
A FUNCTION SPACE MODEL APPROACH TO THE RATIONAL
EVALUATION SUBGROUPS

KATSUHIKO KURIBAYASHI

Abstract. This is a summary of the joint work [20] with Y. Hirato and N.
Oda, in which we investigate the evaluation subgroups G∗(U, X; f) for a map

f : U → X from a connected nilpotent space U to a connected rational space
X. The key device for the study is an explicit Sullivan model for the connected
component containing f of the function space of maps from U to X, which is
derived from the general theory of such a model due to Brown and Szczarba

[5]. This note also contains a brief explanation of the background of our work.

1. Background

One may hope a full subcategory of the category of topological spaces is able to
be controlled by a category of appropriate algebraic objects. As algebraic model
theories for the study of spaces, in particular∗, we can mention rational homotopy
theory due to Quillen [33] and Sullivan [36] and p-adic homotopy theory due to Man-
dell [28]. Let C be a category with a family of weak equivalences and h(C) denote
the homotopy category obtained by giving formal inverses of weak equivalences.
The correspondences between ”spaces” and ”algebras” are roughly summarized as
follows:
Rational Homotopy Theory, see also [3]. The functor APL(·) of rational polyno-
mial differential forms on a space and the realization functor | · | give an equivalence

h

(
the category of connected nilpotent rational spaces

of finite Q-type

)

∼= AP L(·)²²
h(the category of differential graded algebras over Q).

|·|
OO

p-adic Homotopy Theory. The normalized singular cochain functor C∗(· ; Fp)
with coefficients in the closure Fp and the realization functor give an equivalence

h

(
the category of connected nilpotent p-complete spaces

of finite p-type

)

∼= C∗(· ;Fp)²²

h

(
a full subcategory of the category of algebras

over an E∞Fp -operad

)
.

|·|
OO
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∗For other algebraic model theories, we refer the reader to integral homotopy theory [29] and

tame homotopy theory [6] [19]. Adams-Hilton models [2] and TV-models [18] are regarded as
algebraic models for spaces.
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In principle, it seems possible to translate various topological invariants into com-
putable algebraic invariants. However, we often encounter a problem of constructing
an explicit model when executing that. We here carry out such translation for the
evaluation subgroups, that are topological invariants, within the framework of ra-
tional homotopy theory. In ongoing work [22], the rational visibility of a Lie group
in the space of self-homotopy equivalences of a homogeneous space is considered by
means of tools developed in [20] and [21].

We also expect that our ideas in [20] are applicable in other algebraic model
theory in order to understand topological invariants and notions algebraically. In
the near future, we shall proceed to the study of function spaces with their operadic
models constructed in [7].

2. Results

Let U and X be connected based spaces and f : U → X a based map. We
denote by F(U,X; f) the connected component in the function space of free maps
from U to X that contains f . Let ev : F(U,X; f) → X be the evaluation map
which sends a map g : U → X to g(u0), where u0 is the base point of U . The nth
evaluation subgroup for the triple (U,X; f), denoted Gn(U,X; f), is the subgroup
of the homotopy group πn(X) defined by

Gn(U,X; f) = ev∗(πn(F(U,X; f), f)).

In the special case where U = X and f = id the identity map on X, the nth
evaluation subgroup is referred to as the nth Gottlieb group of X and written
Gn(X). In what follows, we shall write G∗(U,X; f) for ⊕n≥0Gn(U,X; f).

The evaluation subgroups were essentially introduced by Gottlieb [12][14] and
were investigated extensively by Woo and Kim [37] [38] and by Woo and Lee [23]
[39] [40] [41]. The lack of functoriality in Gottlieb groups makes the study of the
subject more difficult. In such a situation, the G-sequence introduced in [40] is one
of relevant tools for studying the groups G∗(X) and G∗(U,X; f).

As for rational Gottlieb groups, Félix and Halperin have proved that, for any
simply-connected space X with finite rational Lusternik-Schnirelmann category m,
the graded Gottlieb group G∗(X) ⊗ Q is concentrated in odd degrees and has di-
mension at most m ([9, Theorem III]). We stress that the consideration of Gottlieb
groups appears in their investigation of rational category. Moreover, from the lec-
ture notes [31] due to Oprea, we can know relationship between Gottlieb groups
and transformation groups as well as fixed point theory. In [34], Smith has studied
the rational evaluation subgroups by relying on the approach to the study of func-
tion spaces due to Federer [8]. Interesting examples of vanishing and non-vanishing
evaluation subgroups are given in [34, §5]. Recently, Lupton and Smith [25][26]
have considered the exactness of the G-sequence by representing the evaluation
subgroups in terms of derivations in Sullivan models and in Quillen models. Espe-
cially, in [25, Example 4.1], the non-exactness of a certain G-sequence is captured
by calculation of derivations.

The objective of the paper [20] is to investigate the evaluation subgroup of the
form

G∗(U,XQ; f),

where U is a nilpotent space and XQ is the localization of a nilpotent space X. We
try to consider the rational evaluation subgroup without drawing on the derivation
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argument. In fact, the key device for the study is an explicit algebraic model for
the function space F(U,XQ; f), which we construct in [20] by invoking the general
theory of such a model due to Brown and Szczarba [5]; see [20, Section 3].

We here explain our main results briefly. Theorems 2.1 and 2.2 describe sufficient
conditions for rational evaluation subgroups to be proper. Theorem 2.6 presents a
tractable condition for a fibration to be Gottlieb trivial in the sense of Lupton and
Smith [27]. Theorem 2.7 gives a non-trivial upper bound for the dimension of the
localization of some subquotient of the first evaluation subgroup. By Theorem 2.9,
one can determine the first Gottlieb group of the total space of each S1-bundle over
the n-dimensional torus in non-rational case with knowledge of the classifying map
of the bundle.

Unless otherwise explicitly stated, it is assumed that a space is well-based and
has the homotopy type of a CW complex with rational homology of finite type. We
further suppose that a map is based. We shall say that a space is rational if the
space has the homotopy type of the spatial realization of a Sullivan algebra; see
[20, Section 2]. Observe that the homotopy group πn(X) of a rational space X is
a vector space over Q for n > 1 and that so is the fundamental group π1(X) if the
group is abelian. These facts follow from the Sullivan-de Rham equivalence; see for
example [3, Theorems 10.1 and 12.2].

In the rest of this section, we state the results more precisely.
Suppose that X is a connected rational space. Then the function space F(U,X; f)

is also a rational space; see [5]. The definition of the evaluation subgroup enables
us to obtain a commutative diagram

(2.1) πn(F(U,X; f))

ev∗ ²²²²

ev∗

''OOOOOOOOOO

Gn(U,X; f) Â Ä // πn(X)

in the category of groups for n ≥ 1. This is regarded as a diagram in the category
of vector spaces for n > 1. Let H be a group and let (Γ1/Γ2)H denote the quotient
group of H by the commutator subgroup. Put G] = HomZ(G, Q) for an abelian
group G. Then we have a commutative diagram

(
(Γ1/Γ2)πn(F(U,X; f))

)]

Gn(U,X; f)]
OO

OO

πn(X)]oooo

ev]
∗

hhRRRRRRRRRRR

in the category of vector spaces for n > 1 and for n = 1 if π1(X) is abelian. Recall
that, for any connected nilpotent space Y with a minimal model ∧Z, there exists
a natural isomorphism Zn ∼= πn(Y )] for n > 1 and for n = 1 if π1(Y ) is an abelian
group; see [3].

Let ∧V and ∧W be minimal models for X and F(U,X; f), respectively. We
denote by Q(ẽv) : V → W the linear part of the Sullivan representative ẽv : ∧V →

∧W for the evaluation map. Observe that the vector space
(
(Γ1/Γ2)πn(F(U,X; f))

)]

is a subspace of Wn; see [20, Section 8] for details. Suppose that π1(X) is an abelian
group. Then we have an isomorphism G∗(U,X; f)] ∼= V/KerQ(ẽv) of vector spaces.
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This fact implies, for example, that G∗(U,X; f) is a proper subgroup of π∗(X) if
and only if KerQ(ẽv) is nontrivial.

In [5], Brown and Szczarba have presented an explicit form of Lannes’ division
functor in the category of commutative differential graded algebras; see also [4].
By using the functor, they have constructed an algebraic model for a connected
component of a function space. Unfortunately, the model is very complicated and
not minimal in general. However the linear part δ0 of the differential of the model
for F(U,X; f), which is needed to construct the minimal model, is comparatively
tractable. Moreover an explicit model ev for the evaluation map ev : F(U,X; f) →
X is derived from the consideration in [21, Section 5].

In some cases, we can find a nonzero element in Im ev ∩ Im δ0 with knowledge
of the terms having the least wordlength in d(v) for an appropriate element v ∈ V .
It turns out then that KerQ(ẽv) 6= 0. The dual element in V ] ∼= π∗(X) to such an
element v is said to be detective; see [20, Section 4] for the precise definition. With
this terminology, one of our main theorems is stated as follows.

Theorem 2.1. [20] Let f : U → X be a map from a connected nilpotent space
U to a connected rational space X whose fundamental group is abelian. Suppose
that dim⊕q≥0H

q(U ; Q) < ∞ or dim⊕i≥2πi(X) < ∞ and that there exists a detec-
tive element x in π∗(X) with respect to the triple (U,X; f). Then the evaluation
subgroup Gk(U,X; f) is a proper subgroup of πk(X) for some 1 ≤ k ≤ deg x.

While the notion of the detective element is somewhat technical, it does work well
when exhibiting the properness of a given evaluation subgroup; see [20, Example
4.6].

We can also detect geometrically an element which is not in the evaluation sub-
group. Before describing the result, we recall briefly the higher order Whitehead
product set defined by Porter in [32]. Let ιm denote the generator of Hm(Sm) which
is the image of the identity map by the Hurewicz map. Let T be the fat wedge of s
spheres Sni , 1 ≤ i ≤ s; that is, the subspace of the product Sn1×· · ·×Sns consisting
of all s-tuples with at least one coordinate at the base point. Let µ be the generator
of HN (×s

i=1S
ni ; Z), corresponding to ιn1 ⊗ · · · ⊗ ιns ∈ H∗(Sn1)⊗ · · · ⊗H∗(Sns) via

the Künneth isomorphism, where N =
∑

ni. Since the CW pair (×s
i=1S

ni , T ) is
(N − 1)-connected, we have a sequence

HN (×s
i=1S

ni)
j∗−−−−→HN (×s

i=1S
ni , T ) h←−−−−∼=

πN (×s
i=1S

ni , T ) ∂−−−−→πN−1(T )

and an element w = ∂h−1j∗(µ), where h is the Hurewicz map and ∂ is the boundary
map. In what follows, we do not distinguish between a map and the homotopy class
which it represents. Choose elements xi ∈ πni(X) for 1 ≤ i ≤ s. These elements
define the map g : ∨s

i=1S
ni → X whose restriction to each Sni is the map xi. Then

the sth order Whitehead product set [x1, ..., xs] ⊂ πN−1(X) (possibly empty) is
defined by

[x1, ..., xs] = {f∗(w) | f : T → X an extension of g}.
We shall say that the set [x1, ..., xs] vanishes if it contains only zero.
As a consequence of a geometric property of higher-order Whitehead products

in rational spaces, studied in [1], we obtain the following test for non-Gottlieb
elements.

Theorem 2.2. [20] Let U be a connected space and X a simply-connected rational
space. Let f : U → X be a map for which the induced map f∗ : π∗(U) → π∗(X) is
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an epimorphism. Assume that all Whitehead products of order less than r vanish
in π∗(U). If there exist elements x1, ..., xr in π∗(X) whose rth order Whitehead
product [x1, ..., xr] contains a nonzero element, then xk /∈ G∗(U,X; f) for any k ≤ r.

Remark 2.3. The result [1, Corollary 6.5] asserts that, if all Whitehead products
of order < r vanish in π∗(X) for a simply-connected rational space X, then any
rth order Whitehead product sets in π∗(X) is non-empty and consists of a single
element. Therefore the Whitehead product [x1, ..., xr] in Theorem 2.2 contains only
one element.

Suppose that x1 is a Gottlieb element in π∗(X) for a connected space X which
is not necessarily rational. The ordinary Whitehead product [x1, x2] is zero for
any x2 ∈ π∗(X) by [14, Proposition 2.3]. Thus Theorem 2.2 is regarded as a
generalization of this fact in the context of rational homotopy theory.

It is worthwhile to deal with relationship between detective elements and higher
order Whitehead product sets. With the aid of results in [1], we shall show that
a nonzero element in a higher order Whitehead product set is detective; see [20,
Theorem 6.1].

As described below, the sufficient conditions in Theorems 2.1 and 2.2 give crite-
rions for a map not to be cyclic.

For maps f : U → X and g : V → X, we write g ⊥ f if the map g∨f : V ∨U → X
is extendable to V × U . A map f : U → X is called a cyclic map if idX ⊥ f . For
example, when a topological group G acts on a space X with base point, the orbit
map G → X at the base point is a cyclic map. As is discussed in the last paragraph
on page 730 of [14], we see that Gn(U,X; f) = {[g] ∈ πn(X) | g ⊥ f}. It is readily
seen that π∗(X) = G∗(U,X; f) if f is a cyclic map. Observe that if f is a cyclic
map, then so is eX ◦f , where eX : X → XQ is the localization map. Thus we have
the following corollary.

Corollary 2.4. [20] Let f : U → X be a map between a connected nilpotent spaces
and eX : X → XQ the localization map. If the triple (U,XQ; eX ◦f) satisfies the
conditions in Theorem 2.1 or 2.2, then f is not a cyclic map.

We fix some notations and terminology in order to describe further our results.
Let f : X → Y be a map between nilpotent spaces. Let ϕ : (∧V, d) → APL(Y )

be a minimal model for Y , where APL(Y ) denotes the differential graded algebra of
rational polynomial forms on Y . A quasi-isomorphism m : (∧V ⊗∧W, d̂) → APL(X)
is called a Sullivan model for f if d̂|∧V = d, m|∧V = APL(f)ϕ and there exists a
well-ordered homogeneous basis {xα}α∈I of W such that d̂(1⊗xα) ∈ ∧V ⊗∧(Wα).
Here ∧(Wα) denotes the subalgebra generated by the xβ with β < α. We further
assume, unless otherwise specified, that the model is minimal in the sense that
deg xβ < deg xα implies β < α ; see [16, 1.1 Definition] and [16, Theorems 6.1
and 6.2] for the existence and the uniqueness of a minimal Sullivan model for a
map f . The inclusion j : (∧V, d) // // (∧V ⊗ ∧W, d̂) is also referred to as a Sullivan

model for f . Observe that the DGA (∧V ⊗ ∧W, d̂) is a Sullivan algebra; see [10,
Proposition 15.5]. For a Sullivan algebra A = (∧V, d), let d0 denote the linear part
of the differential d and put

πn(A) = Hn(V, d0).
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We define the ψ-homotopy space of X, denoted π∗
ψ(X), to be the vector space π∗(A)

for which A is a Sullivan model for X; see [16, Chapter 8]. Observe that π∗
ψ gives

rise to a functor from the category of connected spaces with Sullivan models to
that of graded vector spaces over Q. Moreover there exists a natural isomorphism
π∗

ψ(X) ∼= π∗(X)] for ∗ > 1 and for ∗ ≥ 1 if π1(X) is abelian; see [3], [16]. For a
free algebra ∧V , let ∧≥lV denote the ideal generated by elements with word length
greater than or equal to l.

We describe an important result concerning a decomposition of an evaluation
subgroup. In [24], Woo and Lee show that, for any based spaces F and Y ,

G∗(F, F × Y ; i) ∼= G∗(F ) ⊕ π∗(Y ),

where i : F → F ×Y denotes the inclusion into the first factor. This has motivated
us to consider its generalization from the rational homotopy theory point of view.

We here introduce a class of maps.

Definition 2.5. A map p : X → Y is separable if there exists a Sullivan model
(∧V, d) → (∧V ⊗ ∧W, d̂) for p such that

d̂(w) ∈ ∧≥2V ⊗ ∧W + Q ⊗ ∧≥2W

for any w ∈ W . A fibration p : X → Y is said to be separable if the projection p is
separable.

We establish the following theorem.

Theorem 2.6. [20] Let F
i→ X

p→ Y be a separable fibration of connected rational
spaces with dim⊕q≥0H

q(F ; Q) < ∞ or dim⊕i≥2πi(X) < ∞. Suppose that F
is simply-connected and π1(Y ) acts on Hi(F ; Q) nilpotently for any i. Then the
sequence

0 → Gn(F )
i]→ Gn(F, X; i)

p]→ πn(Y ) → 0
is exact for n > 1.

Very recently, Lupton and Smith [27] have proved a similar result to Theorem
2.6. Let F

i→ X
p→ Y be a fibration of simply-connected CW complexes. In the

remarkable result [27, Theorem 5.3], a sufficient condition for the sequence

(2.2) 0 → G∗(F ) ⊗ Q
i]⊗1→ G∗(F, X; i) ⊗ Q

p]⊗1→ π∗(Y ) ⊗ Q → 0

to be exact is described in terms of the classifying map of the fibration in the sense
of Stasheff [35]. It is important to mention that Theorem 2.6 follows from [27,
Theorems 4.2 and 5.3] provided the given fibration is the localization of a fibration
F → X → Y of simply-connected CW complexes of finite type with fibre F finite.
The fibration which yields the short exact sequence (1.2) is said to be Gottlieb
trivial [27]. Theorem 2.6 asserts that the Gottlieb triviality of a fibration follows
from the separability.

We turn our attention to the first evaluation subgroup of π1(X) for a nilpotent
space X. When considering the subgroup, a detective element can be found with
the knowledge of the minimal model for X, in particular, of the quadratic part of
the differential if π1(X) is not abelian. This fact enables us to deduce Theorem 2.7
below.

Let G be a nilpotent group with the lower central series

G = Γ1G ⊃ Γ2G ⊃ · · · ⊃ ΓjG ⊃ · · · ,
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where, for j ≥ 2, ΓjG = [G, Γj−1G] stands for the subgroup of G generated by
the commutators {xyx−1y−1 | x ∈ G, y ∈ Γj−1G}. The nilpotency class of G,
denoted nil(G), is defined to be the largest integer c such that ΓcG 6= {1}. We
write (Γq/Γq+1)G for the subquotient ΓqG/Γq+1G.

Theorem 2.7. [20] Let f : U → X be a map between a connected nilpotent spaces.
Suppose that (i) π1

ψ(f) : π1
ψ(X) → π1

ψ(U) is a monomorphism and that (ii) U is a
finite CW complex or X is a rational space with dim⊕i≥2πi(X) < ∞.
(1) If (Γk/Γk+1)π1(X)] 6= 0, then for any i < k,

dim
(
ΓiG1(U,X; f)

/
Γi+1π1(X)∩ΓiG1(U,X; f)

)
⊗Q ≤ dim(Γi/Γi+1)π1(X)⊗Q−1.

(2) If ([π1(X), π1(X)]/Γ3π1(X))] 6= 0, then

dim
(
G1(U,X; f)

/
[π1(X), π1(X)] ∩ G1(U,X; f)

)
⊗ Q ≤ dimH1(X; Q) − 2.

We see that the subgroup ΓiG1(U,X; f)
/
Γi+1π1(X)∩ΓiG1(U,X; f) of the quo-

tient group (Γi/Γi+1)π1(X) is proper for any i ≥ 1 under the assumption in Theo-
rem 2.7.

Corollary 2.8. [20] If G1(U,X; f) is abelian and
(
[π1(X), π1(X)]/Γ3π(X)

)]

6= 0,
then

dim G1(U,X; f)⊗Q ≤ dim([π1(X), π1(X)]∩G1(U,X; f))⊗Q + dim H1(X; Q)− 2.

If g : S1 → X is any map such that [g] ∈ G1(U,X; f), then g ⊥ f . Hence,
the result [30, Proposition 3.4 (1)] applies to an extension µ : S1 × U → X of
g∨f : S1∨U → X. It follows that [g]·f∗(α) = g∗([idS1 ])·f∗(α) = f∗(α)·g∗([idS1 ]) =
f∗(α) · [g] in π1(X) for any α ∈ π1(U). Observe that G1(U,X; f) is contained in
the center of the fundamental group π1(X) if the induced map f∗ : π1(U) → π1(X)
is surjective. In particular the Gottlieb group G1(X) is abelian.

We further give a computational example (Theorem 2.9 below) whose proof
illustrates how the elaborate machinery in the paper [20] is relevant in computing
Gottlieb groups. Consider the S1-bundle S1 → Xf → Tn over the n-dimensional
torus Tn with the classifying map f which is represented by ρf =

∑
i<j cijtitj

in H2(Tn; Z) ∼= [Tn,K(Z, 2)]. Here {ti}1≤i≤n is a basis of H1(Tn; Z). Define an
(n × n)-matrix Af by Af =

(
c′ij

)
, where c′ij = cij for i < j, c′ij = −cji for i > j

and cii = 0. We regard Af as a matrix with entries in Q. Then the rank of Af is
denoted by rankAf . We establish the following theorem.

Theorem 2.9. [20] G1(Xf ) ∼= Z⊕(1+n−rankAf ).

Since the space Xf is aspherical, it follows from [12, Corollary I.13] that G1(Xf )
coincides with the center of π1(Xf ). While we have the central extension

0 → Z → π1(Xf ) → Z⊕n → 0

from the homotopy exact sequence of the fibration S1 → Xf → Tn, in general, it
is not easy to determine the center of π1(Xf ) by looking at the extension.

As for a more general T k-bundle over Tn, we have not yet determined exactly the
first Gottlieb group of the total space of the bundle. However the same argument
as in the proof of Theorem 2.9 does work well to get useful information on the
rank of the Gottlieb group. Let T k → Yg → Tn be a T k-bundle over Tn with the
classifying map g : Tn → BT k = K(Z, 2)×k. We write g = f1 × · · · × fk with maps
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fi : K(Z, 1)×n → K(Z, 2) and define the (n × n)-matrix Afi for 1 ≤ i ≤ k as in
the paragraph before Theorem 2.9. Let Ag be the (nk × n)-matrix consisting of
matrices Afi . Then we have

Proposition 2.10. k ≤ rank G1(Yg) ≤ k + n − rankAg.

We say that a s-torus T s acts almost freely on a space X if all its isotropy
subgroups are finite. Define the toral rank of X by

toral rank(X) := sup{s| T s acts almost freely on X}.

The following result due to Halperin gives an upper bound of the toral rank of
a space.

Theorem 2.11. [17] Let X be a connected finite CW complex with πi(X)⊗Q = 0
for i > m. Then

toral rank(X) ≤ dim(G1(X) ⊗ Q) −
m∑

i=2

(−1)i dim(πi(X) ⊗ Q).

Suppose that the matrix Ag mentioned above is of full rank, for example,

Afi =




0 1
−1 0

. . .
0 1
−1 0




for some i in the case n is even. Then we see that rank G1(Yg) = k. It is readily
seen that T k acts freely on Yg. Thus by combining Proposition 2.10 with the above
theorem, we have

Corollary 2.12. If the matrix Ag mentioned in Proposition 2.10 is of full rank,
then

toral rank(Yg) = k.

We conclude this manuscript with remarks on models for a function space. One
might expect Haefliger’s model [19] for the connected component of a function
space to work well in considering the evaluation subgroups or, more generally, the
homotopy type of F(U,X; f). However it seems that the differential of the model
is complicated in general because of the inductive argument in defining it. On
the other hand, the model due to Brown and Szczarba has the advantage that
its differential is expressed with an explicit formula; see [5]. This is the reason
why we draw on the latter in our study on evaluation subgroups. We also wish to
mention that the two models above coincide before minimization, if the function
space considered is connected; see [21, Theorem 1.1].

We are convinced that both our explicit model and derivations on Sullivan models
used in [25], [26] and [27] are useful tools for the study of rational evaluation
subgroups.

References

[1] Andrews, P. and Arkowitz, M.: Sullivan’s minimal models and higher order Whitehead prod-
ucts, Can. J. Math., XXX(1978), 961-982.



THE RATIONAL GOTTLIEB GROUPS 9

[2] Anick, D.: The Adams-Hilton model for a fibration over a sphere, J. Pure Appl. Algebra

75(1991), no. 1, 1-35.
[3] Bousfield, A. K. and Gugenheim, V. K. A. M.: On PL de Rham theory and rational homotopy

type, Memoirs of AMS 179(1976).
[4] Bousfield, A. K., Peterson, C. and Smith, L: The rational homology of function spaces, Arch.

Math. 52 (1989), 275-283
[5] Brown Jr, E. H. and Szczarba, R. H.: On the rational homotopy type of function spaces,

Trans. Amer. Math. Soc. 349(1997), 4931-4951.
[6] Dwyer, W. G.: Tame homotopy theory, Topology 18(1979), no. 4, 321-338.

[7] Chataur, D. and Kuribayashi, K.: An operadic model for a mapping space and its associated
spectral sequence, J. Pure and Appl. Algebra, 210(2007), 321-342.

[8] Federer, H.: A study of function spaces by spectral sequences, Trans. Amer. Math. Soc.
82(1956), 340-361.

[9] Félix, Y. and Halperin, S.:Rational L.-S. category and its applications, Trans. Amer. Math.
Soc. 273(1982), 1-37.

[10] Félix, Y., Halperin, S. and Thomas, J. -C.: Rational Homotopy Theory, Graduate Texts in
Mathematics 205, Springer-Verlag.

[11] Ghorbal, S.: Monomorphismes et épimorphismes homotopiques, Ph. D. Thesis, Louvain-La-
Neuve, 1996.

[12] Gottlieb, D. H.: A certain subgroup of the fundamental group, Amer. J. Math. 87(1965),

840-856.
[13] Gottlieb, D. H.: On fibre spaces and the evaluation map, Ann. of Math. (2)87(1968), 42-55.
[14] Gottlieb, D. H.: Evaluation subgroups of homotopy groups, Amer. J. Math. 91(1969), 729-

756.

[15] Haefliger, A.:Rational homotopy of space of sections of a nilpotent bundle, Trans. Amer.
Math. Soc. 273(1982), 609-620.

[16] Halperin, S.: Lectures on minimal models, Publ. Internes de L’U.E.R. de Math. Pures de
l’Université de Lille I, no. 111, 1977.

[17] Halperin, S.: Rational homotopy and torus actions, London Math. Soc. Lecture Notes, As-
pects of Topology 93(1985), 293-306.

[18] Halperin, S. and Lemaire, J.-M.: Notions of category in differential algebra. Algebraic
topology–rational homotopy (Louvain-la-Neuve, 1986), 138–154, Lecture Notes in Math.,

1318, Springer, Berlin, 1988.
[19] Hess, K.: Mild and tame homotopy theory. J. Pure Appl. Algebra 84 (1993), no. 3, 277–310.
[20] Hirato, Y., Kuribayashi, K. and Oda, N.: A function space model approach to the rational

evaluation subgroups, to appear in Math. Z.

[21] Kuribayashi, K.: A rational model for the evaluation map, Georgian Mathematical Journal,
13(2006), 127-141.

[22] Kuribayashi, K.: Rational visibility of a Lie group in the space of self-homotopy equivalences

of a homogeneous space, in preparation.
[23] Lee, K. Y. and Woo, M. H.: The G-sequence and the ω-homology of a CW-pair, Topology

Appl. 52(1993), 221-236.
[24] Lee, K. Y. and Woo, M. H.: Generalized evaluation subgroups of product spaces relative to

a factor, Proc. Amer. Math. Soc. 124(1996), 2255-2260.
[25] Lupton, G. and Smith, S. B.: Rationalized evaluation subgroups of a map and the rational

G-sequence, preprint arXiv:math.AT/0309432(2003), to appear in J. Pure and Appl. Algebra.
[26] Lupton, G and Smith, S. B.: Rationalized evaluation subgroups of a map II: Quillen models

and adjoint maps, preprint arXiv:math.AT/0401178(2004), to appear in J. Pure and Appl.
Algebra.

[27] Lupton, G and Smith, S.B.: The evaluation subgroup of a fibre inclusion, preprint (2006).
[28] Mandell, M.: E∞ algebras and p-adic homotopy theory, Topology 40(2001), no. 1, 43-94.

[29] Mandell, M.: Cochains and homotopy type, Publ. Math. Inst. Hautes Études Sci. 103(2006),

213-246.
[30] Oda, N.: Pairings and coparings in the category of topological spaces, Publ. Res. Inst. Math.

Sci. Kyoto Univ. 28(1992), 83-97.
[31] Oprea, J.:Gottlieb groups, group actions, fix points and rational Homotopy, Lecture Notes

Series, 29. Seoul National University, Research Institute of Mathematics, Global Analysis
Research Center, Seoul, 1995.



10 KATSUHIKO KURIBAYASHI

[32] Porter, G.: Higher order Whitehead product, Topology 3 (1965), 123-136.

[33] Quillen, D.: Rational homotopy theory, Ann. of Math. 90(1969), 205-295.
[34] Smith, S. B.: Rational evaluation subgroups, Math. Z. 221(1996), 387-400.
[35] Stasheff, J.: A classification theorem for fibre spaces, Topology 2(1963), 239-246.

[36] Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math.
No. 47 (1977), 269–331 (1978).

[37] Woo, M. H. and Kim, J. -R.: Certain subgroups of homotopy groups, J. Korean Math. Soc.

21(1984), 109-120.
[38] Woo, M. H. and Kim, J. -R.: Localizations and generalized Gottlieb subgroups, J. Korean

Math. Soc. 23(1986), 151-157.
[39] Woo, M. H. and Lee, K. Y.: Homology and generalized evaluation subgroups of homotopy

groups, J. Korean Math. Soc. 25(1988), 333-342.
[40] Woo, M. H. and Lee, K. Y.: On the relative evaluation subgroups of a CW-pair, J. Korean

Math. Soc. 25(1988), 149-160.

[41] Woo, M. H. and Lee, K. Y.: Exact G-sequences and relative G-pairs, J. Korean Math. Soc.
27(1990), 177-184.


