24, Theorems 1.1 and 1.7]) Let M and N be
finite-dimensional manifolds. Then, the well-defined map

ξ : SD• (C∞(M,N)) → Sing•(C
0(DM,DN))

is a weak homotopy equivalence.

For a manifold M , we consider the composite

λ := i ◦ (Dj) : D(P∞
g (M)) // D(C∞([0, 1],M)) // C0(D[0, 1], DM),

where j denotes the smooth inclusion P∞
g (M) → C∞([0, 1],M). Since DM = M

and D[0, 1] is the subspace I of R (see [12, Lemma 3.16]), it follows that λ :
D(P∞

g (M)) → Pg(M) is continuous. Therefore, the composite ξ′ := λ∗ ◦ ξ :

SD• (P∞
g (M)) → Sing•(Pg(M)) is a morphism of simplicial sets.

The following lemma is a key to proving Theorem 6.1.

Lemma 6.3. Let M be a simply-connected manifold. Then, one has a sequence of
quasi-isomorphisms

APL(Sing•(Pg(M)))⊗Q R
(ξ′)∗

≃
// APL(S

D
• (P∞

g (M)))⊗Q R
ζ

≃
// ADR(S

D
• (P∞

g (M))).
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Proof. The result [29, Corollary 3.5] allows us to obtain a quasi-isomorphism ζ. We
consider a commutative diagram

H∗(ADR(S
D
• (P∞

g (M))) Tor∗ADR(SD(M×2))(ADR(S
D(M)), ADR(S

D(M I)))∼=
EM1oo

H∗(APL(S
D
• (P∞

g (M))))R

H(ζ)∼=
OO

Tor∗APL(SD(M×2))(APL(S
D(M)), APL(S

D(M I)))R
EM2oo

Tor(ζ,ζ)∼=
OO

H∗(APL(Sing•(Pg(M))))R

H((ξ′)∗)

OO

Tor∗APL(M×2)(APL(M), APL(M
I))R∼=

EM3oo

Tor(ξ∗,ξ∗)

OO

in which the horizontal maps are induced by the Eilenberg–Moore map; see [21,
20.6]. Here, we write APL(X) for APL(Sing•(X)) in the right-hand corner and ( )R
denotes the tensor product ( ) ⊗Q R.

By assumption, the manifold M is simply connected. Then, the proofs of [29,
Theorem 5.5] and [21, 20.6] yield that EM1 and EM3 are isomorphisms, respec-
tively. Since ζ is a quasi-isomorphism, it follows that the vertical maps in the
upper square are isomorphisms and then so is EM2. We see that M I is smooth
homotopy equivalent to M . Therefore, Theorem 6.2 implies that Tor(ξ∗, ξ∗) is an
isomorphism. It turns out that (ξ′)∗ is a quasi-isomorphism. □

Proof of Theorem 6.1. For the translation groupoid

[G× P∞
G (M)

t
//

s // P∞
G (M)]

in which s and t are defined by the projection and the action, respectively, we see
that s ◦ p̃ = t ◦ p̃. Then the map p̃∗ : H∗

DR(L
∞(M/G)) → H∗

DR(P∞
G (M)) induced

by p̃ factors through R2R[G]∨H
∗
DR(P∞

G (M)). We show that the morphism p̃∗ of
algebras in the theorem is an isomorphism. Consider a commutative diagram

H∗(C0(S1,M/G);R)
(ξ̃)∗

∼=
// H∗

DR(C
∞(S1,M/G))

H∗(L(M/G);R)
(ξ̃)∗

//

(q∗)∗ ∼=
OO

p̃∗ ∼=
��

H∗
DR(L

∞(M/G))

(q∗)∗∼=
OO

p̃∗

��

R2R[G]∨H
∗(PG(M);R)

H(ξ̃1)

// R2R[G]∨H
∗
DR(P∞

G (M)),

where ξ̃1 denotes the composite of quasi-isomorphisms in Lemma 6.3 and ξ̃ is the
composite of the morphism induced by ξ in Theorem 6.2 and the quasi-isomorphism
ζ : APL(K) ⊗Q R → ADR(K) for a simplicial set K in [29, Corollary 3.5]. Thus,

Theorem 6.2 implies that (ξ̃)∗ in the top row is an isomorphism. We observe that,
by Remark 5.6, the map p̃∗ on the left-hand side is an isomorphism.

Lemma C.1 implies that map (q∗)∗ on the right-hand side induced by the smooth
map q : I → S1 in Diff is an isomorphism. A usual argument on the quotient
map q : I → S1 shows that the projection induces a weak homotopy equivalence
(q∗) : C0(S1,M/G) → L(M/G) and hence the left-hand side map (q∗)∗ is an

isomorphism. Since the map H(ξ̃1) in the lowest row is also an isomorphism, it
follows that the right-hand side map p̃∗ is an isomorphism. We have the result. □
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The following result follows from Theorems 4.1 and 6.1.

Theorem 6.4. One has sequences

H∗
DR(L

∞RP 2m+1)
p̃∗

∼=
// R2R[G]∨H

∗
DR(P∞

G (S2m+1))

(
∧ (α ◦ It(v2m+1))⊗ R[α ◦ It([v2m+1)]

)⊕2
and

∼=
OO

H∗
DR(L

∞RP 2m)
p̃∗

∼=
// R2R[G]∨H

∗
DR(P∞

G (S2m))

(
∧ (α ◦ It(v2m[v2m]))⊗ R[α ◦ It(1[v2m|v2m])

)
⊕ R

∼=
OO

of isomorphisms of algebras, where vn denotes the volume form on H∗
DR(S

n), It and
α are Chen’s iterated integral map and the factor map, respectively; see Appendices
B.1 and B.2.

Proof. We prove the result on the isomorphisms in the second sequence. By virtue
of Theorem B.5, we see that the composite

Ω(M)⊗1×g B(Ω̃(M))
It // Ω(P∞

g (M))
α // ADR(S

D
• (P∞

g (M)))

is a quasi-isomorphism for M = Sn; see Proposition B.4. It is immediate to show
that 1× g is an induction. Then, Theorem B.5 is applicable to this case. Moreover,
it follows from Theorem 6.1, Lemma 6.3 and the computation in Theorem 4.1 that

H∗
DR(L

∞RP 2m) ∼= H∗(ADR(S
D
• (P∞

τ (S2m)))⊕ R ∼= H∗(Pτ (S2m));R)⊕ R

as algebras. Observe that p̃∗ gives the first isomorphism. The same computa-
tion with the cyclic bar complex as in [28, Theorem 2.1] allows us to deduce that
v2m[v2m] and 1[v2m|v2m] are non-exact cocycles. With the indecomposable ele-
ments of the second algebra in Theorem 4.1, we see that deg(x ⊗ u) = 4m − 1 =
deg v2m[v2m] and degw = 4m − 2 = deg 1[v2m|v2m]. Thus, we have the result.
The same argument as above enables us to obtain the isomorphisms in the first
sequence. □
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Appendix A. The free loop space of a global quotient

Let G → M
p→ M/G be a principal G-bundle with discrete fibre G. Under the

same notations as in Section 4, we show the following proposition.

Proposition A.1. (cf. [6, Proposition 5.9]) The map p : EG×GPG(M) → L(M/G)
induced naturally by the projection p :M →M/G is a weak homotopy equivalence.
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Let G be a discrete group acting on a space M . Let g be an element of G. We
recall a fibre square of the form

Pg(M) //

qg
��

M [0,1]

(ev0,ev1)
��

M
ϕg

// M ×M,

where evi denotes the evaluation map at i for i = 0, 1 and ϕg is the map defined
by ϕg(x) = (x, gx) for x ∈M . Thus, for each m ∈M , we have a fibration

PmG (M) // PG(M)
q:=

∐
qg
// M,

where PmG (M) =
∐
g∈G Pmg (M) and Pmg (M) := {γ : [0, 1] → M | γ(0) = m, γ(1) =

gγ(0) = gm}.
Since the projection p2 : EG×M →M is a G-equivariant map and a homotopy

equivalence, it follows that p̃2 : PmG (EG ×M) → PmG (M) induced by p2 is weak
homotopy equivalent and hence so is p̃2 : EG×G PG(EG×M) → EG×G PG(M).
Moreover, Proposition A.1 is applicable to the G-bundle G→ EG×M → EG×GM .

Corollary A.2. (cf. [32, Theorem 2.3]) One has weak homotopy equivalences

EG×G PG(M) EG×G PG(EG×M)
p̃2

≃
oo

p

≃
// L(EG×GM).

The proof of Proposition A.1 we present here differs from that of [32, Theorem
2.3] which assumes G to be finite.

Proof of Proposition A.1. With the same notations as above, we have a commuta-
tive diagram

PmG (M)

��

p
// Ω[m](M/G)

��

EG×G PG(M)

1×Gev0
��

p
// L(M/G)

ev0
��

EG×GM
π̃

// M/G

in which two vertical sequences are fibrations and π̃ is induced by the projection
π : EG ×M → M in the second factor. Observe that the result [36, Proposition
3.2.2] yields the left-hand side fibration; see also [33, Proposition B.1]. The maps
π and π̃ give a morphism of fibrations from G → EG × M → EG ×G M to
G→M →M/G which is the identity map on the fibres. Since EG is contractible,
it follows that π̃ is a weak homotopy equivalence. Therefore, in order to prove the
result, it suffices to show that the map p : PmG (M) → Ω[m](M/G) is weak homotopy
equivalent.

We consider the map p∗ : πn(PmG (M), γ̃) → πn(Ω[m](M/G), γ) induced by the
projection p : M → M/G for n ≥ 1. For an element β : Sn → Ω[m](M/G) in
πn(Ω[m](M/G), γ), the adjoint gives rise to a map ad(β) : ΣSn → M , where ΣSn

denotes the unreduced suspension of Sn. Let fβ : Sn× I →M be the composite of
ad(β) and the projection Sn×I → ΣSn. Observe that fβ(∗, t) = γ(t). Since ΣSn is
homeomorphic to Sn+1, it is immediate that (fβ)∗(π1(S

n×I)) = {0} ⊂ p∗(π1(M)).
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Then the lifting theorem for covering spaces allows us to obtain a lift f̃β of fβ . We

see that (p)∗(ad(f̃β)) = β. Thus, the map p∗ is surjective.
Let H : Sn × I → Ω[m](M/G) be a homotopy from p(α0) to p(α1) based at

γ, where α0 and α1 are elements in πn(PmG (M), γ̃). Then, we have a lift K :
Sn × I × I →M of the adjoint ad(H) : Sn × I × I → ΣSn × I →M/G. It follows
from the uniqueness of the lift that ad(K) : Sn × I → PmG (M) is a homotopy from
α0 to α1 based at γ̃.

The same argument with the lifting theorem as above allows us to show the
bijectivity of the map p∗ : π0(PmG (M)) → π0(Ω[m](M/G)). This completes the
proof. □

Appendix B. Diffeological spaces

We begin by reviewing the definitions of a diffeology and a diffeological space.
A good reference for the subjects is the book [22]. Additionally, we recall the
definitions of Souriau–de Rham complex, the singular de Rham complex for a dif-
feological space and a morphism of differential graded algebras connecting the two
complexes; see [29] for the details.

Definition B.1. Let X be a set. A set D of functions U → X for each open subset
U in Rn and each n ∈ N is a diffeology of X if the following three conditions hold:

(1) Every constant map U → X for all open subset U ⊂ Rn is in D;
(2) If U → X is in D, then for any smooth map V → U from an open subset

V of Rm, the composite V → U → X is also in D;
(3) If U = ∪iUi is an open cover and U → X is a map such that each restriction

Ui → X is in D, then the map U → X is in D.

We call an open subset of Rn a domain. A diffeological space (X,D) consists of
a set X and a diffeology D of X. An element of a diffeology D is called a plot of X.
Let (X,DX) and (Y,DY ) be diffeological spaces. A map X → Y is smooth if for
any plot p ∈ DX , the composite f ◦ p is in DY . All diffeological spaces and smooth
maps form a category Diff. It is worthwhile mentioning that the category Diff is
complete, cocomplete and cartesian closed. Moreover, the category of manifolds
embeds into Diff; see also [12, Section 2].

Let {(Xi,Di)}i∈I be a family of diffeological spaces. Then, the product Πi∈IXi

has a diffeology D, called the product diffeology, defined to be the set of all maps p :
U → Πi∈IXi from a domain such that πi◦p are plots of Xi for each i ∈ I, where πi :
Πi∈IXi → Xi denotes the canonical projection. Moreover, for diffeological space X
and Y , the set F := C∞(X,Y ) of smooth maps from X to Y is endowed with the
functional diffeology DF defined by DF := {p : U → F | U is domain and ad(p) :
U ×X → Y is smooth}, where ad(p) denotes the adjoint to p.

The category Diff is related to Top the category of topological spaces with adjoint
functors. Let X be a topological space. Then the continuous diffeology is defined
by the family of continuous maps U → X from domains. This yields a functor
C : Top → Diff. For a diffeological space (M,DM ), we say that a subset A of M is
D-open if for every plot p ∈ DM , the inverse image p−1(A) is an open subset of the
domain of p equipped with the standard topology. The family of D-open subsets
of M defines a topology of M . Thus, by giving the topology to each diffeological
space, we have a functor D : Diff → Top which is the left adjoint to C; see [42, 12]
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for more details. The topology for a diffeological space M is called the D-topology
of M .

For a finite-dimensional manifoldM , the set of all smooth maps from domains to
M define a diffeology DM , which is called the standard diffeology. Thus, a functor
ℓ : Mfd → Diff is defined by ℓ(M) = (M,DM ), where Mfd is the category consisting
of finite-dimensional manifolds and smooth maps. Observe that ℓ is a fully faithful
embedding. Moreover, we see that the forgetful functor U from Mfd to Top factors
through the category Diff. We summarize the categories and functors mentioned
above with the diagram

Mfd
ℓ: fully faithful

//

U : forgetful functor

⟳
))

Diff
D //

Top.
C

⊥oo

B.1. The Souriau–de Rham complex, the simplicial de Rham complex
and the factor map. We here recall the de Rham complex Ω∗(X) of a diffeological
space (X,DX) in the sense of Souriau [43]. For an open set U of Rn, let DX(U) be
the set of plots with U as the domains and

Λ∗(U) = {h : U −→ ∧∗(⊕ni=1Rdxi) | h is smooth}

the usual de Rham complex of U . We can regard DX( ) and Λ∗( ) as functors
from Eucop to Sets the category of sets. A p-form is a natural transformation from
DX( ) to Λ∗( ). Then, the de Rham complex Ω∗(X) is defined by the cochain
algebra consisting of p-forms for p ≥ 0; that is, Ω∗(X) is the direct sum of

Ωp(X) :=

 Eucop
DX

))

Λp

55

�� ��
�� ω Sets

∣∣∣∣∣∣ ω is a natural transformation


with the cochain algebra structure induced by that of Λ∗(U) pointwisely. In what
follows, we may write ωp for ωU (p) for a plot p : U → X. The de Rham complex
defined above is a generalization of the usual de Rham complex of a manifold.

Remark B.2. Let M be a manifold and ∧∗(M) the usual de Rham complex of M .
We recall the tautological map θ : ∧∗(M) → Ω∗(M) defined by θ(ω) = {p∗ω}p∈DM ,

where DM denotes the standard diffeology of M . Then, it follows that θ is an
isomorphism of cochain algebras; see [19, Section 2].

Let An := {(x0, ..., xn) ∈ Rn+1 |
∑n
i=0 xi = 1} be the affine space which is

diffeomorphic to the Euclidean space Rn. Let (A∗
DR)• be the simplicial cochain

algebra defined by (A∗
DR)n := ∧∗(An) for each n ≥ 0. Then, for a simplicial set

K, we define the de Rham complex A∗
DR(K) by the set of simplicial maps from K

to (A∗
DR)• endowed with a differential graded algebra structure induced by that of

each (A∗
DR)n; see [29, Section 2] for more details. For a general simplicial cochain

algebra A•, we denote by A(K) the cochain algebra

Sets∆
op

(K,A•) :=

 ∆op

K
))

A•

55

�� ��
�� ω Sets

∣∣∣∣∣∣ ω is a natural transformation


whose cochain algebra structure is induced by that of A•.



24 KATSUHIKO KURIBAYASHI

For a diffeological spaceX, let SD• (X) be the simplicial set defined by SD• (X)aff :=
{{σ : An → X | σ is a C∞-map}}n≥0. Thus, we have the singular de Rham
complex A∗

DR(S
D
• (X)aff) for a diffeological space X. This is regarded as a dif-

feological variant of Sullivan’s simplicial polynomial form on a topological space.
In fact, for a space X, the polynomial-de Rham complex A∗

PL(X) is defined by
A∗
PL(X) := APL(Sing•(X)) with the simplicial differential graded algebra (A∗

PL)•
of polynomial forms; see [8] and [15, II 10 (a), (b) and (c)].

Remark B.3. By [23, Lemma 3.1], we have that the inclusion i : ∆n
st → An is

smooth; see Remark 3.2 for the notation. Moreover, the consideration at the end
of [29, Section 5] yields that the chain map induced by i∗ : SD• (X)aff → SD• (X) is a
quasi-isomorphism for every diffeological space X; see also [29, Table 1, page 959].
The de Rham theorem holds for the singular de Rham cohomology; see [29, Theorem
2.4 and Corollary 2.5]. Therefore, the results on the singular de Rham cohomology
H∗(A∗

DR(S
D
• (X)aff)) in [29] hold for the cohomology H∗(A∗

DR(S
D
• (X))).

We recall the factor map α : Ω∗(X) → A∗
DR(S

D
• (X)aff) of cochain algebras

defined by

α(ω)(σ) = σ∗(ω).

We refer the reader to the result [29, Theorem 2.4] for an important role of the
factor map in the de Rham theorem for diffeological spaces. In particular, we have

Proposition B.4. ([29, Theorem 2.4]) Suppose that X is a manifold, more gen-
erally, a stratifold in the sense of Kreck [25]. Then the factor map α for X is a
quasi-isomorphism.

B.2. Chen’s iterated integral map in diffeology. Let N be a diffeological
space and ρ : R → I a cut-off function with ρ(0) = 0 and ρ(1) = 1. Then, we call a
p-form u on the diffeological space I ×N an Ωp(N)-valued function on I if for any
plot ψ : U → N of N , the p-form uρ×ψ on R× U is of type∑

ai1···ip(t, ξ)dξi1 ∧ · · · ∧ dξip ,

where (ξ1, ..., ξn) denotes the coordinates of U we fix. For such an Ωp(N)-valued

function u on I, an integration
∫ 1

0
u dt ∈ Ωp(N) is defined by

(

∫ 1

0

u dt)ψ =
∑

(

∫ 1

0

ai1···ip(t, ξ) dt)dξi1 ∧ · · · ∧ dξip .

Each p-form u has the form u = dt ∧ ((∂/∂t)cu) + u′′, where (∂/∂t)cu and u′′ are
an Ωp−1(N)-valued function and an Ωp(N)-valued function on I, respectively. Let
F : I × N I → N I be the homotopy defined by F (t, γ)(s) = γ(ts). The Poincaré
operator

∫
F

: Ω(N I) → Ω(N I) associated with the homotopy F is defined by∫
F
v =

∫ 1

0
((∂/∂t)cF ∗v)dt. Moreover, for forms ω1, ..., ωr on N , we define the

iterated integral
∫
ω1 · · ·ωr, which is an element in Ω∗(N I), by

∫
ω1 =

∫
F
ε∗1ω1 and∫

ω1 · · ·ωr =
∫
F

{J(
∫
ω1 · · ·ωr−1) ∧ ε∗1ωr},

where εi denotes the evaluation map at i, Ju = (−1)deg uu and
∫
ω1 · · ·ωr = 1 if

r = 0; see [11, Definition 1.5.1]. We observe that the Poincaré operator is of degree
−1 and then

∫
ω1 · · ·ωr is of degree

∑
1≤i≤r(degωi − 1).
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With a decomposition of the form Ω̃1(N)⊕dΩ0(N), we have a cochain subalgebra

Ω̃(N) of Ω(N) which satisfies the condition that Ω̃p(N) = Ω(N) for p > 1 and

Ω̃0(N) = R. The cochain algebra Ω̃(N) gives rise to the normalized bar complex

B(Ω(N), Ω̃(N),Ω(N)); see [11, §4.1]. Consider the pullback diagram

Ef
f̃

//

pf
��

N I

ε0×ε1
��

M
f

// N ×N

(B.1)

of ε0× ε1 : N I → N ×N along a smooth map f :M → N ×N . We write B(Ω̃(N))

for B(R, Ω̃(N),R). Then we have a map

It : Ω(M)⊗Ω(N)⊗Ω(N) B(Ω(N), Ω̃(N),Ω(N)) ∼= Ω(M)⊗f B(Ω̃(N)) → Ω(Ef )

defined by It(v⊗ [ω1| · · · |ωr]) = p∗fv ∧ f̃∗
∫
ω1 · · ·ωr. Observe that the domain of It

gives rise to the differential on Ω(M)⊗f B(Ω̃(N)) by definition. Since ρ(0) = 0 and
ρ(1) = 1 for the cut-off function ρ which we use when defining the Ωp(N)-valued
function on I, it follows that the result [11, Lemma 1.4.1] remains valid. Then the
formula of iterated integrals with respect to the differential in [11, Proposition 1.5.2]
implies that It is a well-defined morphism of differential graded Ω∗(M)-modules.

The following theorem enables us to compute the singular de Rham cohomology
of a pullback diffeological space with a bar complex via Chen’s iterated integral
map and the factor map mentioned above; see Remark B.3.

Theorem B.5. ([29, Theorem 5.2]) Suppose that, in the pullback diagram (B.1),
the diffeological space N is simply connected and f is an induction; that is, p is a
plot of M if and only if f ◦ p is a plot of N × N . Assume further that the factor
maps for N and M are quasi-isomorphisms and each vector space Hi(SD• (N)) is

of finite dimension. Then the composite α ◦ It : Ω∗(M) ⊗f B(Ω̃(N)) → Ω(Ef ) →
A∗
DR(S

D
• (Ef )) is a quasi-isomorphism of Ω∗(M)-modules.

Appendix C. C∞(S1,M) versus L∞M

Let M be a diffeological space. We have two free loop spaces of M . One of them
is the diffeological space C∞(S1,M) of smooth maps from the circle S1 to M with
the functional diffeology. Another one is the diffeological space L∞M which fits in
the pullback diagram

L∞M //

��

M [0,1]

ε0×ε1
��

M
∆

// M ×M

(C.1)

in the category Diff, where I := [0, 1] is the diffeological subspace of R the Euclidean
space and ∆ denotes the diagonal map. We observe that L∞M is diffeomorphic to
the diffeological subspace of M I consisting of smooth maps γ with γ(0) = γ(1).

Let q : R → S1 be the smooth map defined by q(t) = e2π
√
−1t. Then, the

restriction q : I → S1 is smooth. In the category Top, the continuous map q :
I → S1 is regarded as a quotient map. The fact enables us to conclude that q
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induces a weak homotopy equivalence q∗ : C0(S1,M)
≃w−→ LM in Top. We obtain

a diffeological version of the equivalence.
In order to define the weak homotopy equivalence between diffeological spaces,

we first recall the smooth homotopy groups of a pointed diffeological space.
We define an equivalence relation on a diffeological space Z by z ' w if there ex-

ists a smooth path l : I → Z such that l(0) = z and l(1) = w. Let Sn be the n-sphere
endowed with sub-diffeology of the manifold Rn+1. We use the north pole ∗ as a
base point of Sn. For a pointed diffeological space (X,x0), let C

∞((Sn, ∗), (X,x0))
be the diffeological subspace of the mapping space C∞(Sn, X) consisting of smooth
maps that preserve base points. Then, given a positive integer n, the nth smooth ho-
motopy group πDn (X,x0) is defined by the set C∞((Sn, x0), (X.x0))/'. Moreover,
we define πD0 (X) by X/'. We observe that, while the original smooth homotopy
group πn(X,x0) of a pointed diffeological space (X,x0) due to Iglesias-Zemmour
[22] is defined by using an iterated loop space of X, there is a natural bijection
between the smooth homotopy set πDn (X,x0) and πn(X,x0); see [13, Theorem 3.2]
for more details.

By definition, we call a smooth map f : X → Y in Diff a weak homotopy
equivalence if the induced maps f∗ : πD0 (X) → πD0 (Y ) and f∗ : πDn (X,x0) →
πDn (Y, f(x0)) for each n and x0 ∈ X are bijective.

Lemma C.1. The smooth map q : I → S1 mentioned above gives rise to a weak

homotopy equivalence q∗ : C∞(S1,M)
≃w−→ L∞M .

Proof. We prove that the maps (q∗)∗ : π0(C
∞(S1,M)) → π0(L

∞M) and (q∗)∗ :
πn(C

∞(S1,M), γ0) → πn(L
∞M,γ0 ◦ q) induced by q are bijective for n ≥ 1 and

each smooth loop γ0 : S1 →M . To this end, we first show that the adjoint

(1× q)∗ : π0({η : N × S1 →M | η|∗×S1 = γ0})
−→ π0({η′ : N × I →M | η′|∗×I = γ0 ◦ q, η′|N×{0} = η′|N×{1}})

is bijective, where N = Sn for n ≥ 1. In what follows, we use the same notation
for a homotopy class and its representative.

We consider a function ρ̃ : (−1 − 2ε, 1 + 2ε) → I with ρ̃(t) = 0 for t ∈ (−1 −
2ε,−1+2ε)∪ [0, 2ε) and ρ̃(t) = 1 for t ∈ (−2ε, 0)∪ (1− 2ε, 1+2ε) for a sufficiently
small positive number ε. Let (U,φU ) and (V, φV ) be local coordinates of S1 which
satisfy the condition that φ−1

U = q, U ′ := φU (U) = (− 1
4 − ε, 14 + ε), φ−1

V = q and

V ′ := φV (V ) = ( 14 − ε, 34 + ε).

We define a smooth path γ̃0 : S1 → M by γ̃0|U := γ0 ◦ q ◦ ρ̃ ◦ φU and γ̃0|V :=
γ0 ◦ q ◦ ρ̃ ◦φV . By using the map ρ̃, we have a smooth map ρ : (−1− 2ε, 1+ 2ε) →
(−1 − 2ε, 1 + 2ε) defined by ρ(t) = ρ̃(t) − 1 for t ∈ (−1 − 2ε, 0) and ρ(t) = ρ̃(t)
for t ∈ [0, 1 + 2ε). Since the map ρ is smooth homotopic to the identity map on
(−1 − 2ε, 1 + 2ε) and q ◦ ρ̃ = q ◦ ρ, it follows that γ0 is smooth homotopic to
γ̃0. Therefore, in order to prove the bijectivity of (1 × q)∗, it suffices to show the
bijectivity for γ̃0 instead of γ0. In what follows, we write γ0 for γ̃0. Let A and B
be the domain and codomain of the map (1 × q)∗, respectively.

We show the surjectivity of (1 × q)∗. Let η′ be an element in B. We consider
a function ρ : (−1 − ε, 1 + ε) → I with ρ(t) = 0 for t ∈ [−1 − ε,−1 + ε) ∪ [0, ε),
ρ(t) = 1 for t ∈ (−ε, 0)∪ [1−ε, 1+ε], ρ(t) = t for t ∈ [2ε, 1−2ε] and ρ(t) = t+1 for
t ∈ [−1+2ε,−2ε]. Observe that ρ is smooth except for the point 0. We define map
η : N×S1 →M by η|N×U = η′◦(1×ρ)◦(1×φU ) and η|N×V = η′◦(1×ρ)◦(1×φV ).
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Since η is constant in a neighborhood of zero, it follows that the map is a well-
defined smooth map. Moreover, we see that η|∗×U = η′ ◦ (1 × ρ) ◦ (1 × φU ) =
γ0 ◦ q ◦ ρ ◦ φU = γ0|U . The last equality follows from the fact that ρ̃ ◦ ρ = ρ̃ on U ′.
The same argument as above yields that η|∗×V = γ0|V . Thus, we have η|∗×S1 = γ0.

Moreover, we see that η ◦ (1 × q) = η′ ◦ (1 × ρ). Extending ρ|[0,1], we define a
smooth map ρ′ : R → R so that ρ′|[1,∞) = 1 and ρ′|(−∞,0] = 0. Define a smooth
ρ̂ : R × R → R by ρ̂(t, s) = (1 − s)ρ′(t) + st. Then the restriction ρ̂ : I × I → I
gives rise to a smooth homotopy between ρ and the identity on I. It follows that
(1× q)∗(η) = η′ ◦ (1× ρ) ∼ η′ with the smooth homotopy η′ ◦ (1× ρ̂). We conclude
that the map (1× q)∗ is surjective.

Let η0 and η1 be elements in A with (1 × q)∗(η0) = (1 × q)∗(η1). Then, there
exists a smooth path from η0 ◦ (1 × q) to η1 ◦ (1 × q). Let H : (N × I) × I → M

be the smooth homotopy which is the adjoint to the path. We define a map H̃ :

(N × S1) × I → M by H̃|N×W×I = H ◦ (1 × ρ × 1) ◦ (1 × φW × 1) for W = U

and V , respectively. We see that H̃ is a well-defined smooth map that satisfies the

condition that H̃(∗, t, s) = γ0(t). We define a smooth map ρ′′ : (−1− ε, 1+ ε) → R
by ρ′′|(−1−ε,0] = ρ|(−1−ε,0] − 1 and ρ′′|[0,1+ε) = ρ|[0,1+ε). Then, it follows that
q ◦ ρ = q ◦ ρ′′. Moreover, we define a smooth homotopy ρs : (−1− ε, 1+ ε)× I → I
by ρs(t) = (1 − s)ρ′′(t) + st. Then the map ρs gives rise to smooth homotopies

H̃i ∼ ηi for i = 0 and 1. In fact, for example, we see that

H̃0|N×U = H0 ◦ (1× ρ) ◦ (1× φU ) = η0 ◦ (1× q) ◦ (1× ρ) ◦ (1× φU )

= η0 ◦ (1× π) ◦ (1× ρ) ◦ (1× φU ) = η0 ◦ (1× q) ◦ (1× ρ0) ◦ (1× φU )

∼ η0 ◦ (1× q) ◦ (1× ρ1) ◦ (1× φU ) = η0|N×U ,

where π : R → S1 denotes the natural smooth extension of q. It turns out that
η1 = η0 in A. We observe that the homotopy induced by ρs fixes the path γ0.

The same argument as above enables us to prove that q∗ : π0(C
∞(S1,M)) →

π0(L
∞M) is a bijection. We have the result. □
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Topol. Géom. Différ. Catég., 59 (2018), 95–141.
[40] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.

[41] L. Smith, On the characteristic zero cohomology of the free loop space, Amer. J. Math. 103

(1981), 887–910.
[42] K. Simakawa, K.Yoshida and T. Hraguchi, Homology and cohomology via enriched bifunctors,

Kyushu Journal of Mathematics, 72 (2018), 239–252.



ON MULTIPLICATIVE SPECTRAL SEQUENCES FOR NERVES 29
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