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Introduction Definition of a stratifold

Definition of a stratifold

.

Definition 1.1 (Differential spaces in the sense of Sikorski (1971))

.

.

.

. ..

.

.

A differential space is a pair (S, C) consisting of a topological space S and an R-
subalgebra C of the R-algebra C0(S) of continuous real-valued functions on S,
which is supposed to be locally detectable and C∞-closed.

I Local detectability : f ∈ C if and only if for any x ∈ S, there exist an open
neighborhood U of x and an element g ∈ C such that f |U = g|U .

I C∞-closedness : For each n ≥ 1, each n-tuple (f1, ..., fn) of maps in C
and each smooth map g : Rn → R, the composite h : S → R defined by
h(x) = g(f1(x), ...., fn(x)) belongs to C.

The tangent space at x ∈ S.

TxS:= The vector space of derivations on Cx the germs at x
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Introduction Definition of a stratifold

.

Definition 1.2 (Kreck (2010))

.

.

.

. ..

.

.

A stratifold is a differential space (S, C) such that the following four conditions
hold:

1. S is a locally compact Hausdorff space with countable basis;

2. the skeleta skk(S) := {x ∈ S | dimTxS ≤ k} are closed in S;

3. for each x ∈ S and open neighborhood U of x in S, there exists a bump
function at x subordinate to U ; that is, a non-negative function ρ ∈ C such
that ρ(x) 6= 0 and such that the support suppρ := {p ∈ S | ρ(p) 6= 0}
is contained in U ;

4. the strata Sk := skk(S) − skk−1(S) are k-dimensional smooth manifolds
such that restriction along i : Sk ↪→ S induces an isomorphism of stalks

i∗ : Cx
∼=→ C∞(Sk)x.

for each x ∈ Sk.
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Introduction Examples of stratifolds

Examples

I Let M be a manifold. The open cone of M is defined by

CM◦ := M × [0, 1)/M × {0} 3 [M × {0}] = ∗

C :=
{
f : CM◦ → R f|M×(0,1) is smooth, f|U is

constant for some open U 3 ∗

}
(CM◦, C) is a stratifold with non–empty strata Sk+1 = M × (0, 1) and
S0 = ∗.

I (S, C) a stratifold, W is a manifold with boundary, which has a collar c :

∂W × [0, ε)
∼=→ W . We have a stratifold

(S′ = S ∪f W, C′),

C′ =
{
g : S′ → R g|S ∈ C, gc(w, t) = gf(w) for w ∈ ∂W

}
I Moreover, we have a sub stratifold and the product of stratifolds.
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The category of stratifolds Stfd embeds into the category of R-algebras

The category of stratifolds

We assume that all stratifolds are finite-dimensional; S = skn(S) for some n.
Let (S, C) and (S′, C′) be stratifolds. We call a continuous map f : S → S′ a
morphism of the stratifolds, denoted

f : (S, C) → (S′, C′)

if f induces a map f∗ : C′ → C; that is, ϕ ◦ f ∈ C for each ϕ ∈ C′. Thus we
define a category

Stfd

of stratifolds.

.

Theorem 2.1

.

.

.

. ..

.

.

The category Stfd fully faithfully embeds into the category of R-algebras.
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The category of stratifolds Stfd embeds into the category of R-algebras

Sketch of the proof

For an R-algebra F , we define

|F| := the set of all morphisms of R-algebras from F to R

Moreover, we define a map f̃ : |F| → R by f̃(x) = x(f) for any f ∈ F . Let

F̃ be the R-algebra of maps from |F| to R of the form f̃ for f ∈ F . Then we
consider the Gelfand topology on |F|; that is, |F| is regarded as the topological
space with the open basis

{f̃−1(U) | U : open in R, f̃ ∈ F̃}

Thus the assignment of a topological space to an R-algebra gives rise to a
contravariant functor

| | : R-Alg → Top
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The category of stratifolds Stfd embeds into the category of R-algebras

.

Lemma 2.2 (Using a bump function)

.

.

.

. ..

.

.

Let (S, C) be a stratifold. Then the map θ : S → |C| defined by θ(p)(f) =
f(p) is a homeomorphism.

.

Proposition 2.3

.

.

.

. ..

.

.

The map θ : S → |C| gives rise to an isomorphism of continuous spaces

θ : (S, C) → (|C|, C̃)

.

Theorem 2.4

.

.

.

. ..

.

.

The forgetful functor F : Stfd → R-Alg defined by F (S, C) = C is fully
faithful; that is, the induced map

F : HomStfd((S, C), (S′, C′)) → HomR-Alg(C′, C)

is a bijection.
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The category of stratifolds The structure sheaf of a stratifold

The structure sheaf of a stratifold

I A maximal ideal m of C real
def⇐⇒ the quotient C/m is isomorphic to R as

an R-algebra.

I Specr C : the real spectrum, i.e. the subset of the prime spectrum Spec C
of C consisting of real ideals. We consider Specr C the subspace of Spec C
with the Zariski topology.

I A map u : |C| → Specr C defined by u(ϕ) = Ker ϕ is bijective. Moreover,
the map u is continuous. In fact,
for an open base D(f) = {m ∈ Specr C | f /∈ m} for some f ∈ C, we

see that u−1(D(f)) = f̃−1(R\{0}).

.

Proposition 2.5

.

.

.

. ..

.

.

The bijection u : |C|
∼=→ Specr C is a homeomorphism.

S ∼= |C| ∼= Specr C ⊂ Spec C.
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The category of stratifolds The structure sheaf of a stratifold

.

Theorem 2.6

.

.

.

. ..

.

.

Let (S,OS) be a ringed space which comes from a stratifold (S, C) and i :
SpecrOS(S) → SpecOS(S) the inclusion. Then (S,OS) is isomorphic to

i∗(SpecOS(S), ÕS(S)) as a ringed space, where (SpecOS(S), ÕS(S)) is the
affine scheme associated with the ring OS(S).

.

Sketch of the proof.

.

.

.

. ..

. .

Let m : S
∼=→ |S|

∼=→ SpecrOS(S). It suffices to show that (S,OS) is isomor-

phic to the structure sheaf (SpecrOS(S), ÔS(S)). To this end, we construct

an isomorphism from ÔS(S) to m∗OS . For an open set U of SpecrOS(S), we
define

αU : M−1
U OS(S) → (m∗OS)(U)

by α([f/s]) = f · 1
s
, where MU :=

∩
m∈U mc.
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Vector bundles and the Serre-Swan theorem Vector bundles over stratifolds

.

Definition 3.1 (A vector bundle over a stratifold)

.

.

.

. ..

.

.

Let (S, CS) be a stratifold and (E, CE) a differential space. A morphism of dif-
ferential spaces π : (E, CE) → (S, CS) is a vector bundle over (S, CS) if the
following conditions are satisfied.

1. Ex := π−1(x) is a vector space over R for x ∈ S.

2. There exist an open cover {Uα}α∈J of S and an isomorphism φα :
π−1(Uα) → Uα × Rnα of differential spaces for each α ∈ J . Here
π−1(Uα) is regarded as a differential subspace of (E, CE) and Uα × Rnα

is considered the product of the substratifold (Uα, CUα) of (S, CS) and the
manifold (Rnα , C∞(Rnα)).

3. The diagram π−1(Uα)
φα //

π ))SSSSSSS
Uα × Rnα

pr1uujjjjjjjj

Uα

is commutative,

where pr1 is the projection onto the first factor.

4. The composite pr2 ◦ φα|Ex : Ex → Uα × Rnα → Rnα is a linear
isomorphism, where pr2 : Uα × Rnα → Rnα denotes the projection onto
the second factor.
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Vector bundles and the Serre-Swan theorem Vector bundles over stratifolds

.

Proposition 3.2

.

.

.

. ..

.

.

The transition functions gαβ : Uα∩Uβ → GLn(R) are morphisms of stratifolds.

.

Proposition 3.3

.

.

.

. ..

.

.

Let π : (E, CE) → (S, CS) be a vector bundle in the sense of Definition 3.1.
Then the differential space (E, CE) admits a stratifold structure for which π is a
morphism of stratifolds.

By virtue of Proposition 3.2, we see that π : π−1(Si) → Si is a smooth vector
bundle.

(CE)x
i∗ //

res∗ ∼=��

C∞(π−1(Si))x
res∗∼= ��

(Cπ−1(Uα))x
i∗ // C∞(π−1(Si ∩ Uα))x

(CUα×Rn)φα(x)
(i×1Rn)∗

//

φ∗
α

∼=
OO

C(Si ∩ Uα × Rn)φα(x)

φ∗
α

∼=
OO

Since Uα × Rn is a stratifold, we see that (i× 1Rn)∗ is an isomorphism.
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Vector bundles and the Serre-Swan theorem The Serre-Swan theorem for stratifolds

The Serre-Swan theorem for stratifolds

We denote by VBb(S,C) the category of vector bundles over (S, C) of bounded
rank.

.

Theorem 3.4

.

.

.

. ..

.

.

Let (S, C) be a stratifold. Then the global section functor

Γ(S,−) : VBb(S,C) → Fgp(C)

gives rise to an equivalence of categories, where Fgp(C) denotes the category of
finitely generated projective modules over C.

Let Lfb(S) be the full subcategory of OS-Mod consisting of locally free
OS-modules of bounded rank. We define a functor L : VBb(S,C) → Lfb(S) by
LE : U ; Γ(U,E), which is fully faithful and essentially surjective.
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Vector bundles and the Serre-Swan theorem The Serre-Swan theorem for stratifolds

.

Theorem 3.5 (Morye (2013))

.

.

.

. ..

.

.

Let (X,OX) be a locally ringed space such that X is a paracompact Hausdorff
space of finite covering dimension, and OX is a fine sheaf of rings. Then the
Serre-Swan theorem holds for (X,OX); that is, the global section functor in-
duces an equivalence of categories between Lfb(X) and Fgp(Γ(X,OX)).

.

Corollary 3.6

.

.

.

. ..

.

.

Let (S, C) be a stratifold and OS the structure sheaf. Then the global sections
functor Γ(S,−) : Lfb(S) → Fgp(C) is an equivalence.

VBb(S,C)
Γ(S,−)

Theorem 3.4
//

L
'

((QQQQQQQQ
Fgp(C)

Lfb(S)
Γ(S,−)

' 66nnnnnnnn
Lfb(Spec C)

'
Serre

iiRRRRRRRRR
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Perspective Toward Diffeology for Homotopy Theory of stratifolds

Perspective – Toward Diffeology for Homotopy Theory of stratifolds –

Let Diffeology be the category of diffeological spaces. We define a functor

k : Stfd → Diffeology

by k(S, C) = (S,DC) and k(φ) = φ for a morphism φ : S → S′ of stratifolds,
where

DC :=
{
u : U → S

U : open in Rq, q ≥ 0,
φ ◦ u ∈ C∞(U) for any φ ∈ C

}
.

The functor k is faithful, but not full; that is, for a continuous map f : S → S′,
it is more restrictive to be a morphism of stratifolds (S, C) → (S′, C′) than to
be a morphism of diffeological spaces (S,DC) → (S′,DC′).
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Perspective Toward Diffeology for Homotopy Theory of stratifolds

Sets2op

Mfd
fully faithful

j
//

`:fully faithful

%%

Stfd
k

// Diffeology
D

⊥
//

S2

OO

SDa
��

Top,
C

oo

Sets∆
op

| |D

OO

I Haraguchi and Shimakawa are considering a model structure of Diffeology
with the adjoint pair (D,S). (2013 – )

I Christensen and Wu have studied a model structure of Diffeology with the
adjoint pair (| |D, SD), where SD(X) := {An → X : smooth} and
An := {(t0, ..., tn) ∈ Rn |

∑
ti = 1}, the “non-compact n-simplex”.

(2014)

I Kihara has given a model structure to Diffeology with an adjoint pair given
by modifying (| |D, SD), more precisely, changing the diffeological structure
of ∆n. (2016, 2017)
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Perspective Toward Diffeology for Homotopy Theory of stratifolds

I Iwase and Izumida (2015) have considerd de Rham theorem in Diffeology
using S2 and the cubical differential forms

Let Ω∗
DR(X) be the de Rham complex of a diffeological space (X,DX) in the

sense of Iglesias-Zemmour.

ΩpDR(X) :=

 Open

DX

**

∧p

44

�� ��
�� ω Sets natural trans.


∧∗(U) = {U smooth−→ ∧∗(⊕dimU

i=1 Rdxi)}: the usual de Rham complex on U

.

Theorem 4.1 (Iwase - Izumida (2015))

.

.

.

. ..

.

.

For a CW complex X, one has isomorphisms

H∗(X; R) ∼= H∗(S2(X)) ∼= H(“a cubical de Rhma complex” of X)
∼= H(Ω∗

DR(X))
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Perspective Toward Diffeology for Homotopy Theory of stratifolds

I For a simplicial set K, C∗(K; R) denotes the normalized cochain algebra.

I We have two simplicial DGA C∆ := C∗(∆[•]) and Ω∆ := Ω∗
DR(A•).

Define cochain algebra A(K) := Sets∆op

(K,A•) for a simplicial set K
and a simplicial DGA A•.

.

Assertion 4.2 (Emoto - K. (Work in progress))

.

.

.

. ..

.

.

For a diffeology (X,DX), one has a commutative diagram

C∗(SD(X))

=
))SSSSSSSSSSSS

'
ϕ

// (C∆ ⊗ Ω∆)(SD(X))

mult◦(1⊗
R

)

��

Ω∆(SD(X))
'

ψ
oo ΩDR (X)

αoo

“integration”
R

ssfffffffffffffffffffffff

C∗(SD(X))

in which ϕ and ψ are quasi-isomorphism of DGAs and α is a DGA map. More-
over, if (X,D) comes from a stratifolds, then α is a quasi-iso. and hence

∫
is

an isomorphism of graded algebras on the cohomology. We get the “de Rham
theorem” for stratifolds.
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Perspective Toward Diffeology for Homotopy Theory of stratifolds

A little more perspective

I Rational homotopy theory uses (A∗
PL)• the simplicial DG algebra of polyno-

mial (rational) differential forms.

I Real homotopy theory in the sense of Brown and Szczarba uses Ω∗
de Rham(∆•)

the usual de Rham complex on the standard simplexes, which is regarded as
the simplicial DG topological algebra.

I Smooth homotopy theory may use Ω∆ := Ω∗
DR(A•), Ω∗

DR(∆•
sub) or

Ω∗
DR(∆•

Kihara), which is considered a simplicial DG diffeological algebra.

E. Wu, Homological algebra for diffeological vector spaces, Homology Homotopy
Appl. 17 (2015), 339–376.
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