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§1 Introduction –Our main results – Our main results – A reduction theorem for the string bracket –

S1 y LM := map(S1,M). The coefficients are in Q.

Theorem 1.1 (KNWY21)

Let M be a simply-connected closed manifold. Assume further that the

reduced c-action on H̃S1

∗ (LM) in the homology Gysin sequence of the
bundle S1 → ES1 ×LM → ES1 ×S1 LM is trivial. Then there exists
a commutative diagram

HS1

∗ (LM ;Q)⊗2

[ , ] string bracket
��

∼=

Ψ⊗Ψ
// (Ker ∆̃ ⊕ Q[u])⊗2 inc.⊕0

//

Gerstenhaber bracket
��

H∗(LM ;Q)⊗2

loop product •
��

HS1

∗ (LM ;Q) ∼=
Ψ // (Ker ∆̃ ⊕ Q[u]) H∗(LM ;Q).

∆
oo

Theorem 1.2 (KNWY21)

For a simply-connected space M , the reduced c-action (the reduced S-
action) is trivial if and only if M is BV-exact.

Proof of Theorem 1.1 BV-exactness Proof : BV-exactness

Katsuhiko Kuribayashi A reduction of the string bracket 2 / 16



§2 Theorem 1.1 and its proof Recollection –Loop products, String Brackets–

Consider the principal bundle S1 → ES1 × LM
p→ ES1 ×S1 LM .

The bundle gives rise to the homology Gysin sequence

· · · → H∗(LM)
p∗
// HS1

∗ (LM)
c // HS1

∗−2(LM)
M // H∗−1(LM) → · · · .

Here c is the cap product of the Euler class of the bundle: - ∩ q∗(u),
where u ∈ H∗(BS1) the generator.
# We use the S-action S := - ∪ q∗(u) : H∗

S1(LM) → H∗+2

S1 (LM) to prove

Theorems 1.1 and 1.2.

Observe that the S1-principal bundle above fits in the pullback diagram

S1

��

S1

��

LX // ES1 × LX //

p
��

ES1

��

LX // ES1 ×S1 LX q
// BS1

in which the lower sequence is the fibration associated with the universal
bundle ES1 → BS1.
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§2 Theorem 1.1 and its proof Recollection –Loop products, String Brackets–

M : a simply-connected closed manifold M of dimension d. Consider

LM LM ×M LM
Comp
oo

��

q
// LM × LM

(ev0,ev0)
��

M
Diag

// M × M,

where the square is the pull-back of the evaluation map (ev0, ev0)
defined by ev0(γ) = γ(0) along the diagonal map Diag and Comp
denotes the concatenation of loops. By definition, the composite

q! ◦ (Comp)∗ : C∗(LM) → C∗(LM ×M LM) → C∗(LM ×LM)

induces Dlp the dual to the loop product on H∗(LM).

The loop product • on H∗(LM) := H∗+d(LM) is defined by

a • b = (−1)d(deg a+d)((Dlp)∨)(a ⊗ b)

for a and b ∈ H∗(LM).

# We apply this construction to a ‘Gorenstein spaces’ in the sense of Félix, Halperin

and Thomas.
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§2 Theorem 1.1 and its proof Recollection –Loop products, String Brackets–

The string bracket [ , ] on HS1

∗ (LM) is defined by

[a, b] := (−1)(deg a)−dp∗(M(a) • M(b))

for a, b ∈ HS1

∗ (LM). The bracket is of degree 2 − d and gives a
Lie algebra structure to the equivariant homology of LM .

# · · · → H∗(LM)
p∗ // HS1

∗ (LM)
c // HS1

∗−2(LM)
M // H∗−1(LM) → · · · .

The Batalin–Vilkovisky (BV-)operator:

∆ : H∗(LM ;Q)
–×[S1]−−−−→ H∗+1(LM×S1;Q)

rotation act.−−−−−−→ H∗+1(LM ;Q)

The homology is endowed with a Gerstenhaber algebra structure
whose Lie bracket (Gerstenhaber bracket) { , } is given by

{a, b} = (−1)|a|(∆(a • b) − (∆a) • b − (−1)|a|a • (∆b))

for a, b ∈ H∗(LM). If a and b are in the kernel of ∆, then

{a, b} = (−1)|a|∆(a • b).

To Theorem 1.1 page 2
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§2 Theorem 1.1 and its proof Proof of Theorem 1.1

Proof of Theorem 1.1

Let Ω be a connected comm. DGA with a differential d of degree −1.
Assume that Ω = ⊕i≤0Ωi, a non-positive DGA.

Recall the Hochschild chain complex C(Ω) = (
∑∞

k=0 Ω ⊗ Ω
⊗k

, b),

where Ω = Ω/Q. The Connes’ B-operator B : C(Ω) → C(Ω) of
degrees +1 is defined by

B(w0, . . . , wk) =

k∑
i=0

(−1)(ϵi−1+1)(ϵk−ϵi−1)(1, wi, . . . , wk, w0, . . . , wi−1).

The Hochschild homology HH∗(Ω) := H(C(Ω), b).

With a generator u of degree −2,

The negative cyclic homology HC−
∗ (Ω) := ((C(Ω)[[u]], b + uB)

The cyclic homology HC∗(Ω) := (C(Ω)[u−1], b + uB)

The periodic cyclic homology
HCper

∗ (Ω) := (C(Ω)[[u, u−1], b + uB).
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§2 Theorem 1.1 and its proof Proof of Theorem 1.1

We have exact sequences (Connes’ exact sequences).

(A) : · · · // HC−
n+2(Ω)

S=×u
// HC−

n (Ω)
π // HHn(Ω)

β
// HC−

n+1(Ω) // · · ·

(B) : · · · // HHn+1(Ω)
I // HCn+1(Ω)

S′
// HCn−1(Ω)

BHH // HHn(Ω) // · · ·

(C) : · · · // HC−
n+1(Ω)

×u
// HCper

n−1(Ω)
π̃ // HCn−1(Ω)

BHC // HC−
n (Ω) // · · · ,

where the maps BHH , β and BHC are induced by Connes’ B-map B.

Jones’ isomorphisms

H∗(LM ;Q) ∼= HH∗(APL(M)),H∗
S1(LM ;Q) ∼= HC−

∗ (APL(M))

translate the Gysin sequence to (A), where APL(M) is the polynomial de
Rham algebra over Q of a simply-connected space M .

To prove Theorem 1.1, we also use maps I, BHH in (B) and BHC in (C).
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§2 Theorem 1.1 and its proof Proof of Theorem 1.1

There is a commutative diagram

((H̃H∗(Ω)/ Im∆′) ⊕ K[u])⊗2 Ξ⊗Ξ
// HC−

∗ (Ω)⊗2

HH∗(Ω)⊗2

‘Cokernel’⊗‘Cokernel’
OO

HH∗(Ω)⊗2

β⊗β
OO

HH∗(Ω)

•∨
OO

HH∗(Ω)

•∨
OO

(H̃H∗(Ω)/ Im∆′) ⊕ K[u]
Ξ //

∆′
OO

HC−
∗ (Ω).

π
OO

[ , ]∨

gg

Here ∆′ = BHH ◦ I is the BV operator of HH∗(Ω) and the horizontal
isomorphism Ξ is defined by the composite

(H̃H∗(Ω)/ Im∆) ⊕ K[u]
I−→ H̃C∗(Ω) ⊕ K[u]

BHC−−−→∼=

H̃C
−
∗ (Ω) ⊕ K[u]

sp−→∼= HC−
∗ (Ω).

If the S-action is trivial, then I is an isomorphism. (K-Yamaguchi, ’00)
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§3 Theorem 1.2 and its proof On Theorem 1.2

Definition 3.1 (K, Naito, Wakatsuki, Yamaguchi ’21 (KNWY21))

A simply-connected space M is Batalin–Vilkovisky (BV-) exact if

Im ∆̃ = Ker ∆̃

for the reduced BV operator ∆̃ : H̃∗(LM ;Q) → H̃∗+1(LM ;Q).
# In general, ∆2 = 0.

To Theorem 1.2 page 2

Before giving a sketch of the proof of Theorem 1.2, we relate the new
homotopy invariant, the BV exactness, to traditional ones in rational
homotopy theory,

formality, a positive weight decomposition, ... .
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§3 Theorem 1.2 and its proof On Theorem 1.2

Theorem 3.2 (The fundamental theorem in RHT (Sullivan ’73, Bousfield–
Gugenhaim ’76))

There exists an equivalence between the homotopy category of nilpotent
rational connected spaces of finite Q-type and that of cofibrant connected
commutative differential graded algebras of finite Q-type.

We have an equivalence

fNQ-Ho(Top)
Q◦APL( )

//
fQ-Ho(CDGAop).

| |
≃oo

Here Q denotes the cofibrant replacement. As a consequence, we have a

quasi-iso. (∧V = (poly. alg ⊗ exterior alg), d)
≃→ APL(X) for a space

X.

The CDGA (∧V, d) is called a Sullivan (rational) model for X.

(∧V, d) : minimal
def⇔ d(v) is decomposable for v ∈ V .
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§3 Theorem 1.2 and its proof On Theorem 1.2

Definition 3.3

A simply-connected space X is formal if there is a quasi-isomorphism
from a Sullivan model for X to H∗(X;Q); that is, the rational homo-
topy type is determined by its rational cohomology algebra.

# A compact simply-connected Kähler manifolds and toric manifolds are formal.

Definition 3.4 (Body–Douglas ’78)

A simply-connected space X admits positive weights if the Sullivan min-
imal model (A, d) for X has a decomposition An = ⊕i>0A

n
(i) for

n > 0 and A0 = A0
(0) with

d(An
(i)) ⊂ An+1

(i)

An
(i) · A

m
(j) ⊂ An+m

(i+j) for all m,n and i.

Proposition 3.5 ((H-S) Halperin–Stasheff ’79)

A simply-connected formal space admits positive weight.
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§3 Theorem 1.2 and its proof On Theorem 1.2

Theorem 3.6 (KNWY21)

A simply-connected space X admitting positive weights is BV exact. In
particular, a formal space is BV exact.

A nonformal BV-exact space (manifold). Let UTS6 → S6 be the
unit tangent bundle over S6. Then, we have a simply-connected
11-dimensional manifold M which fits in the pullback diagram

M

��

// UTS6

p
��

S3 × S3 f
// S6,

where f : S3 × S3 → S6 is a smooth map homotopic to the map
defined by collapsing the 3-skeleton into a point.

Katsuhiko Kuribayashi A reduction of the string bracket 12 / 16



§3 Theorem 1.2 and its proof On Theorem 1.2

Proposition 3.7 (KNWY21)

The 11-dimensional manifold M is nonformal and admits positive weight.
(As a consequence, M is BV-exact.)

The minimal model of M has the form M = (∧(x, y, z), d),
where d(x) = 0 = d(y), d(z) = xy, deg x = deg y = 3
and deg z = 5. It is readily seen that M is nonformal since the
Massey product ⟨x, x, y⟩ does not vanish.

In the minimal model M, we define weights of x, y and z by 1, 1
and 2, respectively. The model M for the manifold M admits posi-
tive weights.
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§3 Theorem 1.2 and its proof Proof of Theorem 1.2

Proof of Theorem 1.2 and a generalization of the result

For a simply-connected space M , we obtain the cobar type
Eilenberg-Moore spectral sequence (EMSS) converges to H∗

S1(LM ;Q)
with

E∗,∗
2

∼= Cotor∗,∗
H∗(S1;Q)

(H∗(LM ;Q),Q).

We have a decomposition

{E∗,∗
r , dr} =

⊕
N∈Z

{(N)E
∗,∗
r , dr} ⊕ {Q[u], 0},

where bideg u = (1, 1), for which the following assertion holds.

Proposition 3.8 (KNWY21)

There exists an action S (a morphism of SSes) on {E∗,∗
r , dr} which is

compatible with the S-action on H∗
S1(LM ;Q) and for each N ,

S : {(N)E
∗,∗
r , dr} → {(N−1)E

∗+1,∗+1
r , dr}.
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§3 Theorem 1.2 and its proof Proof of Theorem 1.2

Theorem 3.9 (KNWY21)

The Er-term (0)E
p,q
r in {(0)E∗,∗

r , dr} is trivial for any (p, q) if and only

if the (r − 1) times S-action Sr−1 on H̃∗
S1(LM ;Q) is.

Assertion: BV-exactness

Proof of Theorem 1.2 # By using the Sullivan model for LX, we show this fact.

The BV-exactness of a space is equivalent to the condition that the E2-
term of the spectral sequence {(0)E∗,∗

r , dr} is trivial.

This allows us to propose a higher version of the BV-exactness.

Definition 3.10

A simply-connected space X is r-BV-exact if the Er+1-term (0)E
p,q
r+1 in

the spectral sequence {(0)E∗,∗
r , dr} associated with X is trivial for any

(p, q).
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§3 Theorem 1.2 and its proof Proof of Theorem 1.2

Theorem 3.11

There are the following implications concerning homotopy invariants for a
simply-connected space X.

X is formal

X admits
positive weights
[Body-Douglas’80]

X is p-universal
[Mimura-O’Neil-Toda’71]

X is (1-)BV-exact X is 2-BV-exact · · · X is r-BV-exact · · ·

The S-action on
H̃∗

S1(LX;Q) is trivial

The r times S-action on
H̃∗

S1(LX;Q) is trivial· · ·

[H–S’79]

[Theorem 3.6]

[Theorem 1.2] [Theorem 3.9]

[Scheerer’84]

(*)

# (*) holds provided X has the homotopy type of a finite CW complex.

Thm 1.1: M is (1-)BV-exact =⇒ the string bracket for M is reducible
to the loop product.

# A geometric description for higer BV-exactness?
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