
THE DE RHAM THEOREM IN DIFFEOLOGY

KATSUHIKO KURIBAYASHI

1. Introduction

This note is prepared for an intensive course at University of Tokyo from 13 June
to 17 June, 2022. The aims of the lectures are to explain the de Rham theorem for
diffeological spaces and its related topics starting with a crash course in diffeology.
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2. An overview of diffeology

The papers [25, 9, 10] are references for the topics in this section. In the lecture,
we may denote the references [25] and [9] by [IZ] and [CSW], respectively.
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2.1. A crash course in diffeology. We begin by recalling the definition of a
diffeological space. Afterward, some examples of diffeological spaces are given.

Definition 2.1. ([42]) Let X be a set. A set D of functions U → X for each
open subset U in Rn and for each n ∈ N is a diffeology of X if the following three
conditions hold:

(1) (Covering) Every constant map U → X for each open subset U ⊂ Rn is in
D;

(2) (Compatibility) If U → X is in D, then for any smooth map V → U from
an open subset V of Rm, the composite V → U → X is also in D;

(3) (Locality) If U = ∪iUi is an open cover and U → X is a map such that
each restriction Ui → X is in D, then the map U → X is in D.

In what follows, we may call an open subset of Rn a domain. A diffeological space
(diff-space for short) (X,D) is comprised of a set X and a diffeology D of X. A map
from a domain to X and an element of a diffeology D are called a parametrization
and a plot of X, respectively. Let (X,DX) and (Y,DY ) be diffeological spaces. A
map X → Y is smooth if for any plot p ∈ DX , the composite f ◦ p is in DY . All
diffeological spaces and smooth maps form a category Diff.

We may write C∞(X,Y ) for a hom-set of the form HomDiff(X,Y ) in the category
Diff.

Example 2.2. (1) LetM be a manifold∗. Then, the underlying set and the standard
diffeology DM give rise to a diffeological space (M,DM ), where DM is defined to
be the set of all smooth maps U → M from domains to M in the usual sense.
We have a functor m : Mfd → Diff from the category of manifolds defined by
m(M) = (M,DM ).

(2) For a diffeological space (X,DX) and a subset A of X, we define D(A) by
D(A) := {p : U → A | U is a domain and i ◦ p ∈ DX}, where i : A → X is the
inclusion. Then, the set D(A) is a diffeology of A, which is called the sub-diffeology.
We call (A,D(A)) a diffeological subspace of X.

(3) Let {(Xi,Di)}i∈I be a family of diffeological spaces. Then, the product
Πi∈IXi has a diffeology D, called the product diffeology, defined to be the set of all
parameterizations p : U → Πi∈IXi such that πi ◦ p are plots of Xi for each i ∈ I,
where πi : Πi∈IXi → Xi denotes the canonical projection.

(4) More general, the initial diffeology DY for maps hi : Y → (Xi,Di) for i ∈ I is
defined by DY := {p : U → Y | hi ◦P ∈ Di for i ∈ I}. This is the largest diffeology
on Y making all hi smooth.

(5) Let (X,DX) and (Y,DY ) be diffeological spaces. We consider the set C∞(X,Y )
of all smooth maps from X to Y . The functional diffeology is defined to be the set
of parametrizations p : U → C∞(X,Y ) whose adjoints ad(p) : U × X → Y are
smooth; see Proposition 2.11.

Example 2.3. (1) Let F := {fi : Yi → X}i∈I be a set of maps from diffeological
spaces (Yi,DYi) (i ∈ I) to a set X. Then a diffeology DX of X is defined to be the
set of parametrizations p : U → X for each of which for each r ∈ U , (i) there exists
an open neighborhood Vr of r in U and a plot pi ∈ DYi with p|Vr

= fi ◦ pi, or (ii)
there exists exists an open neighborhood Vr of r in U such that p|Vr

is constant. We

∗Note that ”manifold” means Hausdorff, second countable finite dimensional one without

boundary unless otherwise specified.
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call DX the final diffeology of X with respect to F . This is the smallest diffeollogy
on X making all fi smooth. Observe that the condition (i) is only required in the
definition if X = ∪i∈IImfi.

A surjective map π : X → Y between diff-spaces is called a subduction if the
diffeology of Y coincides with the final diffeology defined by π.

(2) For a family of diffeological spaces {(Xi,Di)}i∈I , the coproduct
⨿
i∈I Xi has

a diffeology D, called the sum diffeology, defined by the final diffeology with respect
to the set of canonical inclusions.

(3) Let (X,D) be a diffeological space with an equivalence relation ∼. Then a
difffeology of X/ ∼, called the quotient diffeology, is defined by the final diffeology
with respect to the quotient map X → X/ ∼.

With the constructions in Examples 2.2 and 2.3, we have

Theorem 2.4. ([2, Theorem 5.25]) The category Diff is complete, cocommplete and
cartesian closed.

In fact, limits and colimits in Diff are defined by those in the category of sets
with the sub-diffeology and the quotient diffeology, respectively.

Proposition 2.5. For a diff-space (X,DX), colimP∈DXUP ∼= X as a diffeological
space.

Proof. We regard DX as a category whose morphisms are smooth maps f : UP →
UQ with Q ◦ f = P . Then the colimit is regarded as the quotient of the coproduct⨿
P∈DX UP by the equivalence relation generated by relations u ∼ f(u) for u ∈ UP

and f : UP → UQ. Observe that the colimit is endowed with the quotient diffeology.
The universaliry of the colimit gives rise to a smooth map Ψ : Z := colimP∈DXUP →
X with Ψ(u) = Q(u) for u ∈ UQ.

We define a map Φ : X → Z by Φ(x) = (∗, ix), where ix : {∗} → X is the 0-plot
to x in X. We show that the map Φ is smooth. Suppose that P : UP → X is a
plot. Then, since (u, P ) ∼ (∗, iP (u)) for u ∈ UP , the map Φ ◦P is thought as of the
composite UP →

⨿
P∈DX UP → Z of the canonical injection and the quotient. By

the definition of the quotient diffeology, we see that Φ ◦ P is smooth and hence so
is Φ. It is immediate that Ψ ◦ Φ = idX and Φ ◦Ψ = idZ . We have the result. □
2.2. More examples of diffeological spaces. A group object G in Diff is called
a diffeological group. By definition, the product G × G → G and the inverse
operation on G are smooth. A Lie group is a typical example of a diffeological
group†. Moreover, we have an crucial example. Let M be a diffeological space and
Diff(M) the group of diffeomorphisms on M .

Proposition 2.6. Suppose that M is a finite dimensional manifold. Then Diff(M)
is a diffeological group with the sub-diffeology of C∞(M,M) endowed with functional
diffeology.

First, we deal with a general case.

Example 2.7. Let (M,DM ) be a diffeological space. Consider the inclusion i :
Diff(M) → C∞(M,M) =: F and the map Inv : Diff(M) → Diff(M) defined by
Inv(g) = g−1. With the initial diffeology D := i∗(DF ) ∩ (Inv)∗(DF ), we have a
diffeological group Diff(M), where DF denotes the functional diffeology of F . In

†Observe that the functor m : Mfd → Diff preserves products.
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fact, in order to prove that D is a diffeology, it suffices to show that the composite
m : Diff(M)×Diff(M) → Diff(M) is smooth under the functional diffeology. To see
this, let α and β be plots of Diff(M). Consider the composite α × β : Uα × Uβ →
Diff(M)×Diff(M)

m→ Diff(M) and its adjoint ad(m◦ (α×β)) : Uα×Uβ×M →M .
For any plot γ in DM , with adjoints ad(α) : Uα×M →M and ad(β) : Uβ×M →M ,
we see that

ad(m ◦ (α× β)) ◦ (1× 1× γ) = ad(α) ◦ (1× ad(β)) ◦ (1× 1× γ)

as a map from Uα × Uβ × Uγ to M . The right-hand side is indeed smooth. Thus
the composite is smooth map.

Proof of Proposition 2.6. Thanks to the argument in Example 2.7, it suffices to
show that (Inv)∗(DF ) ⊃ i∗(DF ); that is, the map Inv is smooth with respect to the
functional diffeology. To this end, we prove that for a plot α : Uα → Diff(M), the
composite

ad(Inv ◦ α) = ad(Inv) ◦ (α× 1) : Uα ×M → Diff(M)×M →M

is smooth. We define φ : Uα ×M → Uα ×M by φ(x,m) := (x, ad(α)(x,m)). For
each x0, the map ad(α)(x0, –) :M →M is a diffeomorphism by assumption. Then
the inverse function theorem yields that φ is a diffeomorphism in the usual sense.
Moreover, we see that φ−1(x, n) = (x, ad(Inv)(α × 1)(x, n)). It turns out that Inv
is smooth. □

Assertion 2.8. ([2, 2.1 Example]) The functor m : Mfd → Diff defined in Example
2.2(1) is a fully faithful embedding.

Proof. A plot in the standard diffeology of a manifold factors through locally a chart
of the manifold. Then the assignment m is also well defined on the morphisms.
We show that the map m : HomMfd(M,N) → HomDiff(m(M),m(N)) defined by
m(f) = f is bijective. Let f : m(M) → m(N) be a smooth map in Diff. Then for
a map φ−1

i : φi(Ui) → m(M) defined by a chart, the composite f ◦φ−1
i is a plot of

m(N) and hence it is smooth. This implies that f ◦φ−1
i is regarded locally a chart

of N followed by a smooth map. We see that f is smooth in Mfd. □

The category Diff is related to Top with adjoint functors. Let X be a topolog-
ical space. Then the continuous diffeology is defined by the family of continuous
parametrizations U → X. This yields a functor C : Top → Diff.

For a diffeological space (M,DM ), we say that a subset A of M is D-open if for
every plot P ∈ DM , the inverse image P−1(A) is an open subset of the domain of P
equipped with the standard topology. The family of D-open subsets of M defines
a topology of M . Thus, by giving the topology to each diffeological space, we have
a functor D : Diff → Top which is the left adjoint to C; see [41] for more details.
The topology for a diffeological space M is called the D-topology of M‡.

Assertion 2.9. Let M be a manifold. Then U is a D-open subset of m(M) if and
only if U is an open subset of M . Thus, the composite D ◦m is nothing but the
forgetful functor U .

‡Let X be a diff-space. Then we see that A be a D-open subset of X/ ∼ with respect to the
quotient diffeology if and only if A is an open subset with respect to the quotient topology of

D(X) → X/ ∼; see [25, 2.12]
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Proof. Let V be a D-open subset of m(M) and {Ui, φi}i an atlas ofM . We observe
that the inverse of each chart is a plot of m(M). By definition, the preimage
(φ−1
i )−1(V ) = φi(V ∩ Ui) is open in φi(Ui). Since V = ∪i(φ−1

i )(φi(V ∩ Ui)), it
follows that V is an open subset of M .

Suppose that V is an open subset of M . Each plot P : UP → M of m(M) is
smooth and then continuous. We see that the preimage P−1(V ) is open in UP . □

Lemma 2.10. ([10, Lemma 4.1]) Let X and Y be two diffeological spaces. Suppose
that D(X) is locally compact Hausdorff. Then the natural bijection D(X × Y ) →
D(X)×D(Y ) is a homeomorphism.

Proof. For an open subsets U and V of Euclidian spaces, we see that (*): D(U ×
V ) = D(U) × D(V ) because the D-topology of such an open subset is the usual
topology; see Assertion 2.9 above. The functors D : Diff → Top, Z× – : Diff → Diff
are the left adjoints. Moreover, the functor W × – : Top → Top is the left adjoint
if W is locally compact Hausdorff. Then these functors preserve the colomit. Thus
we have

D(X × Y ) = D(X × colimQ∈DY UQ) = colimQ∈DY colimP∈DXD(UP × UQ)

= colimQ∈DY D(X)×D(UQ) = D(X)×D(Y ).

Here the third and fourth equalities follow from (*) and the fact that D(UQ) and
D(X) are locally compact Hausdorff. □

Comparisons of the D-topology on function spaces and other topology are con-
sidered in [9, Section 4 and Appendix]. Notably, we have

Proposition 2.11. ([9, Proposition 4.2]) The D-topology on the function space of
diff-spaces contains the compact-open topology, that is, O(D(C∞(X,Y ))) contains
OCO(C

∞(X,Y )) the relative topology of C∞(X,Y ) to Map(D(X), D(Y )) endowed
with the compact-open topology.

Proof. LetB(K,W ) := {f ∈ C∞(X,Y ) | f(K) ⊂W} be a subbasis of the compact-
open topology, where K is a compact subset in D(X) and W is an open subset of
D(Y ). Let ϕ : U → C∞(X,Y ) be a plot. The the adjoint ad(ϕ) : U ×X → Y is
smooth and then ad(ϕ) : D(U × X) → D(Y ) is continuous. For any u ∈ U , we
see that {u} ×K ⊂ ad(ϕ)−1(W ) is an open subset of D(U ×X) ∼= D(U)×D(X).
The diffeomorphism follows from Lemma 2.10. The compactness of K implies that
there exists an open neighborhood V of u such that V ⊂ ϕ−1(A(K,W )). □

2.3. The category of diffeological spaces and its related categories. Refer-
ences for the material in this section are the papers [10, 29, 30, 41].

The following diagram assembles categories and functors which we address in
this lecture.

(2.1) Sets∆
op

| |D
��

| |

))

Mfd
fully faithful

j
//

m:fully faithful

''

U :forgetful

44Stfd
k

// Diff
D //

SD ⊢

OO

Top.
C

⊥oo

S
⊢

ii

Observe that the composite k ◦ j coincides with the embedding m. We refer the
reader to [10, 29, 30, 41] for the functors C and D and their fundamental properties.
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In particular, the adjointness for C and D follows from [41, Proposition 3.1]. It is
immediate that D = D ◦ C ◦D and C ◦D ◦ C = C; see Remark B.2.

The functors SD and | |D are introduced by Christensen and Wu in [10]§; see
Section 3.2. The adjointness of the pair is verified by the same proof as that for the
singular simplex functor S and the realization functor | | between the categories

Sets∆
op

and Top. In fact, we have

HomDiff(|K|D, Y ) ∼= lim∆[n]→KHomDiff(An, Y )

∼= lim∆[n]→KS
D
n (Y ) (by the definition of SDn (Y ))

∼= lim∆[n]→KHomSets∆
op (∆[n], SD(Y )) (by the Yoneda lemma)

∼= HomSets∆
op (K,SD(Y )).

We observe that |K|D = colim∆[n]→KAn by definition, where ∆[n]• denotes the
standard simplex. The book [15] of Goerss and Jardine is a good reference for
simplicial arguments in this lecture.

We conclude this section with comments on concrete sheaves. Let Euc be the
category of open subsets of the Euclidian space RN for each N ≥ 0. Morphisms in
Euc are usual smooth maps.

Definition 2.12. A presheaf X̂ on Euc values in sets is concrete if the map

α : X̂(U) → HomSets(HomEuc(R0, U), X̂(R0))

defined by α(x)(P ) := P ∗(x) (induced by the structure maps) is injective. A
concrete sheaf is a sheaf and a concrete presheaf.

Given a non-empty diff-space (X,DX), we can define a presheaf X̂ by X̂(U) :=
DX(U) = C∞(U,X). The axioms (2) and (3) of diff-spaces indeed allow us to

deduce that X̂ is a concrete sheaf. The axiom (1) implies that each X̂(U) is non-
empty.

Let X̂ be a concrete sheaf. Then, we define a set DX of parametrization of

X := X̂(R0) by DX(U) = α(X̂(U)). We then have a diff-space (X,DX). In fact, it
is immediate that the axioms of sheaves give rise to the axioms (2) and (3). Suppose

that X̂(R0) is non-empty. In order to show that every constant map on U ∈ Euc is
in DX(U), we consider a sequence

X̂(R0)
u∗

// X̂(U)
α // HomSets(HomEuc(R0, U), X̂(R0)) ∼= HomSets(U, X̂(R0)),

where u : U → R0 is the trivial map. Then the naturality of the presheaf with
respect to maps in Euc yields that for y ∈ U ,

α(u∗(x))(y) = y∗(u∗(x)) = (u ◦ y)∗(x) = (idR0)∗(x) = x.

The set DX(U) contains the constant map at y. Moreover, we have

Proposition 2.13. ([2, Propositions 4.13 and 4.15]) The category Diff is equivalent
to the category of concrete sheaves.

§The results [10, Propositions 4.10 and 4.11] show that the right-hand side triangle in (2.1)

is commutative up to weak equivalence when regarding Sets∆
op

and Top as the target and the

source.
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3. The de Rham theorem in diffeology

The section is a main part of the lectures. Our main references are the papers
[26, 33].

The topics in this subsection are the Souriau–de Rham comeplex Ω∗, the tauto-

logical map, Iglesias-Zemmour’s integration map
∫ IZ

, the singular de Rham complex
A∗
DR, the factor map (natural transformation) α : Ω∗ → A∗

DR and their fundamen-
tal properties.

3.1. The Souriau–de Rham complex. We here recall the de Rham complex
Ω∗(X) of a diffeological space (X,DX) in the sense of Souriau [42]. For an open
set U of Rn, let DX(U) be the set of plots with U as the domain and Λ∗(U) =
{h : U −→ ∧∗(⊕ni=1Rdxi) | h is smooth} the usual de Rham complex of U . We can
regard DX( ) and Λ∗( ) as functors from Eucop to Sets the category of sets. A p-
form is a natural transformation from DX( ) to Λ∗( ). Then the de Rham complex
Ω∗(X) is the cochain algebra consisting of p-forms for p ≥ 0; that is, Ω∗(X) is the
direct sum of

Ωp(X) :=

 Eucop
DX

))

Λp

55�� ω Sets

∣∣∣∣∣∣ ω is a natural transformation


with the cochain algebra structure induced by that of Λ∗(U) pointwisely. The de
Rham complex defined above is certainly a generalization of the usual de Rham
complex of a manifold.

Remark 3.1. Let M be a manifold and Λ∗(M) the usual de Rham complex of M .
We recall the tautological map θ : Λ∗(M) → Ω∗(M) defined by

θ(ω) = {p∗ω}p∈DM .

Then it follows that θ is an isomorphism of cochain algebras; see [20, Section 2].

In what follows, we may write ω for the assignment ωU : DX(U) → ∧p(U) for a
differential form ω ∈ Ωp(X). For a smooth map f : X → Y in Diff, we define the
pullback f∗(ω) ∈ Ωp(X) of a differential form ω ∈ Ωp(Y ) by f∗(ω)(P ) := ω(f ◦ P )
for any plot P of X.

To get used to dealing with differential forms, we consider very carefully 0-forms
on a diff-space.

Proposition 3.2. ([25, 6.31]) Let X be a diffeological space. Then, as vector spaces
Ω0(X) ∼= C∞(X,R) and H0

de Rham(X) ∼= Maps(π0(X),R), where Maps(π0(X),R)
denotes the subspace of C∞(X,R) consisting of constant maps on each smooth path-
connected component.

Proof. We define a linear map ξ : Ω0(X) → C∞(X,R) by ξ(ω)(x) := ω([0 7→ x])(0),
where [0 7→ x] denotes the 0-plot of X valued at x. The map ξ is well defined. In
fact, we have to verify that for a plot P : U → X, the composite ξ(ω) ◦ P : U → R
is smooth. For any r ∈ U , we have a commutative diagram

D(U)

D(ρ)
��

ωU // Λ0(U) =

Λ0(ρ)=:ρ∗

��

C∞(U,R)

D(V )
ωV

// Λ0(V ) =C∞(V,R),
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where ρ : {0} = V → U is defined by ρ(0) = r. This follows from the definition of
the differential form. Thus, we see that

(ξ(ω) ◦ P )(r) = (ω([0 7→ P (r)])(0)

= (ω(P ◦ [0 7→ r]))(0)

= ρ∗(ω(P ))(0) (by the commutativity of the diagram above)

= ω(P )(r).

This implies that ξ(ω) ◦ P is smooth. The inverse map η : C∞(X,R) → Ω0(X)
is defined by η(f)(P ) = f ◦ P for a plot P of X. In fact, it follows from the
computation above that

(η(ξ(ω)))(P ) = ξ(ω) ◦ P = ω(P ).

Moreover, we have ξ(η(f))(x) = η(f)([0 7→ x])(0) = f(x).
As for the second assertion, the definition of the differential d : Ωp(X) →

Ωp+1(X) enables us to deduce that (*) : d(η(f))(P ) = d(η(f)(P )) = d(f ◦ P ) for
a map f ∈ C∞(X,R) and each plot P : U → X. Then, we see that d(η(f)) = 0 if
f ∈ Maps(π0(X),R). This implies that the restriction η| : Maps(π0(X),R) → Ker d
is a well-defined injective map. Suppose that d(η(f)) = 0. Let γ : R → X be a
smooth path connecting points x and x′. Then the fact (*) yields that d(f ◦ γ) = 0
and then f is in Maps(π0(X),R). We see that the restriction η| is surjective. □

The following is one of important properties of the Souriau–de Rham complex.

Proposition 3.3. ([25, 6.39]) Suppose that π : X → Y is a subduction; see Example
2.3 (1). Then Ω∗(π) : Ω∗(Y ) → Ω∗(X) is injective.

Proof. Suppose that π∗(ω) = 0 for ω ∈ Ωp(Y ). We show that ω(P ) = 0 for any
plot P : UP → Y of Y . Since π is a subduction, it follows that P lifts locally to X;
that is, for any r ∈ UP , there exist an open neighborhood V of r in UP and a plot
Q : V → X such that π ◦Q = P |V . By the definition of a differential form, namely
a natural transformation, we have a commutative diagram

D(V )
ωV // Λp(V )

D(UP )

i∗
OO

ωUP

// Λp(UP )

i∗
OO

for the inclusion i : V → UP . Then we have ω(P |V ) = ω(P )|V . Moreover, we see
that ω(P |V ) = ω(π ◦Q) = π∗(ω)(Q) = 0. This yields the result. □

Assertion 3.4. ([25, Excercise 105]) Let TΓ be the irrational torus Rn/Γ, where Γ
is a totally disconnected† dense subgroup of Rn. Let π : Rn → TΓ be the canonical
projection. Then the map π∗ : Ω∗(TΓ) → Ω∗(Rn) induced by π gives rise to an

isomorphism π∗ : Ω∗(TΓ)
∼=→ (∧∗

extRn, d ≡ 0) of CDGA’s, where ∧∗
extV denotes the

exterior algebra generated by a vector space V .

Proof. We show that a := π∗(α) is a constant form for each α ∈ Ω∗(TΓ). Here we
identify the element a := π∗(α) with the element θ−1(a) = a(idRn) in the usual de
Rham complex Λp(Rn) via the tautological map θ in Remark 3.1.

†Each connected component is a singleton.
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For γ ∈ Γ, let γ∗ : Rn → Rn be the map defined by γ∗(x) = x + γ. The
commutative diagram

D(Rn) a // Λp(Rn)

D(Rn)
(γ∗)

∗
OO

a
// Λp(Rn)

(γ∗)
∗

OO

enables us to deduce that (γ∗)
∗(a(idRn)) = (π∗)(α((γ∗))) = α(π◦γ∗) = α(π◦idRn) =

a(idRn). This implies that a(idRn) is invariant under the translation γ ∈ Γ.
We write

a(idRn)(x) =
∑

i1,...,ik

ai1...ik(x)ei1 ∧ · · · ∧ eik ,

where {eij} denotes the canonical basis. Since a(idRn) is Γ-invariant and γ∗(eij ) =
eij , it follows that ai1...ik(x + γ) = ai1...ik(x) for γ ∈ Γ and each i1, ..., ik. By
assumption, the subgroup Γ is dense in Rn. Then we see that each ai1...ik is
constant. This yields that the image of π∗ is contained in (∧∗Rn, d ≡ 0). Moreover,
Proposition 3.3 yields that π∗ : Ω∗(TΓ) → (∧∗Rn, d ≡ 0) is injective. We observe
that the target is regarded as a CDG subalgebra of Ω∗(Rn).

We prove that the map π∗ is an epimorphism by using the following lemma.

Lemma 3.5. ([25, 6.38] Pushing forms onto quotients) Let π : X → X ′ be a
subduction. Then α = π∗(β) for some β ∈ Ω∗(X ′) if and only if α(P ) = α(Q) for
any plots P and Q of X with dom(P ) = dom(Q) and π ◦ P = π ◦Q.

Thus we show that a(P ) = a(P ′) for a p-form a ∈ ∧pext(Rn) and plots P, P ′ :
U → Rn with π ◦ P = π ◦ P ′. Then we see that P (r) − P ′(r) ∈ Γ for any
r ∈ U . Since the subgroup Γ is totally disconnected, it follows that P − P ′ is a
locally constant smooth map on U . Then there exists an element γj in Γ for each
connected component Uj of U such that (*) : P (r) = P ′(r) + γj for any r ∈ Uj .
This yields that

a(P ) = P ∗(a(idRn)) = (P ′)∗(a(idRn)) = a(P ′).

The second equality follows from (*) above. In fact, we see that P ∗(dxi) =
(P ′)∗(dxi) for any differential 1-form dxi on Rn. We observe that a is a constant
p-form. Lemma 3.5 yields that π∗ is an epimorphism. □

Remark 3.6. The de Rham theorem does not hold for the Souriau–de Rham complex
in general. To see this, we first recall the irrational torus. Let π : R2 → S1×S1 = T2

be the canonical projection and ∆θ := {(x, θx) | x ∈ R} ∼= R be the subgroup of R2,
where θ ∈ R\Q. Then, the irrational torus Tθ is defined by the diff-space T2/Rθ
with the quotient diffeology, where Rθ := π(∆θ). We observe that the quotient
map π induces a diffeomorphims ∆θ

∼= Rθ; see [25, 1.49]. Moreover, we have a
diffeomorphism η : Tθ → R/(Z + θZ) defined by η(x, y) = y − θx. The inverse η′

to η is indeed defined by η′(x) = (0, x). Observe that R/(Z+ θZ) is also endowed
with the quotient diffeology.

We consider a diffeological bundle (see Section 4 for the definition) of the form
R → T2 → Tθ. Proposition 4.5 below ([10, Proposition 4.28]) allows us to obtain
a Kan fibration SD(R) → SD(T2) → SD(Tθ). By making use of the Leray–Serre
spectral sequence for the Kan fibration ([28, Theorem 29.1] and [15, IV 5.1.]), we
see that H∗(SD(Tθ);R) ∼= H∗(SD(T2);R) as an algebra. Moreover, it follows from
our main theorem (Theorem 3.11 below) that H∗(SD(T2);R) ∼= H∗(T2) ∼= ∧(t1, t2)
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as algebras. On the one hand, as mentioned above, there exists a diffeomorphism
Tθ ∼= R/(Z+θZ). We observe that Z+θZ is a totally disconnected dense subgroup
of R. Then Assertion 3.4 allows us to deduce that H∗(Ω∗(Tθ)) ∼= ∧∗

ext(R) as an
algebra.

In order to prove the homotopy invariance of the de Rham cohomology, we recall
part of the Cartan-de Rham calculus developed in the book [25]‡.

Let M be a diffeological space and h : R → Diff(M) a smooth map with h(0) =
idM . Here Diff(M) denotes the diffeomorphism group endowed with the functional
diffeology. We define a linear map Lh : Ωp(M) → Ωp(M), which is called the Lie
derivation, by

(Lh(α)(P )(s))(v1, ..., vp) :=
d

dt
α(h(t) ◦ P )(s)(v1, ..., vp)|t=0

for a p-form α ∈ Ωp(M), an n-plot P ofM , s ∈ domP and vectors vl in Rn; see [25,
6.54] for the differentiability of the function. Moreover, we define an integration
operator Φ : Ωp(M) → Ωp(Paths(M)) by

(3.1) Φ(α)(P )(s)(v1, ..., vp) :=

∫ 1

0

α(evt ◦ P )(s)(v1, ..., vp)dt

for a plot P : U → Paths(M), where Paths(M) denotes the diff-space of smooth
paths on M with the functional diffeology and evt : Paths(M) → M is the eval-
uation map at t. We observe that the integration Φ is a cochain map; see [25,
6.79].

Let τ : R → Diff(Paths(M)) be a map defined by τ(u)(γ) = γ ◦ Tu, where
Tu(t) = t + u. Then, the map τ is a well-defined smooth map; see [25, 6.81].
Furthermore, we have

Proposition 3.7. The diagram

Ωp(Paths(M))
Lτ // Ωp(Paths(M))

Ωp(M)

Φ

OO

(ev1)
∗−(ev0)

∗

55

is commutative; that is, Lτ (Φ(α)) = (ev1)
∗α− (ev0)

∗α for any p-form α.

Proof. For a plot P : U → Paths(M) and s ∈ U , omitting the vectors v1, ..., vp, we
have

(Lτ (Φ(α))(P )(s)) =
d

du
Φ(α)(τ(u) ◦ P )(s)|u=0 =

d

du

(
u 7→ Φ(α)(τ(u) ◦ P )(s)

)
|u=0

=
d

du

(
u 7→

∫ 1

0

α(evt ◦ τ(u) ◦ P )(s)dt
)
|u=0

=
d

du

(
u 7→

∫ u+1

u

α(evt′ ◦ P )(s)dt′
)
|u=0 (using t′ = t+ u)

= α(ev1 ◦ P )(s)− α(ev0 ◦ P )(s)
= ((ev1)

∗α(P ))(s)− ((ev0)
∗α(P ))(s).

‡Izumida gives a very thoughtful exposition on the homotopy invariance in his Master’s thesis;

see [23, Sections 2, 3 and 4]
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Observe that we apply the naturality of the differential form α to show the last
equality. □

Here, for a smooth map F : (−ε, ε) → Diff(M), we introduce the contraction
iF : Ωp(M) → Ωp−1(M) defined by

iF (α)(P )(s)(v1, ..., vp−1) := α
(
ad(F ) ◦ (1× P )

)
(0, s)(

(
1
0

)
,

(
0
v1

)
, ...

(
0

vp−1

)
)

By using a variation of the integral
∫
σ
α of a differential p-form α on a cubic

simplex σ ∈ C∞(Rp, X) ([25, 6.70–6.71]), we obtain Cartan’s magic formula for
the Lie derivative and the contraction in diffeology. The integration

∫
σ
α due to

Iglesias-Zemmour is recalled in Section 3.3.

Proposition 3.8. ([25, 6.72])(the Cartan–Lie formula) Let F : R → Diff(M) be a
smooth map. One has

LF = [d, iF ](:= d ◦ iF + iF ◦ d).

Thus we have a lemma which enables us to obtain the homotopy invariance of
the de Rham cohomology.

Lemma 3.9. Let τ : R → Diff(Paths(M)) be the smooth map defined in the para-
graph before Proposition 3.7. Then, the map K := iτ ◦ Φ defined by the contrac-
tion and the integration operator Φ in (3.1) gives a homotopy between chain maps
ev∗1 , ev

∗
0 : Ω∗(M) → Ω∗(Paths(M)); that is, K ◦ d+ d ◦K = ev∗1 − ev∗0 .

Proof. By virtue of Proposition 3.8, we see that

Lτ (Φ(α)) = iτ (dΦ(α)) + d(iτΦ(α)) = iτ (Φ(dα)) + d(iτΦ(α)) = K(dα) + dK(α)

for any α ∈ Ωp(M). Then, Proposition 3.7 allows us to obtain the result. □

Theorem 3.10. Let f0, f1 : X → Y be smooth homotopic smooth maps. Then the
cochain maps f∗0 , f

∗
1 : Ω∗(Y ) → Ω∗(X) are homotopic.

Proof. Let H : X ×R → Y be a smooth homotopy between f0 and f1. The adjoint
φ : X → Paths(Y ) is smooth with evi ◦ φ = fi for i = 0 and 1. Then, it follows
from Lemma 3.9 that f∗1 − f∗0 = φ∗ ◦ (ev1)∗ − φ∗ ◦ (ev1)∗ = φ∗(K ◦ d + d ◦K) =
(φ∗K) ◦ d+ d ◦ (φ∗K). □

3.2. The singular de Rham complex. We begin by recalling certain simplicial
cochain algebras which formulate the de Rham theorem in diffeology.

Let An := {(x0, ..., xn) ∈ Rn+1 |
∑n
i=0 xi = 1} be the affine space equipped

with the sub-diffeology of Rn+1. Let ∆n
sub denote the diffeological space, whose

underlying set is the standard n-simplex ∆n, equipped with the sub-diffeology
of the affine space An. Let (A∗

DR)• be the simplicial cochain algebra defined by
(A∗

DR)n := Ω∗(An) for each n ≥ 0.
Let ∆ be the category which has posets [n] := {0, 1, ..., n} for n ≥ 0 as objects

and non-decreasing maps [n] → [m] for n,m ≥ 0 as morphisms. By definition, a
simplicial set is a contravariant functor from ∆ to Sets the category of sets. For a
diffeological space (X,DX), let SD• (X) be the simplicial set defined by

SD• (X) := {{σ : An → X | σ is a C∞-map}}n≥0.
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We mention that SD• (-) gives the smooth singular functor defined in [10]. Moreover,
let SD• (X)sub denote the simplicial set defined by

SD• (X)sub := {{σ : ∆n
sub → X | σ is a C∞-map}}n≥0.

We observe that the inclusion j : ∆n
sub → An induces a morphism j∗ : SD• (X) →

SD• (X)sub; see [19] for the study of the simplicial set SD• (X)sub in diffeology.
Let K be a simplicial set. We denote by C∗(K) the cochain complex of maps

from Kp to R in degree p and vanishing on degenerate simplices. The simplicial
structure gives rise to the cochain algebra structure on C∗(K); see, for example, [12,
10 (d)] for more detail. In particular, the multiplication on C∗(K) is the cup product
defined by (f ∪ g)(σ) = (−1)pqf(dp+1 · · · dp+qσ) · g(d0 · · · d0σ) for f ∈ Cp(K) and
g ∈ Cq(K), where σ ∈ Kp+q and di denotes the ith face map of K. We also recall
the simplicial cochain algebra (C∗

PL)• := C∗(∆[•]), where ∆[n] = hom∆(–, [n]) is
the standard simplicial set.

For a simplicial cochain algebra A•, we denote by A(K) the cochain algebra

Sets∆
op

(K,A•) :=

 ∆op

K
))

A•

55�� ω Sets

∣∣∣∣∣∣ ω is a natural transformation


whose cochain algebra structure is induced by that of A•. Observe that, for a
simplicial set K, the map ν : CpPL(K) → Cp(K) defined by ν(γ)(σ) = γ(σ)(id[p])

for σ ∈ Kp gives rise to a natural isomorphism C∗
PL(K)

∼=→ C∗(K) of cochain
algebras; see [12, Lemma 10.11]. Moreover, we have a cochain algebra of the form
A∗
DR(S

D
• (X)) for a diffeological space X. This is regarded as a diffeological variant

of Sullivan’s polynomial simplicial form for a topological space; see [43].
We introduce a map α : Ω∗(X) → A∗

DR(S
D
• (X)) of cochain algebras defined by

α(ω)(σ) = σ∗(ω).

The maps α is called the factor map for X.

3.3. The de Rham theorem in Diff. As seen in Remark 3.6, unfortunately, the
de Rham theorem concerning the Souriau–de Rham cohomology and the singular
(cubic) cohomology does not hold for a diffeological space in general. By changing
the de Rham complex to the singular one, we have a good situation. The following
is de Rham’s theorem in diffeology.

Theorem 3.11. ([33, Theorem 2.4], cf. [22, Theorem 9.7], [17, Théorèmes 2.2.11,
2.2.14, 2.2.18]) For a diffeological space (X,DX), one has a homotopy commutative
diagram

C∗(SD• (X))

=
**

≃
φ

// (C∗
PL ⊗A∗

DR)(S
D
• (X))

mult ◦(1⊗
∫
)

��

A∗
DR(S

D
• (X))≃

ψ
oo

an “integration”
∫

tt

Ω∗(X)
αoo

∫ IZ
ww

C∗(SD• (X)) C∗
cube(X)≃

loo

in which φ and ψ are quasi-isomorphisms of cochain algebras and the integration
map

∫
is a morphism of cochain complexes. Here mult denotes the multiplication on

the cochain algebra C∗(SD• (X)). Moreover, the factor map α is a quasi-isomorphism
if (X,DX) stems from a parametrized stratifold via the functor k in the diagram 2.1
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or is a finite dimensional smooth CW-complex in the sense of Iwase and Izumida
[22].

Remark 3.12. As seen in the proof of Theorem 3.11 below, we use the cochain
complex C∗(SD• (X)sub) for showing the existence of the quasi-isomorphism l; see
Lemmas 3.21, 3.22 and the subsequent discussion I).

The quasi-isomorphisms in the first sequence of the diagram above are in the
category of DGA’s. Thus, we have the following corollary, which is not induced
immediately by a Mayer–Vietoris exact sequence argument.

Corollary 3.13. For every diffeological space (X,DX), the integration map∫
: A∗

DR(S
D
• (X))) → C∗(SD• (X))

in Theorem 3.11 induces an isomorphism of algebras on the cohomology.

We need to explain some parts of the theorem above in more detail. As for the
cubic cohomology, it is defined as follows. For a diff-space X, let Cp(X) be an

Abelian group defined by Cp(X) := {
∑finite
σ∈C∞(Rp,X) nσσ | nσ ∈ Z}. A generator

σ ∈ C∞(Rp, X) is called a p-cube. Define ∂ : Cp(X) → Cp−1(X) by

∂(σ) =

p+1∑
i=1

(−1)i(εi0(σ)− εi1(σ)),

where εis(σ)(t1, ..., tp) = σ(t1, ..., ti−1, s, ti, ..., tp). A direct calculation shows that
∂2 ≡ 0. We call p-cube σ is degenerate if there exist a projection pr : Rp → Rq

with q < p and a q-cube τ such that σ = τ ◦ pr. Let Cpcube(X) be the vector space
consisting of homomorphisms Cp(X) → R which vanishes on degenerate p-cubes.
Thus, we have a cochain complex of the form (C∗

cube(X), δ := the dual to ∂). The

cochain map
∫ IZ

: Ω∗(X) → C∗
cube(X) in Theorem 3.11 is defined by∫ IZ

σ

ω =

∫
Ip
ω(σ).

We observe that, by definition, ω(σ) is a p-form on Rp. This integration is intro-
duced by Iglesias-Zemmour in [26].

3.4. The extendability of A∗
DR. ([12, 33]) The fact that each morphism in the

left-hand side triangles is a quasi-isomorphism follows from the extendability of the
simplicial CDGAs that we use.

Definition 3.14. A simplicial DGA A• is extendable if for any n, every subset set
I ⊂ {0, 1, ..., n} and any elements Φi ∈ An−1 for i ∈ I which satisfy the condition
that ∂iΦj = ∂j−1Φi for i < j, there exists an element Φ ∈ An such that Φi = ∂iΦ
for i ∈ I.

Proposition 3.15. ([12, Proposition 10.4]) If a simplicial DGA A• is extendable,
then for an inclusion i : L→ K of simplicial sets induces a surjective map.

Proof. For any Ψ ∈ A(L), we inductively construct Φ ∈ A(K) that restricts Ψ.
Suppose that we have elements Φσ for σ ∈ Kk and k < n such that Φσ = Ψσ if
σ ∈ Lk, (I) Φ∂iσ = ∂iΦσ and (II) Φsjτ = sjΦτ for τ ∈ Km and m < n − 1. Then,
we define Φσ for σ ∈ Kn as follows. For σ ∈ Ln, define Φσ := Ψσ. If σ = sjτ for
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some τ ∈ Kn−1, then the element sjΦτ is independent of the choice of j and τ ; that
is, if sjτ = siτ

′(= σ) then sjΦτ = siΦτ ′ . In fact, one of the simplicial identities
shows that

τ = ∂jsj = ∂jsiτ
′ =

{
si−1∂jτ

′ (j < i)
si∂j−1τ

′ (j > i+ 1).

Say j < i. We have

sjΦτ = sjΦ∂jsiτ ′ = sjΦsi−1∂jτ ′

= sjsi−1Φ∂jτ ′ = sjsi−1∂jΦτ ′ by (II) (I)

= sj∂jsiΦτ ′ = si∂τ ′ .

Thus we define Φσ := sjΦτ . Suppose that σ ∈ Kn−Ln is non-degenerate. Then the
condition (I) and one of the simplicial identities allow us to deduce that ∂i(Φ∂jσ) =
∂j−1(Φ∂iσ) for i < j. Since A is extendable, there exists Φσ ∈ An such that
∂iΦσ = Φ∂iσ for 0 ≤ i ≤ n. □

Proposition 3.15 gives rise to the following important result.

Proposition 3.16. ([12, Proposition 10.5]) Let θ : D → E be a morphism of
simplicial DGA’s. Assume that (i) H(θn) : H(Dn) → H(En) is an isomorphism
for n ≥ 0 and that (ii) D and E are extendable. Then for every simplicial set K,
θ(K) : D(K) → E(K) is a quasi-isomorphism.

With the same notations and assumptions as in Proposition 3.15, we have a
differential ideal A(K,L) of A(K) which fits in the exact sequence 0 → A(K,L) →
A(K) → A(L) → 0. Define

γ : A(K(n), A(n− 1)) →
∏

σ∈(NK)n

A(∆[n],∆[n− 1])

by γ(Φ) = {A(σ)Φ}σ∈(NK)n , where (NK)n is the subset of non-degenerate n-
simplicies andK(n) denotes the simplicial subset ofK generated byKi for i ≤ n and
degenerate i-simplicies for i > n. If A is extendable, the map γ is an isomorphism;
see [12, Lemma 10.6].

Sketch of the proof of Proposition 3.16. Use induction on n for ∂∆[n], (∆[n], ∂∆[n]),
(K(n),K(n−1)) and K(n). Observe that Dn = D(∆[n]) and En = E(∆[n]). Com-
paring the exact sequences for D and E with the isomorphisms γ, we proceed the
induction. □

Lemma 3.17. [33, Lemma 3.2]) The simplicial CDGA (A∗
DR)• is extendable.

Proof. Let I be a subset of {0, 1, ..., n} and Φi an element in (A∗
DR)n−1 for i ∈ I. We

assume that ∂iΦj = ∂j−1Φi for i < j. We define inductively elements Ψr ∈ (A∗
DR)n

for −1 ≤ r ≤ n which satisfy the condition that (*): ∂iΨr = Φi if i ∈ I and
i ≤ r. Put Ψ−1 = 0 and suppose that Ψr−1 is given with (*). Define a smooth map
φ : An − lr → An−1 by

φ(t0, t1, ..., tn) =
( t0
1− tr

, ..,
tr−1

1− tr
,
tr+1

1− tr
, ...,

tn
1− tr

)
,

where lr denotes the hyperplane {(t0, t1, ..., tn) ∈ An | tr = 1} in An. The map
φ induces a morphism φ∗ : Ω∗(An−1) → Ω∗(An − lr) of cochain algebras. If r is
not in I, we define Ψr by Ψr−1. In the case where r ∈ I, we consider the element
Φr − ∂rΨr−1 in Ω∗(An−1).
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Let kr : An → A be the projection in the rth factor and ρ a cut-off function with
ρ(0) = 1 and ρ(1) = 0. We observe that (ρ ◦ kr) is in Ω0(An). Then the action of
(ρ ◦ kr) on Ω∗(An− lr) defined by the pointwise multiplication gives rise to a linear
map (ρ ◦ kr) ⋆ - : Ω∗(An− lr) → Ω∗(An). We see that the map (ρ ◦ kr) ⋆ - fits in the
commutative diagram

Ω∗(An−1)
φ∗

//

∂i
��

Ω∗(An − lr)
(ρ◦kr)⋆

//

∂i
��

Ω∗(An)

∂i
��

Ω∗(An−2)
φ∗

// Ω∗(An−1 − lr−1)
(ρ◦kr−1)⋆

// Ω∗(An−1)

for i < r. Define Ψ ∈ (A∗
DR)n by Ψ := (ρ ◦ kr) ⋆ φ∗(Φr − ∂rΨr−1). Since ∂i(Φr −

∂rΨr−1) = ∂r−1(Φi − ∂iΨr−1) = 0 by assumption for i < r, it follows from the
commutative diagram above that ∂iΨ = 0 for i < r. Moreover, We see that
∂r(ρ ◦ kr) = 1 and φ ◦ ∂r = idAn . The facts enable us to deduce that the diagram

Ω∗(An−1)
φ∗

//

id ))

Ω∗(An − lr)
(ρ◦kr)⋆

//

∂r
��

Ω∗(An)

∂r
��

Ω∗(An−1)
id

// Ω∗(An−1)

is commutative. Thus we have ∂rΨ = Φr−∂rΨr−1. It turns out that ∂j(Ψ+Ψr−1) =
Φj for j ∈ I and j ≤ r. This completes the proof. □

The affine space An is smoothly contractible. Then, Proposition 3.2 and Theorem
3.10 enable us to deduce the following result.

Lemma 3.18. One has H∗((ADR)n) = R for any n ≥ 0.

We moreover have

Lemma 3.19. ([12, Lemma 10.12)][18, 12.37]) The simplicial cochain algebras CPL
and CPL ⊗APL are extendable and acyclic.

Proposition 3.20. Let K be a simplicial set. Then there is a sequence of quasi-
isomorphisms

C∗(K) C∗
PL(K)

ν

∼=oo ≃
φ

// (CPL ⊗ADR)
∗(K) A∗

DR(K),
≃
ψ

oo

where φ and ψ are defined by φ(γ) = γ ⊗ 1 and ψ(ω) = 1⊗ ω, respectively.

This follows from Proposition 3.16; see [12, Section 10] for more details.

3.5. An integration map. We define a map
∫

: (A∗
DR)• → (C∗

PL)• = C∗(∆[•])
by

(

∫
γ)(σ) =

∫
∆p

σ∗γ(3.2)

for γ ∈ (ApDR)n, where σ : ∆p → ∆n is the affine map induced by a non-decreasing
map σ : [p] → [n]. Since the affine map σ is extended to an affine map σ from Ap
to An, it follows that σ∗γ is in (ApDR)p. Then, the map

∫
is a cochain map. This

follows from Stokes’ theorem for a manifold; see, for example, [4, V. Sections 4 and
5]. As a consequence, we see that

∫
is a morphism of simplicial differential graded

modules.



16 KATSUHIKO KURIBAYASHI

Let 1 be the unit of (A∗
DR)•, which is in C∞(An,R) = Ω0

DR(An) = (A0
DR)n.

Then we see that
∫
1 = 1 in (C0

PL)n for n ≥ 0. This yields the commutative
diagram

(C∗
PL)•

=
))

φ
// (CPL ⊗ADR)

∗
•

mult ◦(1⊗
∫
)

��

(A∗
DR)•

ψ
oo

∫
uu

(C∗
PL)•.

(3.3)

We refer the reader to [12, Remark, page 130] for the same triangles as above
for the polynomial de Rham complex A∗

PL.

3.6. The acyclic model theorem for a (co)chain complex. In order to prove
the homotopy commutativity of the right-hand side square in Theorem 3.11, the
methods of acyclic models in [11, Definition, page 189] and [3] are applied.

Lemma 3.21. ([33, Lemma 4.1]) If X is a convex subset of Rk with sub-diffeology,
then the nth homology Hn(S

D
• (X)) is trivial for n > 0 .The same assertion is valid

for the functor ZSD• (-)sub.

Lemma 3.22. Let M be the set of convex subsets of Rk for k ≥ 0. Then the two
functors ZSDn (-) and ZSDn (-)sub are representable for M in the sense of Eilenberg–
Mac Lane for each n; see [11, Definition, page 189].

Proof. Let Z̃SDn (X) be the free abelian group generated by ⨿M∈M(ZSDn (M) ×
HomDiff(M,X)). Define a map Ψ : ZSDn (X) → Z̃SDn (X) by Ψ(m) = (idAn ,m). It
is readily seen that Φ ◦Ψ = id. Therefore, the functor ZSDn (–) is representable for
M. Since the identity map id∆n

sub
belongs to ZSDn (∆n

sub)sub, it follows from the

same argument as above that the functor ZSDn (–)sub is representable for M. □

I) The method of acyclic models [11, Section 8] implies that there exists a chain

homotopy equivalence l̃ : ZSD• (X)sub
≃−→ Ccube∗(X). The dual to l̃ yields a cochain

homotopy equivalence l : C∗
cube(X)

≃−→ C∗(SD• (X)sub), which induces a morphism
of algebras on cohomology; see also [39, Section 8.2] for an acyclic model theorem
for contravariant monoidal functors.

II) The restriction map j∗ : ZSD• (X) → ZSD• (X)sub has a homotopy inverse h in the
category of chain complexes. This follows from the method of acyclic models [11,
Theorems Ia and Ib] with Lemmas 3.21 and 3.22. Then the map h∗ : C∗(SD• (X)) →
C∗(SD• (X)sub) induces an isomorphism of algebras on the homology. In fact, the
inverse induced by (j∗)∗ : C∗(SD• (X)sub) → C∗(SD• (X)) is a morphism of algebras.

In order to prove Theorem 3.11, more observations concerning the cochain com-
plexes in the theorem are now given. We prove III) the right-hand side square in
Theorem 3.11 is homotopy commutative. To this end, We recall the acyclic model
theorem due to Bousfield and Gugenheim [3].

Definition 3.23. Let C be a category and Ch∗(K) the category of cochain com-
plexes over a field K. A contravariant functor K : C → Ch∗(K) admits a unit if for
each object X in C, there exists a morphism ηX : K → K(X) in Ch∗(K). Let M
be a set of objects in C, which is called models. A functor K with unit is acyclic
on models M if for any M in M, there exists a morphism εM : K(M) → K such
that εM ◦ ηM = id and ηM ◦ εM ≃ id.
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Let F : C → K-Mod be a functor from a category with models M to the category

of vector spaces over K. Then we define a contravariant functor F̂ : C → K-Mod
by

F̂ (X) :=
∏

M∈M,σ∈C(M,X)

(F (M)× {σ}),

where for a morphism f : X → Y in C, the morphism F̂ (f) : F̂ (Y ) → F̂ (X) is

defined by F̂ (f){mσ, σ} = {mfτ , τ}. Moreover, we define a natural transformation

Φ : F → F̂ by ΦX(u) = {F (x)u, x}. We say that F is corepresentable on the models

M if there exists a natural transformation Ψ : F̂ → F such that Ψ ◦ Φ = idF .

Theorem 3.24. [3, 2.4 Proposition]§ Let C be a category with models M. Let K1

and K2 be contravariant functors from C to Ch∗(K) with units η : K → K0
1 ,K

0
2 .

Here K denotes the constant functor defined by K(X) = K. Suppose that K1 is
acyclic on models M and Uk ◦K2 is corepresentable on the models for any k, where
Uk denotes the forgetful functor to K-Mod on the degree k. Then (i) there exists a
natural transformation T : K1 → K2 which preserves the unit. (ii) Moreover any
two such natural transformations are naturally homotopic.

To prove theorem above, we moreover need an extension of a natural transfor-
mation. Let T : F → G be a natural transformation. Then, we define a natural

transformation T̂ : F̂ → Ĝ by T̂ (X)({mσ, σ}) = {T (M)mσ, σ}. We see that

T̂Φ = ΦT .
Let F be a functor which is acyclic on models M. Then by definiton, there exists

a morphism εM : F (M) → K such that εM ◦ ηM = id and ηM ◦ εM ≃ id. Then
we have a morphism hM : F p(M) → F p−1(M) for each p and M ∈ M such that

dhM + hMd = 1− ηMεM . In this case, we define h̃ : F̂ → F̂ by

h̃({mσ, σ}) = {hM (mσ), σ}.

Observe that h̃ is a natural transformation. Similarly, we can define natural trans-

formations ε̃ : F̂ → K̂ and η̃ : K̂ → F̂ with d̃h̃+ h̃d̃ = 1− η̃ε̃ and 0 = 1− ε̃η̃.

Lemma 3.25. Let F : C → Ch∗(K) be an acyclic functor on models and G : C →
K-Mod a corepresentable functor. Let T : F p → G be a transformation of functors
with Td = 0 and T (M)η = 0 on models. Then there exists a transformation of
functor T ′ : F p+1 → G such that T = T ′d.

Proof. It is immediate that T̂ d̂ = 0 and T̂ η̃ = 0. Since F is a functor, it follows

that Φd = d̃ϕ. With the notations above, we define T ′ := Ψ ◦ T̂ ◦ h̃ ◦Φ : F → F̂ →
F̂ → Ĝ → G. It follows that T ′d = ΨT̂ h̃Φd = ΨT̂ h̃d̃Φ = ΨT̂ (1 − η̃ε̃ − d̂h̃)Φ =

ΨT̂Φ = ΨΦT = T . □

Proof of Theorem 3.24. An induction on the degree of a cochain complex is used.
(i) We define T

p
: Kp

1 (X) → Kp+1
2 (X) by d ◦ T p. By Lemma 3.25, we have

T
p+1

: Kp+1
1 (X) → Kp+1

2 (X). (ii) For two such natural transformations T and T ′,
define L := Tp − T ′

p − dLp. Then we see that Ld = 0 by the assumption of the
induction. Lemma 3.25 enables us to obtain Lp+1 with Lp+1d = L. □

§The original assertion is for the functors from the category of simplicial sets with models
{∆[n]}n to Ch∗(K). However, the proof is valid for more general functors form a category with

models.
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Now, we are ready to prove III). In Theorem 3.24, we choose the category Diff
as C and then put K1 = Ω∗(-) and K2 = C∗(SD• (-)). Let M be the subset of
objects in C consisting of the affine spaces An for any n ≥ 0. Then the category
Diff is regarded as a category with models M. The Poincaré lemma for diffeological
spaces implies that the functor Ω∗(-) is acyclic for M. We observe that the chain
operator K in Lemma 3.9 is thought of as a natural transformation.

For a non-negative integer k ≥ 0, we define a map

ΨX : Ĉk(SD• (X)) :=
∏

An∈M,σ∈C∞(An,X)

(Ck(SD• (An))× {σ}) → Ck(SD• (X))

by ΨX({mσ, σ})(τ) = mτ (idAk), where τ ∈ SDk (X). Then Ψ– is a natural transfor-
mation. In fact, we see that for a smooth map f : X → Y and u ∈ SDk (X),

ΨX(Ĉk(SDk (f)){mσ, σ})(u) = ΨX{mfτ , τ}(u) = mfu(idAk) and

((CkSD• )(f))(ΨY {mσ, σ})(u) = ΨY {mσ, σ}(fu) = mfu(idAk).

Since ΦX(u) = {Ck(SD• (σ))u, σ} for u ∈ Ck(SD• (X)) by definition, it follows that

(ΨXΦX(u))(τ) = ΨX({Ck(SD• (σ))u, σ})(τ) = Ck(SD• (τ))u(idAk)

= u(τ ◦ idAk) = u(τ)

for τ ∈ SDk (X). Then we have ΨΦ = id and hence Ck(SD• (-)) is corepresentable.
Theorem 3.24 enables us to deduce the homotopy commutativity of the right-hand
side square in Theorem 3.11. This completes the proof of III).

Proof of the first assertion in Theorem 3.11. Proposition 3.20, the considerations
in I), II), III) and the commutative diagram (3.3) allow us to deduce the first
part. □

Sketch of the proof of the latter half of Theorem 3.11. Suppose that (X,DX) is a
manifold. Then the argument in [4, V. §9], in which the Mayer–Vietoris exact
sequences are used, is applicable in order to deduce the map v :=

∫
◦α is a quasi-

isomorphism.
By definition, a parametrized stratifold (S, C) is constructed from manifolds with

boundaries via an attaching procedure; see Appendix B. In general, a stratifold
admits a partition of unity; see [31, Proposition 2.3]. Moreover, we see that an
open set of the underlying topological space S is a D-open set of the diffeology
k(S, C); see Lemma A.3. Thus the induction argument with the Mayer–Vietoris
sequence works well to show that H(v) is an isomorphism. In fact, let S′ be
the parametrized stratifold mentioned in Appendix A, which is obtained from a
stratifold S and a manifold W with collared boundary ∂W by using an attaching
map f : ∂W → S. In the inductive step, we can use open sets of S′ = S ∪f W .
U := S∪f (∂W × [0, ε)) and V :=W − (∂W × [0, ε/2]). Observe that U is smoothly
homotopy equivalent to S and V is a manifold without boundary. Hence we have
the result for a parametrized stratifold. □

We consider the excision axiom for the homology of SD• (X)sub = Diff(∆n
sub, X).

Let D : Diff → Top and C : Top → Diff be the functors mentioned in Appendix
B, which give an adjoint pair. Kihara’s proof of [30, Proposition 3.1] enables us to
regard the chain complex ZSD• (X)sub as a subcomplex of the singular chain complex
C∗(DX), where D : Diff → Top denotes the functor mentioned in Section 2.3. In
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fact, [9, Lemma 3.16] implies that D(∆n
sub) is the simplex ∆n with the standard

topology. We observe that for the diffeology Rn with smooth plots, D(Rn) is
Euclidian space. Thus for a diffeological space X, the unit id : X → CDX yields
the sequence of inclusions

Diff(∆n
sub, X) → Diff(∆n

sub, CDX) ∼= Top(D(∆sub), DX) = Top(∆n, DX);

see Remark B.3 for a discussion of when the composite of the maps in (4.1) is bijec-
tive. Then we can prove the excision axiom by applying a barycentric subdivision
argument. Indeed, the subdivision map Sd : SDn (X)sub → SDn (X)sub is defined by
restricting the usual one for the singular chain complex, which is chain homotopic
to the identity. It turns out that the relative homology HD

∗ (X,A) satisfies the ex-
cision axiom for the D-topology; that is, the inclusion i : (X −U,A−U) → (X,U)
induces an isomorphism on the relative homology if the closure of U is contained
in the interior of A with respect to the D-topology of X; see [4, IV, Section 17] for
details. Thus we have the Mayer–Vietoris exact sequences for the homology and
cohomology of SD• (X)sub.

Remark 3.26. As seen in above, the homology H∗(SD• (X)sub) admits the Mayer–
Vietoris exact sequence. Then, it follows from II) that so does H∗(SD• (X)).

4. The LSSS, the EMSS and Chen’s iterated integrals in diffeology

This section is devoted to a survey of the Leray–Serre spectral sequence, the
Eilenberg–Moore spectral sequence and Chen’s iterated integrals in diffeology. Each
tool for developing computation of cohomology is obtained by modifying the original
one in algebraic topology.

We begin with recalling one of equivalent definitions of a diffeological bundle;
see [25, Chapter 8].

Definition 4.1. ([25, 8.9][10, Definition 3.14]) A smooth surjective map p : X → Y
is a diffeological bundle of fibre type F if the pullback of p along any plot of Y is
locally trivial of fibre type F .

We have an important example of a diffeological bundle.

Proposition 4.2. Let G be a diffeological group; see Section 2.2, and H a subgroup
with the sub-diffeology. Then the projection G → G/H is a diffeological bundle of
fibre type H, where G/H is endowed with the quotient diffeology.

Proof. For any plot P : U → G/H and a point r ∈ U , there exists a (local) plot
Q : V → G such that π ◦Q = P |V . This follows from the definition of the quotient
diffeology. We define a map φ from V ×H to the pullback of π

V ×H

projection
((

φ
// (P ◦ i)∗(G)

��

// G

π
��

V
P◦i

// G/H

by φ(r, h) := (r,Q(r)h). This is a well-defined smooth map. Moreover, we define
φ′ : (P ◦ i)∗(G) → V × H by φ′(r, g) := (r,Q(r)−1g). The map φ′ is also well
defined and smooth. It is readily seen that φ′ is the inverse to φ. □
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4.1. Spectral sequences. The Leray–Serre spectral sequence [37, 16]† and the
Eilenberg–Moore spectral sequence [16, 44] are considered. We begin by setting up
a situation to which we can apply the computational tools.

Definition 4.3. [10, Definition 4.7] A smooth map X → Y is a fibration if
SD(X) → SD(Y ) is a Kan fibration; that is, the simplicial map SD(X) → SD(Y )

in Sets∆
op

has the right lifting property with respect to the inclusions Λ[n]k →
∆[n]. Here Λ[n]k denotes the subfunctor of morphisms [m] → [n] factor through
δi : [n− 1] → [n] for 0 ≤ i ≤ n and i ̸= k.

We call a diffeological space X fibrant if SD(X) is a Kan complex; that is, the
trivial map SD(X) → ∗ is a fibration. In general, a simplicial group is a Kan
complex; see, for example, [15, I, Lemma 3.4]. Since the functor SD(–) is the right
adjoint; see Section 2.3, it preserves limits, especially, products. Thus, the singular

simplex functor SD(–) assigns a group objects in Diff that in Sets∆
op

. Thus we
have

Proposition 4.4. ([10, Proposition 4.30]) Every diffeological group is fibrant.

Proposition 4.5. ([10, Proposition 4.28]) Any diffeological bundle (in the sense in
Definition 4.1) with fibrant fibre is fibration.

Proof. Let f : X → Y be a diffeological bundle with fibrant fibre F . Consider a
commutative diagram

Λ[n]k

��

// SD(X)

SD(f)
��

∆[n]
u

// SD(Y )

in Sets∆
op

. Consider the adjoint to the diagram above and the pullback along
c := ad(u), we have commutative diagrams ‡

Λn b

%%

a

))

(a,e)

''

Λn

a
��

b // X

f
��

Rn × F

π1
��

d // X

f
��

Rn
c

// Y Rn
c

// Y

Here, we apply [25, 8.19], which asserts that the pullback of a diffeological bundle
along a global plot is a trivial bundle. Let g : Rn → F be arbitrary smooth
map and consider the smooth section (1, g) : Rn → Rn × F . Then, we see that
f ◦

(
d ◦ (1, g)

)
= c ◦ π1 ◦ (1, g) = c. We want to choose the map g so that the

following left-hand side triangle commutes.

Λn
b //

a
��

X Λn
e //

a
��

F

Rn
d◦(1,g)

::

Rn
g

::

†We also refer the reader to [38, Section 6, pages 225–229] for the Dress’ construction of the

spectral sequence.
‡Λn := |Λ[n]k|D ∼= {(x1, ..., xn) ∈ Rn | xi = 0 for some i}
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Since F is fibrant, there exists a map g such that g ◦ a = e. Then, for any x ∈ Λn,
we have (d ◦ (1, g) ◦ a)(x) = d((a(x), ga(x)) = d(a(x), e(x)) = b(x). □

We give an overview on the Leary–Serre spectral sequence and the Eilenberg–
Moore spectral sequence ([33, Theorems 5.4 and 5.5]) in diffeology.

In what follows, we may write A∗
DR(X) and A∗(X) for A∗

DR(S
D
• (X)sub) and

A∗
DR(S

D
• (X)), respectively.

Remark 4.6. We see that the map (j∗) : SD• (X) → SD• (X)sub induced by inclusion
j : ∆n

sub → An gives rise to a natural quasi-isomorphism

(j∗)∗ : A∗
DR(X) → A∗(X).(4.1)

This follows from III) in Section 3.3 and Proposition 3.20. In order to construct
the spectral sequences below for pullback diagrams, we need Proposition 4.10. In
the proof of the proposition, the compactness of D(∆n

sub) is used.

Let g : (X,DX) → (Y,DY ) be an induction. Then by definition, the map g is
injective and the pullback diffeology g∗(DY ) coincides with DX . The result [25,

I. 36] yields that the map g : X
∼=→ g(X) is a diffeomorphism, where g(X) is the

diffeological space endowed with subdiffeology.

Theorem 4.7. Let π : E → M be a smooth map between path-connected dif-
feological spaces with path-connected fibre L which is i) a fibration in the sense of
Christensen and Wu or ii) the pullback of the evaluation map (ε0, ε1) : N

I → N×N
for a connected diffeological space N along an induction f :M → N ×N . Suppose
further that in the case ii) the cohomology H(A∗(M)) is of finite type. Then one
has the Leary–Serre spectral sequence {LSE∗,∗

r , dr} converging to H(A∗(E)) as an
algebra with an isomorphism

LSE
∗,∗
2

∼= H∗(M,H∗(L))

of bigraded algebras, where H∗(M,H(L)) is the cohomology with the local coeffi-
cients H∗(L) = {H(A∗(Lc))}c∈SD

0 (M); see, for example, Whitehead’s book [45].

Theorem 4.8. Let π : E →M be the smooth map as in Theorem 4.7 with the same
assumption, φ : X → M a smooth map from a connected diffeological space X for
which the cohomology H(A∗(X)) is of finite type and Eφ the pullback of π along φ.
Suppose further that M is simply connected in case of i) and N is simply connected
in case of ii). Then one has the Eilenberg–Moore spectral sequence {EME∗,∗

r , dr}
converging to H(A∗(Eφ)) as an algebra with an isomorphism

EME
∗,∗
2

∼= Tor∗,∗H(A∗(M))(H(A∗(X)),H(A∗(E)))

of bigraded algebras.

Sketch of the proofs of Theorems 4.7 and 4.8. For the case i), the Leray–Serre spec-
tral sequence and the Eilenberg–Moore spectral sequence are obtained by applying
the same argument as in the proofs of [16, 5.1 Theorem and 7.3 Theorem] to the
functor A∗( ) := A∗

DR(S
D( )•). Observe that Dress’ construction for the Leary-

Serre spectral sequence is applicable to our setting; see [16, 3.3] and [37].
To consider the case ii), we use A∗

DR( ) instead of A∗( ). For a presheaf F over
a simplicial set K, we define the space Γ(F) of global sections of F by Γ(F) :=

HomSetK
op (1,F), where 1 denotes the terminal object of SetK

op

the category of
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presheaves. We regard a simplicial set K as a category whose mmorphisms u : σ →
τ are morphisms of simplicial sets with commutative diagrams

∆[n]
u //

σ %%

∆[n]

τyy
K.

Let K be the simplicial set SD• (M)sub. Define a filtration G = {Gp}p≥0 by Gp =
Γ(

∑
i≥p(A

i
DR)• ⊗ F ), where F = {Fσ}σ∈K := {A∗

DR(Pσ)}σ∈K is a presheaf over
K constructed with the pullbacks of π : E → M by simplices σ : ∆n

sub → M . The
filtration gives rise to a spectral sequence {E∗,∗

r , dr} converging to H∗(ADR(E));
see [34, Pages 956–957].

Recall the integration map defined in (3.2). Then it follows from the proof of
[18, 14.18 Theorem] that the integration induces a quasi-isomorphism∫

: E1 = Γ((A∗
DR)• ⊗H(F )) → C∗(M ;H(L)),

where C∗(M ;H(L)) denotes the cochain complex of SD• (M)sub with the local coef-
ficients induced by the local system F and H(F ) is the local system of coefficients
defined by H(F )σ := H(Fσ, d) for σ ∈ K. An important point of the proof is that
(A∗

DR)• and (CPL)• are extendable; see [18, 12.37 Theorem] and Section 3. Then,
the spectral sequence {E∗,∗

r , dr} gives the one in Theorem 4.7.
As for the Eilenberg–Moore spectral sequence, by virtue of the result [18, 20.6]

and Proposition 4.10 below, we have

H∗(ADR(Ef )) ∼= TorA∗
DR(M)(A

∗
DR(X), A∗

DR(E))

as an algebra; see also [44, Théorème 4.1.1]. As a consequence, the natural quasi-
isomorphism (j∗)∗ in (4.1) yields the result in Theorem 4.8. □

4.2. Chen’s iterated integrals in diffeology. We begin by modifying the iter-
ated integrals due to Chen [7, 8] in the diffeological setting. Let N be a diffeological
space and N I the path space C∞(I,N).

Let ωi be a differential pi-form in Ω∗(N) for each 1 ≤ i ≤ k and α : U → N I a
plot of the diff-space N I . Let ρ : R → I be a cut-off function with ρ(0) = 0 and
ρ(1) = 1. We define a plot ♯α of N by ♯α := ad(α) ◦ (1× ρ) : U ×R → U × I → N .
Then, the differential form wi gives rise to a pi-form (ωi)♯α on U × R. We write
ω̃iα for the pi form (idU × ti)

∗(ωi)♯α on U × Rk, where

ti : ∆
k := {(x1, ..., xk) ∈ Rk | 0 ≤ x1 ≤ · · · ≤ xk ≤ 1} → R

denotes the projection in the ith factor. By using integration along the fibre of the
trivial fibration U ×∆k → U , the iterated integral (

∫
ω1 · · ·ωk)α is defined by

(

∫
ω1 · · ·ωk)α :=

∫
∆k

ω̃1α ∧ · · · ∧ ω̃kα.

Observe that (
∫
ω1 · · ·ωk)α is of degree

∑
1≤i≤k(degωi − 1).

With a decomposition of the form Ω1(N) = A1 ⊕ dΩ0(N), we obtain a cochain
subalgebra A of Ω(N) which satisfies the condition that Ap = Ωp(N) for p > 1 and
A0 = R. The cochain algebra A gives rise to the normalized two-sided bar complex
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B(Ω(N), A,Ω(N)); see [8, §4.1]. Consider the pullback diagram

(4.2) Ef
f̃

//

ν=pf

��

N I

(ε0,ε1)
��

M
f

// N ×N

of (ε0, ε1) : N
I → N ×N along a smooth map f : M → N ×N , where εi denotes

the evaluation map at i. Then we have a chain map

It : Ω(M)⊗Ω(N)⊗Ω(N) B(Ω(N), A,Ω(N)) ∼= Ω(M)⊗f B(A) → Ω(Ef )

defined by It(v⊗ [ω1| · · · |ωr]) = p∗fv ∧
(
f̃∗

∫
ω1 · · ·ωr

)
; see [6, Proposition 4.1.2] for

the formula d(
∫
ω1 · · ·ωr).

Theorem 4.9. Suppose that, in the pullback diagram (4.2), the diffeological space
N is simply connected and f is an induction. Assume further that the factor maps
for N and M are quasi-isomorphisms and that the cohomology H∗(SD• (N)) is of
finite type, that is, each vector space Hi(SD• (N)) is of finite dimension. Then
the composite α ◦ It : Ω∗(M) ⊗f B(A) → Ω(Ef ) → A∗

DR(S
D
• (Ef )) is a quasi-

isomorphism of Ω∗(M)-modules.

Let j : R := ADR(M) ⊗ ∧V → ADR(Ef ) be a Koszul–Sullivan (KS) extensions

(relative Sullivan algebras)§ for the map ν∗ : ADR(M) → ADR(Ef ) induced by
the projection ν : Ef → M . The reader is referred to [18, Chapter 1] for the
definition of a KS extension and its fundamental properties. Let Pm denote the
fibre over a point m ∈M . Since the composite of ν and the inclusion l : Pm → Ef
is the constant map at m, it follows that the map l∗ ◦ ν∗ factors through the
augmentation ε : ADR(M) → ADR({m}) = R and then j induces a morphism
k : ∧V = ADR({m})⊗ADR(M) R→ ADR(Pm) of cochain algebras.

Proposition 4.10. ([33, Proposition 5.11])¶ Suppose that N is simply connected.
Then the morphism k : ∧V → ADR(Pm) of cochain algebras is a quasi-isomorphism.

Proof of Theorem 4.9. For a diffeological space X, we recall the quasi-isomorphism
(j∗)∗ : A∗

DR(X) → A∗
DR(S

D
• (X)) =: A(X) in (4.1). Let ΩN → PN → N be

the pullback of the evaluation map (ε0, ε1) : N I → N × N along the induction
s : N → N ×N defined by s(x) = (∗, x), where ∗ denotes the base point of N . We

§By definition, a commutative cochain algebra of the from (B ⊗ ∧V, d) is a relative Sullivan

algebra if i) (B ⊗ 1, d) is a cochain subalgebra and H0(B) = Q, ii) 1 ⊗ V = V = ⊕p≥1V
p and

iii)V = ∪∞
k=0V (k), where V (0) ⊂ V (1) ⊂ · · · is an increasing sequence of graded subspaces with

d : V (0) → B and d : V (k) → B ⊗∧V (k− 1) for k ≥ 1. See [12, Section 14] and [18] for a general

theory of relative Sullivan algebras.
¶The proof of this proposition is obtained by modifying that of [18, 20.3 Theorem]. The

spectral sequence for the case (ii) in Theorem 4.7 is also applied. It is worth mentioning that we

elaborate ‘smooth objects’ in the modification.



24 KATSUHIKO KURIBAYASHI

have a commutative diagram of solid arrows

A∗
DR(ΩN)

(j∗)∗

≃
// A(ΩN) B(A)

α◦Itoo

α
nnT

κ 3 3
β

// T ′
κ′ 44

A∗
DR(PN)

OO

≃ // A(PN)
A(i)

OO

Ω∗(N)⊗B(A)
α◦Itoo

OOOO

α̃
nnR

OO

≃ 33
β

// R′

OO

p
≃ 44 44

A∗
DR(N)

π∗

OO

≃ // A(N)
A(π)

OO

Ω∗(N)
αoo

OO

α
nnA∗

DR(N)

j

OO

// A(N)

j′
OO

in which j and j′ are KS extensions of π∗ and A(π), respectively. Here A in B(A)
denotes the cochain subalgebra of Ω∗(N) described in the paragraph before (4.2).

We may assume that the quasi-isomorphism p is a surjection by the surjective
trick; see [12, Section 12 (b)]. By applying the Lifting lemma, we have a morphism
β : R→ R′ which makes the two squares commutative. Then we have a morphism
β : T := R⊗ADR(N)R→ T ′ := R⊗A(N)R

′ of cochain algebras. Moreover, the map

β is a quasi-isomorphism and hence so is β by [12, Theorem 6.10 (ii)]†.
Proposition 4.10 implies that κ is a quasi-isomorphism and then so is κ′. Since the

bar complex Ω∗(N)⊗B(A) is a semifree Ω∗(N)-module‡; see [13, Lemma 4.3 (ii)], it
follows from the Lifting lemma that there exist a morphism α̃ : Ω∗(N)⊗B(A) → R′

of Ω∗(N)-modules and a morphism α : B(A) → T ′ of differential graded modules
which fit in the commutative diagram. Observe that B(A) ∼= R ⊗Ω∗(N) (Ω

∗(N) ⊗
B(A)). The complex Ω∗(N)⊗B(A) is indeed a resolution of R and the diffeological
space PN is smoothly contractible. Then the map α̃ is a quasi-isomorphism. Since
the factor map is a quasi-isomorphism by assumption, it follows from [12, Theorem
6.10(ii)] again that so is α. We see that α ◦ It : B(A) → A(ΩN) is a quasi-
isomorphism.

We apply the same argument to the pullback ΩN → Ef →M of the evaluation
map (ε0, ε1) : N

I → N×N along an induction f :M → N×N . Then in the diagram
above, the bar complex Ω∗(N)⊗B(A) is also replaced with the complex Ω∗(M)⊗f
B(A). In order to complete the proof, we use the notion of a semifree module
and an ‘algebraic spectral sequence argument’§. In view of the quasi-isomorphism
α◦ It : B(A) → A(ΩN) that we obtain above, the comparison theorem (for the new
R′ and Ω∗(M)⊗fB(A) enables us to conclude that α◦It : Ω∗(M)⊗fB(A) → A(Ef )
is a quasi-isomorphism. □

4.3. Computational examples. We recall the diffeological bundle R → T2 → Tθ
in Remark 3.6. Let f : M → Tθ be a smooth map from a diffeological space M .

Then we obtain a diffeological bundle (*) : R → M ×Tθ
T2 π′

→ M via the pullback
construction along the map f . A diffeological fibre bundle with a diffeological
group as the fibre is a fibration; see Proposition 4.5. Then the Leray–Serre spectral

†That asserts that the tensor product preserves quasi-isomorphisms between semifree modules.

Observe that KS extension is a semifree module over the base algebra; see [12, Lemma 14.1].
‡A semifree module is a version of a Sullivan algebra in an abelian category.
§The filtration {F p} is defined by F p := Ω≥p(M) ⊗f B. As for the KS extension A(M) →

A(M)⊗T ′′ → T ′′ in the right-hand side triangles, we use a filtration defined by ‘F p := A(M)≥p⊗
T ′′ in order to construct the spectral sequence.



THE DE RHAM THEOREM IN DIFFEOLOGY 25

sequence in Theorem 4.7 for the fibration (*) allows us to deduce that π′ gives rise
to an isomorphism

(π′)∗ : H∗(A∗(M))
∼= // H∗(A∗(M ×Tθ

T2))(4.3)

of algebras. Suppose that M is simply connected. Then the comparison of the
EMSS’s in Theorem 4.8 for LM and L(M ×Tθ

T2) allows us to obtain an algebra
isomorphism

(Lπ′)∗ : H∗(A∗(LM))
∼=−→ H∗(A∗(L(M ×Tθ

T2)).

Thus if H∗(A∗(M)) ∼= H∗(A∗(S2k+1)) as an algebra with k ≥ 1, then we see that

H∗(A∗(L(M ×Tθ
T2))) ∼= ∧(α ◦ It((π′)

∗
(ω)))⊗ R[α ◦ It(1⊗ (π′)

∗
(ω))](4.4)

as an H∗(A∗(M))-algebra, where ω is the volume form of M . In fact, the result
follows from Theorem 4.9 and [32, Theorem 2.1 and Corollary 2.2]. Moreover,
Corollary 3.13 asserts that we can also determine the singular cohomology algebra
of L(M ×Tθ

T2) with coefficients in R.

Remark 4.11. We comment on the isomorphism (4.4). The map α ◦ It in Theorem
4.9 is a quasi-isomorphism of Ω∗(M)-modules. However, in fact, it is a morphism
of DGA’s, where the bar complex is thought of as an algebra endowed with the
shuffle product. This follows from [14, Proposition 4.1]. Thus we have a sequence
of morphisms of DGA’s except for the last map θ, which is a morphism of algebras
on homology,

A(LM) Ω∗(M)⊗B(A)
α◦It
≃

oo ∧V ⊗B(∧V )≃
voo

≃
u // Γ⊗B(Γ)

θ

≃
// Γ⊗Γ⊗Γ F ,

where ∧V denotes a minimal Sullivan model forM and Γ = H∗(M). Moreover, the
Γ⊗Γ-module F is a Koszul resolution of Γ; see [32, Proposition 3.4] for the explicit
form and the quasi-isomrphism θ. Thanks the formality of the given diffeological
space M , we have the quasi-isomrphisms u and v. Thus, the computation is made
with the two steps below. (i) Compute TorΓ⊗Γ(Γ,Γ) = H∗(Γ ⊗Γ⊗Γ F ,±1 ⊗ d) as
an algebra clarifying generators. (ii) Describe the generators in terms of the bar
complex Ω∗(M)⊗B(A) via θ. The method is applicable to the case whereM = S2n

and CPn; see [32, Proposition 3.4] again.

5. Ω∗ versus A∗
DR

We compare the Souriau–de Rham complex Ω∗ with the singular de Rham com-
plexes A∗

DR by using the factor map. We refer the reader to [33, Appendix] and
[34] for more details of this section.

Let (X,DX) be a diffeological space and G a generating family of DX in the
sense of [25, 1.65]; see also Section B.2. We may assume that the domain of each
plot in G is a ball in RN for some N . Then we define the nebula NX of X associated
with G by

NX :=
⨿
φ∈G

(
{φ} × dom(φ)

)
with sum diffeology, where dom(φ) denotes the domain of the plot φ. It is readily
seen that the evaluation map ev : NX → X defined by ev(φ, r) = φ(r) is smooth.
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The gauge monoidM is a submonoid of the monoid of endomorphisms on the nebula
NX defined by

M := {f ∈ C∞(NX ,NX) | ev ◦ f = ev and ♯Supp f <∞},

where Suppf := {φ ∈ G | f |{φ}×dom(φ) ̸= 1{φ}×dom(φ)}. Then the original de Rham
complex Ω∗(NX) is a left KMop-module whose actions are defined by f∗ induced
by an endomorphism f ∈ NX . Moreover, the complex Ω∗(NX) is regarded as a two
sided KMop-module for which the right module structure is trivial. Then we have
the Hochschild complex C∗,∗ = {Cp,q, δ, dΩ}p,q≥0 with

Cp,q = HomKMop⊗KM(KMop ⊗ (KMop)⊗p ⊗KM,Ωq(NX)) ∼= map(Mp,Ωq(NX)),

where the horizontal map δ is the Hochschild differential and the vertical map dΩ
is induced by the de Rham differential on Ω∗(NX); see [27, Subsection 12] for more
details. The total complex Tot C∗,∗ has the horizontal filtration F ∗ = {F j}j≥0

defined by F j = ⊕q≥jC∗,q. Then the filtration gives rise to a first quadrant spectral
sequence {ΩE∗,∗

r , dr} converging to H∗(Tot C∗,∗) with

ΩE
p,q
2

∼= Hq(HHp(KMop,Ω∗(NX)), dΩ),

which is called the Čech–de Rham spectral sequence [27].
The result [27, Proposition in Subsection 9] implies that for a diffeological space

X, the evaluation map induces an isomorphism ev∗ : Ω∗(X)
∼=→ Ω∗(NX)M of cochain

algebras, where Ω∗(NX)M denotes the invariant subcomplex of Ω∗(NX). Since the
kernel of the map δ : C0,q → C1,q is nothing but the complex Ω∗(NX)M, it follows
that the edge homomorphism

edge1 := H(ev∗) : H∗(Ω∗(X))
∼=−→ ΩE

0,∗
2

is an isomorphism.
We consider the vertical filtration of the total complex Tot C∗,∗ and the spectral

sequence {δE∗,∗
r , dr} associated with the filtration. Then the Poincaré lemma for

the original de Rham complex yields that δEp,qr = 0 for q > 0 and hence the
target of {δE∗,∗

r , dr} is the Hochschild cohomology (the Čech cohomology) Ȟ(X) :=
HH∗(KM,map(G,K)); see [27, Sections III and IV]. Moreover, we see that the edge
homomorphism

edge2 := H(inc∗) : Ȟ(X)
∼=−→ H∗(Tot C∗,∗)

is an isomorphism, where inc∗ is the map induced by the inclusion map(G,K) →
Ω0(NX) to the constant functions on NX .

In the constructions of the two spectral sequence above, it is possible to replace
the de Rham complex Ω∗(X) with the singular de Rham complex A∗(X). While
the map

edge1 : H∗(A∗(X)) → AE
0,∗
2

for A∗(X) is merely a morphism of algebras, the map edge2 for A∗(X) is an iso-
morphism. In fact, Lemma 3.21 and Theorem 3.11 imply that the Poincaré lemma
for the singular de Rham complex holds. Since the factor map α gives rise to a
natural transformation Ω∗( ) → A∗( ), it follows that the map induces a morphism

{f(α)r} : {ΩE∗,∗
r , dr} → {AE∗,∗

r , dr}
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of spectral sequences. As a consequence, we have a commutative diagram

H∗(Ω(X))

H(α)

��

ev∗

∼=
// H∗(Ω(NX)M) // //

f(α)2

��

ΩE
0,∗
∞

// //

f(α)∞

��

H∗(Tot C∗,∗)

H∗(Tot(α))

��

Ȟ∗(X),

edge2

∼=
jj

edge2

∼=
tt

H∗(A(X))
ev∗ // H∗(A(NX)M) // //

AE
0,∗
∞

// // H∗(Tot ′C∗,∗)

(5.1)

where Tot(α) denotes the cochain map induced by the morphism C∗,∗ → ′C∗,∗ of
double complexes which α : A∗(X) → Ω∗(X) gives. In particular, it follows that
Hq(Tot(α)) is an isomorphism for any q. We call the composite of maps in the first
line in the diagram (5.1) the edge homomorphism of the Čech–de Rham spectral
sequence for X. Then the commutative diagram above enables us to deduce the
following proposition.

Proposition 5.1. If the edge homomorphism Hq(Ω∗(X)) → Ȟq(X) is injective,
then the map Hq(α) is injective.

In the first quadrant spectral sequence {ΩE∗,∗
r , dr}, the differential dr is of degree

(−r+1, r), namely dr : ΩE
p,q
r → ΩE

p−r+1,q+r
r . Observe the grading of the filtration

defined in [27]. It is readily seen that the sufficient condition in Proposition 5.1 is

equivalent to saying that every elements in ΩE
0,q
2 in the Čech–de Rham spectral

sequence is non-exact. By degree reasons, we see that each element in ΩE
0,1
2 is

non-exact. Then Proposition 5.1 gives

Proposition 5.2. For each diffeological space X, the map H1(α) : H1(Ω∗(X)) →
H1(A∗(X)) induced by the factor map α is injective.

The naturality of the factor map α : A(X) → Ω(X) enable us to obtain a
commutative diagram of isomorphisms

H1(Ω(X))⊕ ΩE
1,0
3

Θ
∼=

// H1(A(NX)M)⊕ AE
1,0
3

Ȟ1(X;R).
edge2

∼= 33

edge2

∼=kk

In fact, by degree reasons, we see that the surjective maps KE
0,1
2 → KE

0,1
∞ are

isomorphisms and KE
1,0
3

∼= KE
1,0
∞ for K = Ω and A. Thus the map H∗(Tot(α))

yields the homomorphism Θ which fits in the triangle. As a consequence, we see
that the map Θ is an isomorphism.

We recall Remark 3.6 which asserts a difference between the Souriau–de Rham
cohomology and the singular de Rham cohomology of the irrational torus. For the

irrational torus Tγ , we have a diffeological bundle R → T 2 π→ Tγ .

Ω(Tγ)
α // A(Tγ)

π∗ ≃
LSSS (Theorem 4.7)

// A(T 2) Ω∗(T 2)
α

≃
oo

•
R

•
R∼=E1,0

2 ⊂Fl(Tγ)

•R

•0

•
R

•
Rl

•R2+n d1,02

•Rk
α∗

•
R

•
ΩẼ

1,0
2 ⊂Fl(Tγ) = 0

•R2

•R

{ΩEr, dr} {AEr, dr} {AẼr, dr} {ΩẼr, dr}
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• We have Hq(Ω(Tγ)) ∼= E0,q
2 and edge11 : H1(A(T 2)) ⊂ AẼ

0,1
2 . The injec-

tivity of the edge homomorphism follows from the commutativity of the
diagram (5.1). The naturarity of π∗ in the vertical edge of the E2-term

yields that edge11 : H1(A(Tγ)) → AE
0,1
2 is injective; see [34, Lemma 3.1].

• ΩEr and AEr converge to the Čech cohomology Ȟ(Tγ) ∼= H∗(Z ⊕ Z;R).
Then n = 0, d1,02 is injective and AE

1,0
∞ = 0. As a consequence, we have

H1(A(Tγ)) ∼= H1(Ω(Tγ))⊕ ΩE
1,0
2

A more refined version of the result above is

Proposition 5.3. ([35, Corollary 2.6]) There exists an isomorphism H∗(A(Tθ)) ∼=
∧(Θ(t),Θ(ξ)) of algebras, where t ∈ H∗(Ω(Tθ)) ∼= ∧(t) is a generator and ξ ∈
Fl•(Tθ) ∼= R is a flow bundle¶ over Tθ with a connection 1-form, which is a gener-
ator of the group Fl•(Tθ).

6. Remarks –Future perspective and developments–

We conclude this course by describing our (personal) future perspective on dif-
feology. Recall the diagram (2.1) and consider the right-hand triangle. Recently,
Kihara gives the category Diff a model category structure with variants of the sin-
gular simplex functor and the realization functor. An important point is that the
homotopy category of Diff, which the model structure induces, is equivalent to that

of Sets∆
op

. Thus we may develop rational homotopy theory for diffeological spaces
via a model structure on the category of CDGAs ∥ and algebraic models models
due to Sullivan and Quillen. We address this topic in [35]. Especially, we provide a
framework of rational (R-local) homotopy theory in diffeology. In future work, we
expect that differential homotopy theory ∗∗ is developed with the fabric.

Remark 6.1. In general, the realization functor |–|D : Sets∆
op

→ Diff does not
preserve finite products. In fact, we see that |∆1|D × |∆1|D ∼= R2. On the other

hand, the realization |∆1 × ∆1|D is the pushout of |∆2|D |∆1|D
d0oo d2 // |∆2|D

and then it is diffeomorphic to Λ1 × R; see [10, Proposition 4.9].

The remark above implies that we do not construct, for example, the Brown–
Szczarba models for function spaces with the same way as that of topological ver-
sions. In order to construct a rational model for a mapping space in Diff by applying
the method developed by Brown and Szczarba, we may use the fact that the natu-
ral map |K × L|D → |K|D × |L|D is a homotopy equivalence; see the proof of [30,
Corollary 4.13]. Here we use the realization functor | |D and the singular simplex
functor SD( ) due to Kihara [29] in stead of those in Section 2.3.

The proof of [30, Corollary 4.13] also enables us to obtain an equivalence

SD(C∞(|K|D, X)) ≃ Map(K,SD(X))

of simplicial sets for K in Sets∆
op

and X in Diff. This fact may be useful in
constructing a Brown–Szczarba model [5] for a diffeological mapping space.

¶A principal R-bundle. The term ΩE
1,0
2 is isomorphic to a subgroup of the abelian group

Fl(X) of flow bundles over X; see [27, Section 21].
∥We refer the reader to [3, 21] for the model structure.
∗∗This term is due to Iwase; visit the page https://www2.math.kyushu-u.ac.jp/~iwase/

BDHT2/Home.html

https://www2.math.kyushu-u.ac.jp/~iwase/BDHT2/Home.html
https://www2.math.kyushu-u.ac.jp/~iwase/BDHT2/Home.html
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Appendix A. Stratifolds as diffeological spaces

In order to define a general stratifold, we recall a differential space in the sense
of Sikorski [40].

Definition A.1. A differential space is a pair (S, C) consisting of a topological
space S and an R-subalgebra C of the R-algebra C0(S) of continuous real-valued
functions on S, which is assumed to be locally detectable and C∞-closed.

Local detectability means that f ∈ C if and only if for any x ∈ S, there exist an
open neighborhood U of x and an element g ∈ C such that f |U = g|U .
C∞-closedness means that for each n ≥ 1, each n-tuple (f1, ..., fn) of maps

in C and each smooth map g : Rn → R, the composite h : S → R defined by
h(x) = g(f1(x), ...., fn(x)) belongs to C.

Let (S, C) be a differential space and x an element in S. The vector space
consisting of derivations on the R-algebra Cx of the germs at x is denoted by TxS,
which is called the tangent space of the differential space at x; see [31, Chapter 1,
section 3].

Definition A.2. An n-dimensional stratifold is a differential space (S, C) such that
the following four conditions hold:

(1) S is a locally compact Hausdorff space with countable basis;
(2) for each x ∈ S, the dimension of the tangent space TxS is less than or equal

to n and the skeleta skt(S) := {x ∈ S | dimTxS ≤ t} are closed in S;
(3) for each x ∈ S and open neighborhood U of x in S, there exists a bump

function at x subordinate to U ; that is, a non-negative function ϕ ∈ C such
that ϕ(x) ̸= 0 and such that the support suppϕ := {p ∈ S | f(p) ̸= 0} is
contained in U ;

(4) the strata St := skt(S) − skt−1(S) are t-dimensional smooth manifolds
such that each restriction along i : St ↪→ S induces an isomorphism of

stalks i∗ : Cx
∼=→ C∞(St)x for each x ∈ St.

Let (S1, C1) and (S2, C2) be stratifolds and h : S1 → S2 a continuous map. We
call the map h, denoted h : (S1, C1) → (S2, C2), a morphism of stratifolds if ϕ◦h ∈ C1
for every ϕ ∈ C2.

A parametrized stratifold is constructed from a manifold attaching another man-
ifold with compact boundary. More precisely, let (S, C) be an n-dimensional strat-
ifold. Let W be an s-dimensional manifold with compact boundary ∂W endowed
with a collar c : ∂W × [0, ε) → W . Suppose that s > n. Let f : ∂W → S be
a morphism of stratifolds. Observe that for a manifold M without boundary, we
can regard M as the stratifold j(M) := (M, CM ) defined by CM = {ϕ : M → R |
ϕ : smooth}; see [31]. We consider the adjunction topological space S′ := S ∪f W .
Define the subalgebra of C0(S′) by

C′ =

{
g : S′ → R

∣∣∣∣ g|S ∈ C, g|W\∂W is smooth and for some positive real
number δ < ε, gc(w, t) = gf(w) for w ∈ ∂W and t < δ

}
.
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Then the pair (S′, C′) is a stratifold; see [31, Example 9] for more details. A
stratifold constructed by attaching inductively manifolds with such a way is called
a parametrized stratifold (p-stratifold for short).

Let Stfd be the category of stratifolds. We recall from [1] that a functor k : Stfd →
Diff is defined by k(S, C) = (S,DC) and k(f) = f for a morphism f : S → S′ of
stratifolds, where

DC :=

{
u : U → S

∣∣∣∣ U : open in Rq, q ≥ 0,
ϕ ◦ u ∈ C∞(U) for any ϕ ∈ C

}
.

Observe that a plot in DC is a set map. We see that the functor k is faithful,
but not full in general. It is worth mentioning that the fully faithful embedding
m : Mfd → Diff from the category Mfd of manifolds in Assertion 2.8 is indeed an
embedding j followed by k; that is, we have a sequence of functors

m : Mfd
fully faithful

j
// Stfd

k // Diff.

Here the functor j is defined by assignment M 7→ j(M). We refer the reader to [1,
Section 5] for the details of the functors.

Lemma A.3. Let (S, C) be a stratifold. An open subset of the underlying topological
space S is a D-open subset of the diffeological space k(S, C).

Proof. Let u be an element in DC with domain U . Then u : U → k(S, C) is a smooth
map in the sense of diffeology. In fact, for any plot p : V → U of the diffeology
U and for any ϕ ∈ C, we see that ϕ ◦ u∗(p) = (ϕ ◦ u) ◦ p is in C∞(V ) and hence
u∗(p) is in DC . Since U is a manifold, it follows from [1, Proposition 5.1] that u is
a morphism in Stfd. In particular, the plot u is continuous. It turns out that, by
definition, each open set of S is D-open. □

Remark A.4. While we do not know whether the functor k is full, a characterization
of a morphism of diff-spaces which stems from a morphism of stratifolds is described
in [1, Proposition 5.1].

Appendix B. Other topics related to our objects in diffeology

This section gives comments on some topics in diffeology that we do not deals
with in the body of this note.

B.1. The D-topology. We review results in [9, 25] concerning the D-topology of
a diffeological spaces. Let X be a diffeological space and Y a quotient set of X.
Then the result [25, 2.12] yields that the D-topology of the quotiemt diffeology on
Y coincides with the quotient topology of the D-topology.

As for a subset A of a diffeological space X, we have two topologies of A:

1) τ1(A) : the D-topology of the sub-diffeology on A and
2) τ2(A) : the sub-topology of the D-topology on X.

We see that τ1(A) is finer than τ2(A); that is, τ2(A) ⊆ τ1(A). Let A be a subset
of R. Then τ1(A) is discrete if and only if A is totally disconnected under the
sub-topology of R; see [9, Example 3.15]. This yields that τ1(Q) is the discrete
topology and then the topology is strictly finer than τ2(A). We observe that the
D-topology of R is the usual topology; see Assertion 2.9.



THE DE RHAM THEOREM IN DIFFEOLOGY 31

The results [9, Lemmas 3.16, 3.17 and 3.20] describe sufficient conditions for the
two topologies to coincide with each other. In particular, if A is a D-open subset
of a diffeological space X, then τ2(A) = τ1(A).

Lemma B.1. ([9, Lemma 3.16]) Let A be a convex set of Rn. Then τ1(A) = τ2(A).
In particular, τ1(∆

n
sub) = τ2(∆

n
sub).

Remark B.2. The functors C and D give rise to an equivalence between appropriate
full subcategories of Diff and Top. To describe this more precisely, we recall that the

unit and counit induce isomorphisms ηCX : CX
∼=→ CDCX and εDY : DCDY

∼=→
DY ; see [9, Propositios 3.3] and also [41].

Let C-Diff be the full subcategory of Diff consisting of objects isomorphic to dif-
feological spaces in the image of C and ∆-Top the full subcategory of Diff consisting
of objects isomorphic to topological spaces in the image of D. We observe that the
objects in the image of D are exactly the ∆-generated topological spaces; see [9,
Proposition 3.10]. The result [36, Lemma II. 6.4] implies that the functors are
restricted to equivalences between C-Diff and ∆-Top. The result [41, Proposition
2.2] asserts that the category NG of numerical generated topological spaces in [41]
is nothing but the category ∆-Top. It is worth mentioning that

(1) the category ∆-Top is complete, cocomplete and cartesian closed; see [41,
Proposition 2.4, Corollary 3.8],

(2) all CW-complexes are included in ∆-Top; see [41, Corollary 3.4], and

(3) the counit DCX
≃→ X is a weak equivalence for any topological space X;

see [41, Proposition 4.4].

The result [41, Proposition 2.4] enables us to conclude that, while the colomit
in ∆-Top coincides with that in Top, the product X ×∆ Y in ∆-Top is given by
X ×∆ Y = DC(X × Y ), where X × Y in the right-hand side denotes the usual
product in Top.

Remark B.3. Let X be in the category C-Diff. Since the unit ηX : X → CDX is
an isomorphism, it follows that the map Diff(∆n

sub, X) → Diff(∆n
sub, CDX) in-

duced by the unit is bijective and hence so is the composite Diff(∆n
sub, X) →

Top(∆n, DX) of the maps in (4.1). Thus the composite gives rise to an isomor-
phismH(C∗(SD• (X)sub))

∼= H∗(DX,R) for each objectX in C-Diff, whereH∗(-,R)
denotes the singular cohomology with coefficients in R. In particular, we have an
isomorphism H(C∗(SD• (CZ)sub))

∼= H∗(Z,R) for a CW-complex Z.

B.2. A generating family of a diffeology. Let F be a family of parametrizations
of a set X; that is, a set of maps U → X from open subsets of Rn for some
n ≥ 0. The diffeology ⟨F⟩ generated by F is defined by the set of parametraizations
P : U → X for each of which there exist an open neighborhood Vr for all r ∈ U
such that P |Vr

is constant or there exists a parametrization Q :W → X in F , and
a smooth map φ : Vr →W such that P |Vr = Q ◦ φ.

Vr
⊂

//

φ
��

U
P // X

W
Q∈F

66

Let (X,DX) be a diffeological space. A family of parametrizations F is a generating
family of DX if ⟨F⟩ = DX . We see that a chart {(Uj , ψj}j∈J of a manifold M gives

a generating family F = {ψ−1
j }j∈J of the standard diffeology of M .
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Following Iglesias-Zemmour [24], we introduce the notion of the dimension of a
diffeological space X which is defined with a generating families of the diffeology
of X. For a domain (open subset) U of Rn, we define the dimension of the domain
dimU by dimU = n.

Definition B.4. Let (X,DX) be a diffeological space and GF(X) the set of gen-
erating family of the diffeology of DX . Then the dimension dimX of X is defined
by

dim(X) := inf
F∈GF(X)

dim(F),

where dim(F) = sup(P :U→X)∈F dimU . If the diffeology of X has no finite dimen-
sional generating family, the dimension of X will be said to be infinity.

The topic on the dimension is discussed in [25, 1.77–1.83]. In particular, the
dimension of a manifold as a diffeological space coincides with the usual one†.

As for a subject concerning the Souriau–de Rham complex Ω∗(X) of a diff-space
X and the dimension of X, we see that Ωp(X) = 0 if p > dim(X). In fact, by
the definition of the generating family, each plot factors through locally a domain
of dimension less than p under the assumption. Observe that Ωp(U) = 0 for the
domain U .

B.3. Homotopy sets and homotopy groups in Diff. The homotopy set in Diff
is defined by the same way as that in Top. Moreover, by cut-off functions, we define
the smooth homootpy groups for a diffeological space; see [25, Chapter 5], [10, §3.1]
and [29, Theorem 1.4]. For a diffeological bundle; see Definition 4.1, we have the
homotopy exact sequence; see [25, §8.21].

Since the functor SD( ) is the right adjoint, it preserves the products. Then we
have

Lemma B.5. ([10, Lemma 4.10]) The functor SD : Diff → Sets∆
op

sends smoothly
homotopic maps to simplicially homotopic maps.

The functor D : Diff → Top is the left adjoint, it preserves the product – × R.
This follows from Lemma 2.10. In fact, D(R) = R is a locally compact Hausdorff
space. Then D sends smoothly homotopic maps to topologically homotopic maps.
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