On the category of stratifolds – The Serre-Swan Theorem -

栗林 勝彦

信州大学

2017 年度ホモトピー論シンポジウム 高松市生涯学習センター (まなび CAN) (香川県高松市)

This is joint work with **Toshiki Aoki**.

T. Aoki and K. Kuribayashi, On the category of stratifolds, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 58 (2017), 131–160. arXiv:1605.04142.

Acknowledgements. The second author thanks Takayoshi Aoki and Wakana Otsuka for considerable discussions on stratifolds.

This research was partially supported by a Grant-in-Aid for challenging Exploratory Research 16K13753 from Japan Society for the Promotion of Science.

- Introduction
 - Definition of a stratifold
 - Examples of stratifolds
- 2 The category of stratifolds
 - Stfd embeds into the category of ℝ-algebras (From the talk in Karatsu 2013)
 - The structure sheaf of a stratifold
- Over the server of the serv
 - Vector bundles over stratifolds
 - The Serre-Swan theorem for stratifolds
- 4 Perspective
 - Toward Diffeology for Homotopy Theory of stratifolds

Definition of a stratifold

Definition 1.1 (Differential spaces in the sense of Sikorski (1971))

A differential space is a pair (S, C) consisting of a topological space S and an \mathbb{R} -subalgebra C of the \mathbb{R} -algebra $C^0(S)$ of continuous real-valued functions on S, which is supposed to be *locally detectable* and C^{∞} -closed.

- ▶ Local detectability : $f \in C$ if and only if for any $x \in S$, there exist an open neighborhood U of x and an element $g \in C$ such that $f|_U = g|_U$.
- ▶ C^{∞} -closedness : For each $n \geq 1$, each n-tuple $(f_1, ..., f_n)$ of maps in Cand each smooth map $g : \mathbb{R}^n \to \mathbb{R}$, the composite $h : S \to \mathbb{R}$ defined by $h(x) = g(f_1(x), ..., f_n(x))$ belongs to C.

The tangent space at $x \in S$.

 T_xS := The vector space of derivations on \mathcal{C}_x the germs at x

Definition 1.2 (Kreck (2010))

A *stratifold* is a differential space (S, C) such that the following four conditions hold:

- 1. S is a locally compact Hausdorff space with countable basis;
- 2. the skeleta $sk_k(S) := \{x \in S \mid \dim T_xS \leq k\}$ are closed in S;
- 3. for each $x \in S$ and open neighborhood U of x in S, there exists a bump function at x subordinate to U; that is, a non-negative function $\rho \in C$ such that $\rho(x) \neq 0$ and such that the support supp $\rho := \overline{\{p \in S \mid \rho(p) \neq 0\}}$ is contained in U;
- 4. the strata $S^k := sk_k(S) sk_{k-1}(S)$ are k-dimensional smooth manifolds such that restriction along $i: S^k \hookrightarrow S$ induces an isomorphism of stalks

$$i^*: \mathcal{C}_x \xrightarrow{\cong} C^{\infty}(S^k)_x.$$

for each $x \in S^k$.

Examples

 \blacktriangleright Let M be a manifold. The open cone of M is defined by

$$CM^\circ := M imes [0,1)/M imes \{0\}
i [M imes \{0\}] = st$$
 $\mathcal{C} := \left\{ \left. f: CM^\circ o \mathbb{R} \, \right| egin{array}{c} f_{|M imes (0,1)} ext{ is smooth, } f_{|U} ext{ is } \ ext{ constant for some open } U
i st \end{array}
ight\}$

 (CM°,\mathcal{C}) is a stratifold with non-empty strata $S^{k+1}=M imes(0,1)$ and $S^0=*.$

• (S, C) a stratifold, W is a manifold with boundary, which has a collar c : $\partial W \times [0, \epsilon) \xrightarrow{\cong} W$. We have a stratifold

$$(S'=S\cup_f W, \mathcal{C}'),$$

 $C' = ig\{ \, g: S' o \mathbb{R} \, ig| \, g_{|S} \in \mathcal{C}, gc(w,t) = gf(w) ext{ for } w \in \partial W \, ig\}$

• Moreover, we have a sub stratifold and the product of stratifolds.

The category of stratifolds

We assume that all stratifolds are finite-dimensional; $S = sk_n(S)$ for some n. Let (S, \mathcal{C}) and (S', \mathcal{C}') be stratifolds. We call a continuous map $f : S \to S'$ a morphism of the stratifolds, denoted

$$f:(S,\mathcal{C}) \to (S',\mathcal{C}')$$

if f induces a map $f^*: \mathcal{C}' \to \mathcal{C}$; that is, $\varphi \circ f \in \mathcal{C}$ for each $\varphi \in \mathcal{C}'$. Thus we define a category

Stfd

of stratifolds.

Theorem 2.1

The category **Stfd** fully faithfully embeds into the category of \mathbb{R} -algebras.

Sketch of the proof

For an \mathbb{R} -algebra \mathcal{F} , we define

 $|\mathcal{F}|:=$ the set of all morphisms of \mathbb{R} -algebras from \mathcal{F} to \mathbb{R}

Moreover, we define a map $\tilde{f}: |\mathcal{F}| \to \mathbb{R}$ by $\tilde{f}(x) = x(f)$ for any $f \in \mathcal{F}$. Let $\tilde{\mathcal{F}}$ be the \mathbb{R} -algebra of maps from $|\mathcal{F}|$ to \mathbb{R} of the form \tilde{f} for $f \in \mathcal{F}$. Then we consider the Gelfand topology on $|\mathcal{F}|$; that is, $|\mathcal{F}|$ is regarded as the topological space with the open basis

$$\{\widetilde{f}^{-1}(U) \mid U:$$
 open in $\mathbb{R}, \widetilde{f} \in \widetilde{\mathcal{F}}\}$

Thus the assignment of a topological space to an $\mathbb{R}\text{-algebra}$ gives rise to a contravariant functor

$$|: \mathbb{R}$$
-Alg \rightarrow Top

Lemma 2.2 (Using a bump function)

Let (S, C) be a stratifold. Then the map $\theta : S \to |C|$ defined by $\theta(p)(f) = f(p)$ is a homeomorphism.

Proposition 2.3

The map $heta:S
ightarrow |\mathcal{C}|$ gives rise to an isomorphism of continuous spaces

$$heta:(S,\mathcal{C}) o (|\mathcal{C}|,\widetilde{\mathcal{C}})$$

Theorem 2.4

The forgetful functor F :Stfd $\rightarrow \mathbb{R}$ -Alg defined by $F(S, \mathcal{C}) = \mathcal{C}$ is fully faithful; that is, the induced map

$$F: \operatorname{Hom}_{\mathsf{Stfd}}((S,\mathcal{C}),(S',\mathcal{C}')) \to \operatorname{Hom}_{\mathbb{R}\operatorname{-Alg}}(\mathcal{C}',\mathcal{C})$$

is a bijection.

The structure sheaf of a stratifold

- A maximal ideal m of C real → the quotient C/m is isomorphic to R as an R-algebra.
- Spec_r C : the real spectrum, i.e. the subset of the prime spectrum Spec C of C consisting of real ideals. We consider Spec_r C the subspace of Spec C with the Zariski topology.
- ▶ A map $u : |\mathcal{C}| \to \operatorname{Spec}_r \mathcal{C}$ defined by $u(\varphi) = \operatorname{Ker} \varphi$ is bijective. Moreover, the map u is continuous. In fact, for an open base $D(f) = \{ \mathbf{m} \in \operatorname{Spec}_r \mathcal{C} \mid f \notin \mathbf{m} \}$ for some $f \in \mathcal{C}$, we see that $u^{-1}(D(f)) = \tilde{f}^{-1}(\mathbb{R} \setminus \{0\})$.

Proposition 2.5

The bijection $u: |\mathcal{C}| \xrightarrow{\cong} \operatorname{Spec}_r \mathcal{C}$ is a homeomorphism.

$$S\cong |\mathcal{C}|\cong \operatorname{Spec}_r \mathcal{C}\subset \operatorname{Spec} \mathcal{C}.$$

Theorem 2.6

Let (S, \mathcal{O}_S) be a ringed space which comes from a stratifold (S, \mathcal{C}) and i: $\operatorname{Spec}_r \mathcal{O}_S(S) \to \operatorname{Spec} \mathcal{O}_S(S)$ the inclusion. Then (S, \mathcal{O}_S) is isomorphic to $i^*(\operatorname{Spec} \mathcal{O}_S(S), \widetilde{\mathcal{O}_S(S)})$ as a ringed space, where $(\operatorname{Spec} \mathcal{O}_S(S), \widetilde{\mathcal{O}_S(S)})$ is the affine scheme associated with the ring $\mathcal{O}_S(S)$.

Sketch of the proof.

Let $m: S \xrightarrow{\cong} |S| \xrightarrow{\cong} \text{Spec}_r \mathcal{O}_S(S)$. It suffices to show that (S, \mathcal{O}_S) is isomorphic to the structure sheaf $(\text{Spec}_r \mathcal{O}_S(S), \widehat{\mathcal{O}_S(S)})$. To this end, we construct an isomorphism from $\widehat{\mathcal{O}_S(S)}$ to $m_* \mathcal{O}_S$. For an open set U of $\text{Spec}_r \mathcal{O}_S(S)$, we define

$$lpha_U: M_U^{-1}\mathcal{O}_S(S) o (m_*\mathcal{O}_S)(U)$$

by $\alpha([f/s]) = f \cdot \frac{1}{s}$, where $M_U := \bigcap_{\mathfrak{m} \in U} \mathfrak{m}^c$.

Definition 3.1 (A vector bundle over a stratifold)

Let (S, \mathcal{C}_S) be a stratifold and (E, \mathcal{C}_E) a differential space. A morphism of differential spaces $\pi : (E, \mathcal{C}_E) \to (S, \mathcal{C}_S)$ is a vector bundle over (S, \mathcal{C}_S) if the following conditions are satisfied.

- 1. $E_x := \pi^{-1}(x)$ is a vector space over \mathbb{R} for $x \in S$.
- 2. There exist an open cover $\{U_{\alpha}\}_{\alpha \in J}$ of S and an isomorphism ϕ_{α} : $\pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{n_{\alpha}}$ of differential spaces for each $\alpha \in J$. Here $\pi^{-1}(U_{\alpha})$ is regarded as a differential subspace of (E, \mathcal{C}_E) and $U_{\alpha} \times \mathbb{R}^{n_{\alpha}}$ is considered the product of the substratifold $(U_{\alpha}, \mathcal{C}_{U_{\alpha}})$ of (S, \mathcal{C}_S) and the manifold $(\mathbb{R}^{n_{\alpha}}, C^{\infty}(\mathbb{R}^{n_{\alpha}}))$.
- 3. The diagram $\pi^{-1}(U_{\alpha}) \xrightarrow{\phi_{\alpha}} U_{\alpha} \times \mathbb{R}^{n_{\alpha}}$ is commutative, $\pi \xrightarrow{} U_{\alpha} \xrightarrow{pr_{1}} U_{\alpha}$

where pr_1 is the projection onto the first factor.

4. The composite $pr_2 \circ \phi_{\alpha}|_{E_x} : E_x \to U_{\alpha} \times \mathbb{R}^{n_{\alpha}} \to \mathbb{R}^{n_{\alpha}}$ is a linear isomorphism, where $pr_2 : U_{\alpha} \times \mathbb{R}^{n_{\alpha}} \to \mathbb{R}^{n_{\alpha}}$ denotes the projection onto the second factor.

Proposition 3.2

The transition functions $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL_n(\mathbb{R})$ are morphisms of stratifolds.

Proposition 3.3

Let $\pi : (E, \mathcal{C}_E) \to (S, \mathcal{C}_S)$ be a vector bundle in the sense of Definition 3.1. Then the differential space (E, \mathcal{C}_E) admits a stratifold structure for which π is a morphism of stratifolds.

By virtue of Proposition 3.2, we see that $\pi: \pi^{-1}(S^i) \to S^i$ is a smooth vector bundle.

$$(\mathcal{C}_E)_x \xrightarrow{i} C^{\infty}(\pi^{-1}(S^i))_x \ \stackrel{res^*\downarrow\cong}{\cong \downarrow res^*} \cong \downarrow^{res^*} (\mathcal{C}_{\pi^{-1}(U_{lpha})})_x \xrightarrow{i^*} C^{\infty}(\pi^{-1}(S^i \cap U_{lpha}))_x \ \stackrel{\phi^*_{lpha}\uparrow\cong}{\cong \uparrow \phi^*_{lpha}} \cong \uparrow^{\phi^*_{lpha}} (\mathcal{C}_{U_{lpha} imes \mathbb{R}^n})_{\phi_{lpha}(x)} \xrightarrow{(i imes 1_{\mathbb{R}^n})^*} \mathcal{C}(S^i \cap U_{lpha} imes \mathbb{R}^n)_{\phi_{lpha}(x)}$$

Since $U_{lpha} imes \mathbb{R}^n$ is a stratifold, we see that $(i imes 1_{\mathbb{R}^n})^*$ is an isomorphism.

The Serre-Swan theorem for stratifolds

We denote by $\mathsf{VBb}_{(S,\mathcal{C})}$ the category of vector bundles over (S,\mathcal{C}) of bounded rank.

Theorem 3.4

Let (S, \mathcal{C}) be a stratifold. Then the global section functor

$$\Gamma(S,-): \mathsf{VBb}_{(S,\mathcal{C})} \to \mathsf{Fgp}(\mathcal{C})$$

gives rise to an equivalence of categories, where Fgp(C) denotes the category of finitely generated projective modules over C.

Let Lfb(S) be the full subcategory of \mathcal{O}_S -Mod consisting of locally free \mathcal{O}_S -modules of bounded rank. We define a functor $\mathcal{L} : VBb_{(S,\mathcal{C})} \to Lfb(S)$ by $\mathcal{L}_E : U \rightsquigarrow \Gamma(U, E)$, which is fully faithful and essentially surjective.

Theorem 3.5 (Morye (2013))

Let (X, \mathcal{O}_X) be a locally ringed space such that X is a paracompact Hausdorff space of finite covering dimension, and \mathcal{O}_X is a fine sheaf of rings. Then the Serre-Swan theorem holds for (X, \mathcal{O}_X) ; that is, the global section functor induces an equivalence of categories between Lfb(X) and $Fgp(\Gamma(X, \mathcal{O}_X))$.

Corollary 3.6

Let (S, \mathcal{C}) be a stratifold and \mathcal{O}_S the structure sheaf. Then the global sections functor $\Gamma(S, -) : \mathsf{Lfb}(S) \to \mathsf{Fgp}(\mathcal{C})$ is an equivalence.

Perspective - Toward Diffeology for Homotopy Theory of stratifolds -

Let **Diffeology** be the category of diffeological spaces. We define a functor

 $k: \mathsf{Stfd} \to \mathsf{Diffeology}$

by $k(S,\mathcal{C})=(S,\mathcal{D}_{\mathcal{C}})$ and $k(\phi)=\phi$ for a morphism $\phi:S o S'$ of stratifolds, where

$$\mathcal{D}_{\mathcal{C}} := \left\{ \left. u: U
ightarrow S \; \middle| \; egin{array}{c} U: ext{ open in } \mathbb{R}^q, q \geq 0, \ \phi \circ u \in C^\infty(U) ext{ for any } \phi \in \mathcal{C} \end{array}
ight\}.$$

The functor k is faithful, but not full; that is, for a continuous map $f: S \to S'$, it is more restrictive to be a morphism of stratifolds $(S, \mathcal{C}) \to (S', \mathcal{C}')$ than to be a morphism of diffeological spaces $(S, \mathcal{D}_{\mathcal{C}}) \to (S', \mathcal{D}_{\mathcal{C}'})$.

- ► Haraguchi and Shimakawa are considering a model structure of Diffeology with the adjoint pair (D, S). (2013 -)
- Christensen and Wu have studied a model structure of **Diffeology** with the adjoint pair $(| |_D, S^D)$, where $S^D(X) := \{\mathbb{A}^n \to X : \text{smooth}\}$ and $\mathbb{A}^n := \{(t_0, ..., t_n) \in \mathbb{R}^n \mid \sum t_i = 1\}$, the "non-compact *n*-simplex". (2014)
- Kihara has given a model structure to Diffeology with an adjoint pair given by modifying (| |_D, S^D), more precisely, changing the diffeological structure of Δⁿ. (2016, 2017)

▶ Iwase and Izumida (2015) have considerd de Rham theorem in **Diffeology** using S_{\Box} and the cubical differential forms

Let $\Omega^*_{DR}(X)$ be the de Rham complex of a diffeological space (X, \mathcal{D}^X) in the sense of Iglesias-Zemmour.

$$\Omega_{DR}^{p}(X) := \left\{ \begin{array}{c} Open \underbrace{\mathcal{D}^{X}}_{\wedge^{p}} \\ \underbrace{ \bigvee}_{\wedge^{p}} \\ \end{array} \right\} \text{ natural trans. } \right\}$$

 $\wedge^*(U) = \{ U \stackrel{\text{smooth}}{\longrightarrow} \wedge^*(\oplus_{i=1}^{\dim U} \mathbb{R} dx_i) \}$: the usual de Rham complex on U

Theorem 4.1 (Iwase - Izumida (2015)) For a CW complex X, one has isomorphisms $H^*(X;\mathbb{R}) \cong H^*(S_{\square}(X)) \cong H(\text{ ``a cubical de Rhma complex'' of } X)$ $\cong H(\Omega^*_{DR}(X))$

- For a simplicial set K, $C^*(K; \mathbb{R})$ denotes the normalized cochain algebra.
- We have two simplicial DGA C^Δ := C^{*}(Δ[●]) and Ω^Δ := Ω^{*}_{DR}(A[●]). Define cochain algebra A(K) := Sets^{Δ^{op}}(K, A_●) for a simplicial set K and a simplicial DGA A_●.

Assertion 4.2 (Emoto - K. (Work in progress))

For a diffeology (X, \mathcal{D}_X) , one has a commutative diagram

$$C^{*}(S^{D}(X)) \xrightarrow{\simeq} (C^{\Delta} \otimes \Omega^{\Delta})(S^{D}(X)) \xleftarrow{\simeq} \Omega^{\Delta}(S^{D}(X)) \xleftarrow{\alpha} \Omega_{DR}(X)$$

$$= \underbrace{\mathsf{mult}_{0}(1 \otimes f)}_{C^{*}} \underbrace{\mathsf{C}^{*}(S^{D}(X))}_{\text{``integration''}} f$$

in which φ and ψ are quasi-isomorphism of DGAs and α is a DGA map. Moreover, if (X, \mathcal{D}) comes from a stratifolds, then α is a quasi-iso. and hence \int is an isomorphism of graded algebras on the cohomology. We get the "de Rham theorem" for stratifolds.

A little more perspective

- Rational homotopy theory uses $(A_{PL}^*)_{\bullet}$ the simplicial DG algebra of polynomial (rational) differential forms.
- Real homotopy theory in the sense of Brown and Szczarba uses $\Omega^*_{de Rham}(\Delta^{\bullet})$ the usual de Rham complex on the standard simplexes, which is regarded as the simplicial DG *topological* algebra.
- Smooth homotopy theory may use $\Omega^{\Delta} := \Omega^*_{DR}(\mathbb{A}^{\bullet}), \Omega^*_{DR}(\Delta^{\bullet}_{sub})$ or $\Omega^*_{DR}(\Delta^{\bullet}_{Kihara})$, which is considered a simplicial DG diffeological algebra.
- E. Wu, Homological algebra for diffeological vector spaces, Homology Homotopy Appl. **17** (2015), 339–376.