The string bracket, $\boldsymbol{B} \boldsymbol{V}$-exactness and the Eilenberg-Moore spectral sequence

Katsuhiko Kuribayashi (Shinshu University)

$$
\text { arXiv:2109. } 10536
$$

Joint work with T. Naito, S. Wakatsuki and T. Yamaguchi

Iberoamerican and Pan Pacific International Conference on Topology and its Applications

12 September 2023
Puebla, Mexico

- $\boldsymbol{S}^{1} \curvearrowright \boldsymbol{L} \boldsymbol{M}:=\operatorname{map}\left(\boldsymbol{S}^{1}, \boldsymbol{M}\right)$. The coefficients are in \mathbb{Q}.

Theorem 1.1 (KNWY21)

Let M be a simply-connected closed manifold. Assume further that the reduced \boldsymbol{c}-action on $\widetilde{\boldsymbol{H}}_{*}^{\boldsymbol{S}^{1}}(\boldsymbol{L} \boldsymbol{M})$ in the homology Gysin sequence of the bundle $\boldsymbol{S}^{\mathbf{1}} \rightarrow \boldsymbol{E} \boldsymbol{S}^{\mathbf{1}} \times \boldsymbol{L} \boldsymbol{M} \rightarrow \boldsymbol{E} \boldsymbol{S}^{\mathbf{1}} \times{ }_{\boldsymbol{S}^{\mathbf{1}}} \boldsymbol{L} \boldsymbol{M}$ is trivial. Then there exists a commutative diagram

$$
\begin{aligned}
& H_{*}^{S^{1}}(L M ; \mathbb{Q})^{\otimes 2} \xrightarrow[\cong]{\Psi} \xrightarrow{\Psi}(\operatorname{Ker} \widetilde{\Delta} \oplus \mathbb{Q}[u])^{\otimes 2} \xrightarrow{\text { inc. } \oplus 0} H_{*}(L M ; \mathbb{Q})^{\otimes 2} \\
& {[,] \downarrow \text { string bracket }} \\
& \text { Gerstenhabè bracket } \\
& \text { loop product } \\
& H_{*}^{S^{1}}(L M ; \mathbb{Q}) \xrightarrow{\cong}(\operatorname{Ker} \widetilde{\Delta} \oplus \mathbb{Q}[u]) \longleftarrow \Delta_{*}(L M ; \mathbb{Q}) .
\end{aligned}
$$

Theorem 1.2 (KNWY21)
For a simply-connected space \boldsymbol{M}, the reduced \boldsymbol{c}-action (the reduced \boldsymbol{S} action) is trivial if and only if M is $B V$-exact.

Consider the principal bundle $S^{1} \rightarrow E S^{1} \times L M \xrightarrow{p} E S^{1} \times{ }_{S^{1}} L M$. The bundle gives rise to the homology Gysin sequence
$\cdots \rightarrow H_{*}(L M) \xrightarrow{\boldsymbol{p}_{*}} H_{*}^{S^{1}}(L M) \xrightarrow{c} H_{*-2}^{S^{1}}(L M) \xrightarrow{M} H_{*-1}(L M) \rightarrow \cdots$.
Here \boldsymbol{c} is the cap product of the Euler class of the bundle: $-\cap \boldsymbol{q}^{*}(\boldsymbol{u})$, where $\boldsymbol{u} \in \boldsymbol{H}^{*}\left(\boldsymbol{B} \boldsymbol{S}^{\mathbf{1}}\right)$ the generator.
\# We use the S-action $S:=-\cup q^{*}(u): \boldsymbol{H}_{S^{1}}^{*}(L M) \rightarrow \boldsymbol{H}_{S^{1}}^{*+2}(L M)$ to prove Theorems 1.1 and 1.2.
Observe that the \boldsymbol{S}^{1}-principal bundle above fits in the pullback diagram

in which the lower sequence is the fibration associated with the universal bundle $\boldsymbol{E S} \boldsymbol{S}^{\mathbf{1}} \rightarrow \boldsymbol{B} \boldsymbol{S}^{1}$.
\boldsymbol{M} : a simply-connected closed manifold \boldsymbol{M} of dimension \boldsymbol{d}. Consider

$$
L M \stackrel{\text { Comp }}{L} L M \times_{M} L M \xrightarrow{q} L M \times L M
$$

where the square is the pull-back of the evaluation map ($e \boldsymbol{v}_{\mathbf{0}}, e \boldsymbol{v}_{\mathbf{0}}$) defined by $\boldsymbol{e v _ { 0 }}(\gamma)=\gamma(\mathbf{0})$ along the diagonal map Diag and Comp denotes the concatenation of loops. By definition, the composite $q^{!} \circ(\mathrm{Comp})^{*}: C^{*}(L M) \rightarrow C^{*}\left(L M \times_{M} L M\right) \rightarrow C^{*}(L M \times L M)$ induces Dlp the dual to the loop product on $\boldsymbol{H}^{*}(\boldsymbol{L M})$.

- The loop product \bullet on $\mathbb{H}_{*}(\boldsymbol{L} \boldsymbol{M}):=\boldsymbol{H}_{*+\boldsymbol{d}}(\boldsymbol{L} \boldsymbol{M})$ is defined by

$$
a \bullet b=(-1)^{d(\operatorname{deg} a+d)}\left((\mathrm{Dlp})^{\vee}\right)(a \otimes b)
$$

for \boldsymbol{a} and $\boldsymbol{b} \in \mathbb{H}_{*}(\boldsymbol{L} \boldsymbol{M})$.
\# We apply this construction to a 'Gorenstein spaces' in the sense of Félix, Halperin and Thomas.

- The string bracket $[$,$] on \boldsymbol{H}_{*}^{\boldsymbol{S}^{1}}(\boldsymbol{L} \boldsymbol{M})$ is defined by

$$
[a, b]:=(-1)^{(\operatorname{deg} a)-d} p_{*}(\mathrm{M}(a) \bullet \mathrm{M}(b))
$$

for $a, b \in \boldsymbol{H}_{*}^{S^{1}}(\boldsymbol{L} \boldsymbol{M})$. The bracket is of degree $\mathbf{2}-\boldsymbol{d}$ and gives a Lie algebra structure to the equivariant homology of $\boldsymbol{L M}$.
$\# \cdots \rightarrow H_{*}(L M) \xrightarrow{p_{*}} H_{*}^{S^{1}}(L M) \xrightarrow{c} H_{*-2}^{S^{1}}(L M) \xrightarrow{M} H_{*-1}(L M) \rightarrow \cdots$.

- The Batalin-Vilkovisky (BV-)operator:
$\Delta: H_{*}(L M ; \mathbb{Q}) \xrightarrow{-\times\left[S^{1}\right]} H_{*+1}\left(L M \times S^{1} ; \mathbb{Q}\right) \xrightarrow{\text { rotation act. }} H_{*+1}(L M ; \mathbb{Q})$
- The homology is endowed with a Gerstenhaber algebra structure whose Lie bracket (Gerstenhaber bracket) $\{$,$\} is given by$

$$
\{a, b\}=(-1)^{|a|}\left(\Delta(a \bullet b)-(\Delta a) \bullet b-(-1)^{|a|} a \bullet(\Delta b)\right)
$$

for $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{H}_{*}(\boldsymbol{L} \boldsymbol{M})$. If \boldsymbol{a} and \boldsymbol{b} are in the kernel of $\boldsymbol{\Delta}$, then

$$
\{a, b\}=(-1)^{|a|} \Delta(a \bullet b)
$$

Proof of Theorem 1.1

Let $\boldsymbol{\Omega}$ be a connected comm. DGA with a differential \boldsymbol{d} of degree $\mathbf{- 1}$. Assume that $\boldsymbol{\Omega}=\oplus_{i \leq 0} \boldsymbol{\Omega}_{\boldsymbol{i}}$, a non-positive DGA.

Recall the Hochschild chain complex $C(\Omega)=\left(\sum_{k=0}^{\infty} \Omega \otimes \bar{\Omega}^{\otimes k}, b\right)$, where $\bar{\Omega}=\Omega / \mathbb{Q}$. The Connes' B-operator $B: C(\Omega) \rightarrow C(\Omega)$ of degrees $+\mathbf{1}$ is defined by

$$
B\left(w_{0}, \ldots, w_{k}\right)=\sum_{i=0}^{k}(-1)^{\left(\epsilon_{i-1}+1\right)\left(\epsilon_{k}-\epsilon_{i-1}\right)}\left(1, w_{i}, \ldots, w_{k}, w_{0}, \ldots, w_{i-1}\right) .
$$

The Hochschild homology $\boldsymbol{H} \boldsymbol{H}_{*}(\boldsymbol{\Omega}):=\boldsymbol{H}(\boldsymbol{C}(\boldsymbol{\Omega}), \boldsymbol{b})$.
With a generator \boldsymbol{u} of degree $\mathbf{- 2}$,

- The negative cyclic homology $H C_{*}^{-}(\Omega):=((C)(\Omega)[[u]], b+u B)$
- The cyclic homology $\boldsymbol{H} C_{*}(\Omega):=\left(C(\Omega)\left[u^{-1}\right], b+u B\right)$
- The periodic cyclic homology

$$
H C_{*}^{\text {per }}(\Omega):=\left(C(\Omega)\left[\left[u, u^{-1}\right], b+u B\right)\right.
$$

We have exact sequences (Connes' exact sequences).
$(\mathrm{A}): \cdots \longrightarrow H C_{n+2}^{-}(\Omega) \xrightarrow{S=\times u} H C_{n}^{-}(\Omega) \xrightarrow{\pi} H H_{n}(\Omega) \xrightarrow{\beta} H C_{n+1}^{-}(\Omega) \longrightarrow \cdots$
$(\mathrm{B}): \cdots \longrightarrow H H_{n+1}(\Omega) \xrightarrow{I} H C_{n+1}(\Omega) \xrightarrow{S^{\prime}} H C_{n-1}(\Omega) \xrightarrow{B_{H H}} H H_{n}(\Omega) \longrightarrow$
$(\mathrm{C}): \cdots \longrightarrow H C_{n+1}^{-}(\Omega) \xrightarrow{\times u} H C_{n-1}^{\text {per }}(\Omega) \xrightarrow{\tilde{\pi}} H C_{n-1}(\Omega) \xrightarrow{B_{H C}} H C_{n}^{-}(\Omega) \longrightarrow \cdots$, where the maps $\boldsymbol{B}_{\boldsymbol{H} \boldsymbol{H}}, \boldsymbol{\beta}$ and $\boldsymbol{B}_{\boldsymbol{H} \boldsymbol{C}}$ are induced by Connes' \boldsymbol{B}-map \boldsymbol{B}. Jones' isomorphisms
$H^{*}(L M ; \mathbb{Q}) \cong H H_{*}\left(A_{P L}(M)\right), H_{S^{1}}^{*}(L M ; \mathbb{Q}) \cong H C_{*}^{-}\left(A_{P L}(M)\right)$ translate the Gysin sequence to (A), where $\boldsymbol{A}_{P L}(\boldsymbol{M})$ is the polynomial de Rham algebra over \mathbb{Q} of a simply-connected space M.

To prove Theorem 1.1, we also use maps $\boldsymbol{I}, \boldsymbol{B}_{\boldsymbol{H} \boldsymbol{H}}$ in (B) and $\boldsymbol{B}_{\boldsymbol{H} \boldsymbol{C}}$ in (C).

There is a commutative diagram

Here $\boldsymbol{\Delta}^{\prime}=\boldsymbol{B}_{\boldsymbol{H} \boldsymbol{H}} \circ \boldsymbol{I}$ is the $B V$ operator of $\boldsymbol{H} \boldsymbol{H}_{*}(\boldsymbol{\Omega})$ and the horizontal isomorphism $\boldsymbol{\Xi}$ is defined by the composite
$\left(\widetilde{\boldsymbol{H H}}_{*}(\boldsymbol{\Omega}) / \operatorname{Im} \Delta\right) \oplus \mathbb{K}[\boldsymbol{u}] \xrightarrow{\boldsymbol{I}} \widetilde{\boldsymbol{H C}}_{*}(\boldsymbol{\Omega}) \oplus \mathbb{K}[\boldsymbol{u}] \xrightarrow[\cong]{\underline{B_{H C}}}$

$$
\widetilde{H C}_{*}^{-}(\Omega) \oplus \mathbb{K}[u] \underset{\cong}{\underset{\sim}{s p}} H C_{*}^{-}(\Omega) .
$$

If the S -action is trivial, then \boldsymbol{I} is an isomorphism. (K-Yamaguchi, '00)

Definition 3.1 (K, Naito, Wakatsuki, Yamaguchi '21 (KNWY21))

A simply-connected space \boldsymbol{M} is Batalin-Vilkovisky (BV-) exact if

$$
\operatorname{Im} \widetilde{\Delta}=\operatorname{Ker} \widetilde{\Delta}
$$

for the reduced BV operator $\widetilde{\Delta}: \widetilde{\boldsymbol{H}}_{*}(\boldsymbol{L M} ; \mathbb{Q}) \rightarrow \widetilde{\boldsymbol{H}}_{*+1}(\boldsymbol{L M} ; \mathbb{Q})$.
$\#$ In general, $\Delta^{2}=0$.

To Theorem 1.2 page 2

Before giving a sketch of the proof of Theorem 1.2, we relate the new homotopy invariant, the BV exactness, to traditional ones in rational homotopy theory,

> formality, a positive weight decomposition,

Theorem 3.2 (The fundamental theorem in RHT (Sullivan '73, BousfieldGugenhaim '76))
There exists an equivalence between the homotopy category of nilpotent rational connected spaces of finite \mathbb{Q}-type and that of cofibrant connected commutative differential graded algebras of finite \mathbb{Q}-type.

We have an equivalence

$$
\mathrm{fNQ}-\mathrm{Ho}(\text { Top }) \underset{\|}{\stackrel{Q \circ A_{P L}()}{\simeq}} \mathrm{fQ}-\mathrm{Ho}\left(\text { CDGA }^{\boldsymbol{o p}}\right) .
$$

Here \boldsymbol{Q} denotes the cofibrant replacement. As a consequence, we have a quasi-iso. $(\wedge \boldsymbol{V}=$ (poly. alg \otimes exterior alg $), \boldsymbol{d}) \stackrel{\cong}{\rightrightarrows} \boldsymbol{A}_{\boldsymbol{P} L}(\boldsymbol{X})$ for a space \boldsymbol{X}.

- The CDGA $(\wedge \boldsymbol{V}, \boldsymbol{d})$ is called a Sullivan (rational) model for \boldsymbol{X}.
- $(\wedge \boldsymbol{V}, \boldsymbol{d})$: minimal $\stackrel{\text { def }}{\Leftrightarrow} \boldsymbol{d}(\boldsymbol{v})$ is decomposable for $\boldsymbol{v} \in \boldsymbol{V}$.

Definition 3.3

A simply-connected space \boldsymbol{X} is formal if there is a quasi-isomorphism from a Sullivan model for \boldsymbol{X} to $\boldsymbol{H}^{*}(\boldsymbol{X} ; \mathbb{Q})$; that is, the rational homotopy type is determined by its rational cohomology algebra.
\# A compact simply-connected Kähler manifolds and toric manifolds are formal.
Definition 3.4 (Body-Douglas '78)
A simply-connected space \boldsymbol{X} admits positive weights if the Sullivan minimal model (A, d) for X has a decomposition $A^{n}=\oplus_{i>0} A_{(i)}^{n}$ for
$n>0$ and $A^{0}=A_{(0)}^{0}$ with

- $d\left(A_{(i)}^{n}\right) \subset A_{(i)}^{n+1}$
- $A_{(i)}^{n} \cdot A_{(j)}^{m} \subset A_{(i+j)}^{n+m}$ for all m, n and i.

Proposition 3.5 ((H-S) Halperin-Stasheff '79)
A simply-connected formal space admits positive weight.

Theorem 3.6 (KNWY21)
A simply-connected space \boldsymbol{X} admitting positive weights is $B V$ exact. In particular, a formal space is BV exact.

A nonformal BV-exact space (manifold). Let $\boldsymbol{U T} \boldsymbol{T} \boldsymbol{S}^{\mathbf{6}} \rightarrow \boldsymbol{S}^{\mathbf{6}}$ be the unit tangent bundle over $\boldsymbol{S}^{\mathbf{6}}$. Then, we have a simply-connected 11-dimensional manifold M which fits in the pullback diagram

where $f: S^{\mathbf{3}} \times S^{\mathbf{3}} \rightarrow S^{\mathbf{6}}$ is a smooth map homotopic to the map defined by collapsing the 3 -skeleton into a point.

Proposition 3.7 (KNWY21)

The 11-dimensional manifold M is nonformal and admits positive weight. (As a consequence, M is $B V$-exact.)

- The minimal model of \boldsymbol{M} has the form $\boldsymbol{\mathcal { M }}=(\wedge(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), \boldsymbol{d})$, where $d(x)=0=d(y), d(z)=x y, \operatorname{deg} x=\operatorname{deg} y=3$ and $\operatorname{deg} \boldsymbol{z}=\mathbf{5}$. It is readily seen that \boldsymbol{M} is nonformal since the Massey product $\langle\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{y}\rangle$ does not vanish.
- In the minimal model \mathcal{M}, we define weights of $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} by $\mathbf{1}, \mathbf{1}$ and 2 , respectively. The model $\boldsymbol{\mathcal { M }}$ for the manifold \boldsymbol{M} admits positive weights.

Proof of Theorem 1.2 and a generalization of the result

For a simply-connected space \boldsymbol{M}, we obtain the cobar type Eilenberg-Moore spectral sequence (EMSS) converges to $\boldsymbol{H}_{S^{1}}^{*}(\boldsymbol{L} \boldsymbol{M} ; \mathbb{Q})$ with

$$
E_{2}^{*, *} \cong \operatorname{Cotor}_{H^{*}\left(S^{1} ; \mathbb{Q}\right)}^{*, *}\left(H^{*}(L M ; \mathbb{Q}), \mathbb{Q}\right)
$$

We have a decomposition

$$
\left\{E_{r}^{*, *}, d_{r}\right\}=\bigoplus_{N \in \mathbb{Z}}\left\{(N) E_{r}^{*, *}, d_{r}\right\} \oplus\{\mathbb{Q}[u], 0\}
$$

where bideg $u=(1,1)$, for which the following assertion holds.
Proposition 3.8 (KNWY21)
There exists an action \boldsymbol{S} (a morphism of SSes) on $\left\{\boldsymbol{E}_{r}^{*, *}, \boldsymbol{d}_{r}\right\}$ which is compatible with the \boldsymbol{S}-action on $\boldsymbol{H}_{S^{1}}^{*}(\boldsymbol{L} \boldsymbol{M} ; \mathbb{Q})$ and for each N,

$$
S:\left\{(N) E_{r}^{*, *}, d_{r}\right\} \rightarrow\left\{(N-1) E_{r}^{*+1, *+1}, d_{r}\right\}
$$

Theorem 3.9 (KNWY21)

The $\boldsymbol{E}_{\boldsymbol{r}}$-term ${ }_{(0)} \boldsymbol{E}_{\boldsymbol{r}}^{\boldsymbol{p}, \boldsymbol{q}}$ in $\left\{{ }_{(\mathbf{0})} \boldsymbol{E}_{\boldsymbol{r}}^{*, *}, \boldsymbol{d}_{\boldsymbol{r}}\right\}$ is trivial for any $(\boldsymbol{p}, \boldsymbol{q})$ if and only if the $(\boldsymbol{r}-\mathbf{1})$ times S-action S^{r-1} on $\widetilde{\boldsymbol{H}}_{S^{1}}^{*}(\boldsymbol{L} \boldsymbol{M} ; \mathbb{Q})$ is.

Assertion: BV-exactness

Proof of Theorem 1.2 \# By using the Sullivan model for $\boldsymbol{L} \boldsymbol{X}$, we show this fact.
The BV -exactness of a space is equivalent to the condition that the $\boldsymbol{E}_{\mathbf{2}^{-}}$ term of the spectral sequence $\left\{(0) \boldsymbol{E}_{r}^{*, *}, \boldsymbol{d}_{r}\right\}$ is trivial.

This allows us to propose a higher version of the BV-exactness.
Definition 3.10
A simply-connected space \boldsymbol{X} is \boldsymbol{r} - $B V$-exact if the $\boldsymbol{E}_{\boldsymbol{r}+\boldsymbol{1}}$-term (0) $\boldsymbol{E}_{\boldsymbol{r + 1}}^{\boldsymbol{p}, \boldsymbol{q}}$ in the spectral sequence $\left\{{ }_{(0)} \boldsymbol{E}_{r}^{*, *}, \boldsymbol{d}_{r}\right\}$ associated with \boldsymbol{X} is trivial for any $(\boldsymbol{p}, \boldsymbol{q})$.

Theorem 3.11

There are the following implications concerning homotopy invariants for a simply-connected space \boldsymbol{X}.

\# (*) holds provided \boldsymbol{X} has the homotopy type of a finite CW complex.
Thm 1.1: \boldsymbol{M} is (1-)BV-exact \Longrightarrow the string bracket for \boldsymbol{M} is reducible to the loop product.
\# A geometric description for higer BV-exactness?

