On the category of stratifolds
– The Serre-Swan Theorem –

栗林 勝彦
信州大学

2017 年度ホモトピー論シンポジウム
高松市生涯学習センター (まなび CAN) (香川県高松市)
This is joint work with Toshiki Aoki.

Acknowledgements. The second author thanks Takayoshi Aoki and Wakana Otsuka for considerable discussions on stratifolds.

This research was partially supported by a Grant-in-Aid for challenging Exploratory Research 16K13753 from Japan Society for the Promotion of Science.
1 Introduction
 • Definition of a stratifold
 • Examples of stratifolds

2 The category of stratifolds
 • **Stfd** embeds into the category of \(\mathbb{R} \)-algebras (From the talk in Karatsu 2013)
 • The structure sheaf of a stratifold

3 Vector bundles and the Serre-Swan theorem
 • Vector bundles over stratifolds
 • The Serre-Swan theorem for stratifolds

4 Perspective
 • Toward Diffeology for Homotopy Theory of stratifolds
Definition of a stratifold

Definition 1.1 (Differential spaces in the sense of Sikorski (1971))

A differential space is a pair \((S, \mathcal{C})\) consisting of a topological space \(S\) and an \(\mathbb{R}\)-subalgebra \(\mathcal{C}\) of the \(\mathbb{R}\)-algebra \(C^0(S)\) of continuous real-valued functions on \(S\), which is supposed to be locally detectable and \(C^\infty\)-closed.

- **Local detectability**: \(f \in \mathcal{C}\) if and only if for any \(x \in S\), there exist an open neighborhood \(U\) of \(x\) and an element \(g \in \mathcal{C}\) such that \(f|_U = g|_U\).
- **\(C^\infty\)-closedness**: For each \(n \geq 1\), each \(n\)-tuple \((f_1, \ldots, f_n)\) of maps in \(\mathcal{C}\) and each smooth map \(g : \mathbb{R}^n \to \mathbb{R}\), the composite \(h : S \to \mathbb{R}\) defined by \(h(x) = g(f_1(x), \ldots, f_n(x))\) belongs to \(\mathcal{C}\).

The tangent space at \(x \in S\).

\[T_x S := \text{The vector space of derivations on } \mathcal{C}_x \text{ the germs at } x \]
Definition 1.2 (Kreck (2010))

A stratifold is a differential space \((S, C)\) such that the following four conditions hold:

1. \(S\) is a locally compact Hausdorff space with countable basis;
2. the skeleta \(s_k(S) := \{x \in S \mid \dim T_x S \leq k\}\) are closed in \(S\);
3. for each \(x \in S\) and open neighborhood \(U\) of \(x\) in \(S\), there exists a bump function at \(x\) subordinate to \(U\); that is, a non-negative function \(\rho \in C\) such that \(\rho(x) \neq 0\) and such that the support \(\text{supp} \rho := \{p \in S \mid \rho(p) \neq 0\}\) is contained in \(U\);
4. the strata \(S^k := s_k(S) - s_{k-1}(S)\) are \(k\)-dimensional smooth manifolds such that restriction along \(i : S^k \hookrightarrow S\) induces an isomorphism of stalks

\[
i^* : C_x \xrightarrow{\cong} C^\infty(S^k)_x.
\]

for each \(x \in S^k\).
Introduction

Examples

Let M be a manifold. The open cone of M is defined by

$$CM^\circ := M \times [0, 1)/M \times \{0\} \ni [M \times \{0\}] = *$$

$$C := \left\{ f : CM^\circ \to \mathbb{R} \middle| f_{|M \times (0, 1)} \text{ is smooth, } f_{|U} \text{ is constant for some open } U \ni * \right\}$$

(CM°, C) is a stratifold with non-empty strata $S^{k+1} = M \times (0, 1)$ and $S^0 = *$.

(S, C) a stratifold, W is a manifold with boundary, which has a collar $c : \partial W \times [0, \epsilon) \xrightarrow{\cong} W$. We have a stratifold

$$(S' = S \cup_f W, C'),$$

$$C' = \left\{ g : S' \to \mathbb{R} \middle| g_{|S} \in C, gc(w, t) = gf(w) \text{ for } w \in \partial W \right\}$$

Moreover, we have a sub stratifold and the product of stratifolds.
The category of stratifolds

We assume that all stratifolds are finite-dimensional; $S = sk_n(S)$ for some n. Let (S, C) and (S', C') be stratifolds. We call a continuous map $f : S \rightarrow S'$ a morphism of the stratifolds, denoted

$$f : (S, C) \rightarrow (S', C')$$

if f induces a map $f^* : C' \rightarrow C$; that is, $\varphi \circ f \in C$ for each $\varphi \in C'$. Thus we define a category

$$\text{Stfd}$$

of stratifolds.

Theorem 2.1

The category Stfd fully faithfully embeds into the category of \mathbb{R}-algebras.
Sketch of the proof

For an \mathbb{R}-algebra \mathcal{F}, we define

$$|\mathcal{F}| := \text{the set of all morphisms of } \mathbb{R}\text{-algebras from } \mathcal{F} \text{ to } \mathbb{R}$$

Moreover, we define a map $\tilde{f} : |\mathcal{F}| \to \mathbb{R}$ by $\tilde{f}(x) = x(f)$ for any $f \in \mathcal{F}$. Let $\tilde{\mathcal{F}}$ be the \mathbb{R}-algebra of maps from $|\mathcal{F}|$ to \mathbb{R} of the form \tilde{f} for $f \in \mathcal{F}$. Then we consider the Gelfand topology on $|\mathcal{F}|$; that is, $|\mathcal{F}|$ is regarded as the topological space with the open basis

$$\{\tilde{f}^{-1}(U) \mid U : \text{open in } \mathbb{R}, \tilde{f} \in \tilde{\mathcal{F}}\}$$

Thus the assignment of a topological space to an \mathbb{R}-algebra gives rise to a contravariant functor

$$| \cdot | : \mathbb{R}\text{-Alg} \to \text{Top}$$
Lemma 2.2 (Using a bump function)

Let \((S, \mathcal{C})\) be a stratifold. Then the map \(\theta : S \to |\mathcal{C}|\) defined by \(\theta(p)(f) = f(p)\) is a homeomorphism.

Proposition 2.3

The map \(\theta : S \to |\mathcal{C}|\) gives rise to an isomorphism of continuous spaces

\[\theta : (S, \mathcal{C}) \to (|\mathcal{C}|, \tilde{\mathcal{C}}) \]

Theorem 2.4

The forgetful functor \(F : \text{Stfd} \to \text{R-Alg}\) defined by \(F(S, \mathcal{C}) = \mathcal{C}\) is fully faithful; that is, the induced map

\[F : \text{Hom}_{\text{Stfd}}((S, \mathcal{C}), (S', \mathcal{C}')) \to \text{Hom}_{\text{R-Alg}}(\mathcal{C}', \mathcal{C}) \]

is a bijection.
The category of stratifolds

The structure sheaf of a stratifold

- A maximal ideal m of \mathcal{C} real $\overset{\text{def}}{\leftrightarrow}$ the quotient \mathcal{C}/m is isomorphic to \mathbb{R} as an \mathbb{R}-algebra.

- $\text{Spec}_r \mathcal{C}$: the real spectrum, i.e. the subset of the prime spectrum $\text{Spec} \mathcal{C}$ of \mathcal{C} consisting of real ideals. We consider $\text{Spec}_r \mathcal{C}$ the subspace of $\text{Spec} \mathcal{C}$ with the Zariski topology.

- A map $u : |\mathcal{C}| \to \text{Spec}_r \mathcal{C}$ defined by $u(\varphi) = \text{Ker} \varphi$ is bijective. Moreover, the map u is continuous. In fact, for an open base $D(f) = \{m \in \text{Spec}_r \mathcal{C} \mid f \notin m\}$ for some $f \in \mathcal{C}$, we see that $u^{-1}(D(f)) = \tilde{f}^{-1}(\mathbb{R}\setminus\{0\})$.

Proposition 2.5

The bijection $u : |\mathcal{C}| \overset{\cong}{\to} \text{Spec}_r \mathcal{C}$ is a homeomorphism.

\[S \cong |\mathcal{C}| \cong \text{Spec}_r \mathcal{C} \subset \text{Spec} \mathcal{C}. \]
Theorem 2.6

Let (S, \mathcal{O}_S) be a ringed space which comes from a stratifold (S, C) and $i : \text{Spec}_r \mathcal{O}_S(S) \to \text{Spec} \mathcal{O}_S(S)$ the inclusion. Then (S, \mathcal{O}_S) is isomorphic to $i^*(\text{Spec} \mathcal{O}_S(S), \mathcal{O}_S(S))$ as a ringed space, where $(\text{Spec} \mathcal{O}_S(S), \mathcal{O}_S(S))$ is the affine scheme associated with the ring $\mathcal{O}_S(S)$.

Sketch of the proof.

Let $m : S \xrightarrow{\cong} |S| \xrightarrow{\cong} \text{Spec}_r \mathcal{O}_S(S)$. It suffices to show that (S, \mathcal{O}_S) is isomorphic to the structure sheaf $(\text{Spec}_r \mathcal{O}_S(S), \mathcal{O}_S(S))$. To this end, we construct an isomorphism from $\mathcal{O}_S(S)$ to $m_* \mathcal{O}_S$. For an open set U of $\text{Spec}_r \mathcal{O}_S(S)$, we define

$$\alpha_U : M_U^{-1} \mathcal{O}_S(S) \to (m_* \mathcal{O}_S)(U)$$

by $\alpha([f/s]) = f \cdot \frac{1}{s}$, where $M_U := \bigcap_{m \in U} m^c$. □
Definition 3.1 (A vector bundle over a stratifold)

Let \((S, \mathcal{C}_S)\) be a stratifold and \((E, \mathcal{C}_E)\) a differential space. A morphism of differential spaces \(\pi : (E, \mathcal{C}_E) \to (S, \mathcal{C}_S)\) is a vector bundle over \((S, \mathcal{C}_S)\) if the following conditions are satisfied.

1. \(E_x := \pi^{-1}(x)\) is a vector space over \(\mathbb{R}\) for \(x \in S\).

2. There exist an open cover \(\{U_\alpha\}_{\alpha \in J} \) of \(S\) and an isomorphism \(\phi_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times \mathbb{R}^{n_\alpha}\) of differential spaces for each \(\alpha \in J\). Here \(\pi^{-1}(U_\alpha)\) is regarded as a differential subspace of \((E, \mathcal{C}_E)\) and \(U_\alpha \times \mathbb{R}^{n_\alpha}\) is considered the product of the substratifold \((U_\alpha, \mathcal{C}_{U_\alpha})\) of \((S, \mathcal{C}_S)\) and the manifold \((\mathbb{R}^{n_\alpha}, \mathcal{C}^\infty(\mathbb{R}^{n_\alpha}))\).

3. The diagram \(\pi^{-1}(U_\alpha) \xrightarrow{\phi_\alpha} U_\alpha \times \mathbb{R}^{n_\alpha}\) is commutative,

\[
\begin{array}{ccc}
\pi^{-1}(U_\alpha) & \xrightarrow{\phi_\alpha} & U_\alpha \times \mathbb{R}^{n_\alpha} \\
\downarrow{\pi} & & \downarrow{pr_1} \\
U_\alpha & &
\end{array}
\]

where \(pr_1\) is the projection onto the first factor.

4. The composite \(pr_2 \circ \phi_\alpha|_{E_x} : E_x \to U_\alpha \times \mathbb{R}^{n_\alpha} \to \mathbb{R}^{n_\alpha}\) is a linear isomorphism, where \(pr_2 : U_\alpha \times \mathbb{R}^{n_\alpha} \to \mathbb{R}^{n_\alpha}\) denotes the projection onto the second factor.
Proposition 3.2

The transition functions $g_{\alpha\beta} : U_\alpha \cap U_\beta \rightarrow GL_n(\mathbb{R})$ are morphisms of stratifolds.

Proposition 3.3

Let $\pi : (E, C_E) \rightarrow (S, C_S)$ be a vector bundle in the sense of Definition 3.1. Then the differential space (E, C_E) admits a stratifold structure for which π is a morphism of stratifolds.

By virtue of Proposition 3.2, we see that $\pi : \pi^{-1}(S^i) \rightarrow S^i$ is a smooth vector bundle.

\[
\begin{array}{ccc}
(C_E)_x & \xrightarrow{i^*} & C^\infty(\pi^{-1}(S^i))_x \\
\downarrow \cong & & \downarrow \cong \\
(C_{\pi^{-1}(U_\alpha)})_x & \xrightarrow{i^*} & C^\infty(\pi^{-1}(S^i \cap U_\alpha))_x \\
\uparrow \cong & & \uparrow \cong \\
(C_{U_\alpha \times \mathbb{R}^n})_{\phi_\alpha}(x) & \xrightarrow{(i \times 1_{\mathbb{R}^n})^*} & C(S^i \cap U_\alpha \times \mathbb{R}^n)_{\phi_\alpha}(x)
\end{array}
\]

Since $U_\alpha \times \mathbb{R}^n$ is a stratifield, we see that $(i \times 1_{\mathbb{R}^n})^*$ is an isomorphism.
The Serre-Swan theorem for stratifolds

We denote by $\mathbf{VBb}_{(S,\mathcal{C})}$ the category of vector bundles over (S,\mathcal{C}) of bounded rank.

Theorem 3.4

Let (S,\mathcal{C}) be a stratifold. Then the global section functor

$$\Gamma(S, -) : \mathbf{VBb}_{(S,\mathcal{C})} \to \mathbf{Fgp} (\mathcal{C})$$

gives rise to an equivalence of categories, where $\mathbf{Fgp} (\mathcal{C})$ denotes the category of finitely generated projective modules over \mathcal{C}.

Let $\mathbf{Lfb}(S)$ be the full subcategory of \mathcal{O}_S-\mathbf{Mod} consisting of locally free \mathcal{O}_S-modules of bounded rank. We define a functor $\mathbf{L} : \mathbf{VBb}_{(S,\mathcal{C})} \to \mathbf{Lfb}(S)$ by $\mathbf{L}_E : U \leadsto \Gamma(U, E)$, which is fully faithful and essentially surjective.
Theorem 3.5 (Morye (2013))

Let \((X, \mathcal{O}_X)\) be a locally ringed space such that \(X\) is a paracompact Hausdorff space of finite covering dimension, and \(\mathcal{O}_X\) is a fine sheaf of rings. Then the Serre-Swan theorem holds for \((X, \mathcal{O}_X)\); that is, the global section functor induces an equivalence of categories between \(\text{Lfb}(X)\) and \(\text{Fgp}(\Gamma(X, \mathcal{O}_X))\).

Corollary 3.6

Let \((S, \mathcal{C})\) be a stratifold and \(\mathcal{O}_S\) the structure sheaf. Then the global sections functor \(\Gamma(S, -) : \text{Lfb}(S) \to \text{Fgp}(\mathcal{C})\) is an equivalence.

\[
\begin{array}{c}
\text{VBb}(S, \mathcal{C}) \\
\rightsquigarrow \sim \Gamma(S, -) \\
\sim \mathcal{L} \\
\sim \text{Lfb}(S) \\
\sim \Gamma(S, -) \\
\text{Lfb}(\text{Spec } \mathcal{C})
\end{array}
\]

Serre

\(\text{Fgp}(\mathcal{C})\)
Let **Diffeology** be the category of diffeological spaces. We define a functor

\[k : \text{Stfd} \rightarrow \text{Diffeology} \]

by \(k(S, C) = (S, D_C) \) and \(k(\phi) = \phi \) for a morphism \(\phi : S \rightarrow S' \) of stratifolds, where

\[
D_C := \left\{ u : U \rightarrow S \mid \begin{array}{l}
U : \text{open in } \mathbb{R}^q, q \geq 0, \\
\phi \circ u \in C^\infty(U) \text{ for any } \phi \in C
\end{array} \right\}.
\]

The functor \(k \) is faithful, but not full; that is, for a continuous map \(f : S \rightarrow S' \), it is more restrictive to be a morphism of stratifolds \((S, C) \rightarrow (S', C') \) than to be a morphism of diffeological spaces \((S, D_C) \rightarrow (S', D_{C'}) \).
Haraguchi and Shimakawa are considering a model structure of \textit{Diffeology} with the adjoint pair \((D, S)\). (2013 –)

Christensen and Wu have studied a model structure of \textit{Diffeology} with the adjoint pair \((|D, S^D)\), where \(S^D(X) := \{\mathbb{A}^n \to X : \text{smooth}\}\) and \(\mathbb{A}^n := \{(t_0, ..., t_n) \in \mathbb{R}^n \mid \sum t_i = 1\}\), the “non-compact \(n\)-simplex”. (2014)

Kihara has given a model structure to \textit{Diffeology} with an adjoint pair given by modifying \((|D, S^D)\), more precisely, changing the diffeological structure of \(\Delta^n\). (2016, 2017)
Iwase and Izumida (2015) have considered de Rham theorem in Diffeology using S_{\square} and the cubical differential forms.

Let $\Omega_{DR}^*(X)$ be the de Rham complex of a diffeological space (X, \mathcal{D}^X) in the sense of Iglesias-Zemmour.

$$\Omega_{DR}^p(X) := \left\{ \begin{array}{c} \text{Open} \xrightarrow{\mathcal{D}^X} \text{Sets} \\ \wedge^p \end{array} \right\}$$

$$\wedge^*(U) = \{ U \text{ smooth} \rightarrow \wedge^*(\bigoplus_{i=1}^{\dim U} \mathbb{R} dx_i) \}: \text{the usual de Rham complex on } U$$

Theorem 4.1 (Iwase - Izumida (2015))

For a CW complex X, one has isomorphisms

$$H^*(X; \mathbb{R}) \cong H^*(S_{\square}(X)) \cong H(\text{"a cubical de Rham complex" of } X) \cong H(\Omega_{DR}^*(X))$$
For a simplicial set K, $C^*(K; \mathbb{R})$ denotes the normalized cochain algebra.

We have two simplicial DGA $C^\Delta := C^*(\Delta[\bullet])$ and $\Omega^\Delta := \Omega^*_{DR}(A^\bullet)$.

Define cochain algebra $A(K) := \text{Sets}^{A^\bullet \text{op}}(K, A^\bullet)$ for a simplicial set K and a simplicial DGA A^\bullet.

Assertion 4.2 (Emoto - K. (Work in progress))

For a diffeology (X, D_X), one has a commutative diagram

\[
\begin{array}{ccc}
C^*(S^D(X)) & \xrightarrow{\varphi} & (C^\Delta \otimes \Omega^\Delta)(S^D(X)) \\
& \xrightarrow{\psi} & \Omega^\Delta(S^D(X)) \\
& \xleftarrow{\alpha} & \Omega_{DR}(X)
\end{array}
\]

in which φ and ψ are quasi-isomorphism of DGAs and α is a DGA map. Moreover, if (X, D) comes from a stratifolds, then α is a quasi-iso. and hence \int is an isomorphism of graded algebras on the cohomology. We get the “de Rham theorem” for stratifolds.
A little more perspective

- **Rational homotopy theory** uses \((A_{PL}^\bullet)\), the simplicial DG algebra of polynomial (rational) differential forms.

- **Real homotopy theory** in the sense of Brown and Szczarba uses \(\Omega^*_\text{de Rham}(\Delta^\bullet)\), the usual de Rham complex on the standard simplexes, which is regarded as the simplicial DG *topological* algebra.

- **Smooth homotopy theory** may use \(\Omega^\Delta := \Omega^*_{DR}(A^\bullet), \Omega^*_{DR}(\Delta^\bullet_{\text{sub}})\) or \(\Omega^*_{DR}(\Delta^\bullet_{\text{Kihara}})\), which is considered a simplicial DG *diffeological* algebra.