
UPPER AND LOWER BOUNDS OF THE (CO)CHAIN TYPE

LEVEL OF A SPACE
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Abstract. We establish an upper bound for the cochain type level of the
total space of a pull-back fibration. It explains to us why the numerical in-

variants for principal bundles over the sphere are less than or equal to two.
Moreover computational examples of the levels of path spaces and Borel con-
structions, including biquotient spaces and Davis-Januszkiewicz spaces, are
presented. We also show that the chain type level of the homotopy fibre of a

map is greater than the E-category in the sense of Kahl, which is an algebraic
approximation of the Lusternik-Schnirelmann category of the map. The in-
equality fits between the grade and the projective dimension of the cohomology

of the homotopy fibre.

1. Introduction

The level of an object in a triangulated category was defined by Avramov, Buch-
weitz, Iyengar and Miller in [1]. The numerical invariant measures the number of
steps to build the given object from some fixed object via triangles. As for the level
defined in the derived category D(A) of differential graded modules (DG modules)
over a differential graded algebra (DGA) A, which is viewed as a triangulated cate-
gory [28], its important and fundamental properties are investigated in [1, Sections
3, 4 and 5]. Moreover, these authors have established many lower bounds of the
Loewy length of a module over a ring R by means of the invariant level; see [1,
Introduction].

The level filters the smallest thick subcategory of a triangulated category T
containing a given subcategory and hence the invariant is regarded as a refinement
of the notion of finite building for an object in T due to Dwyer, Greenlees and
Iyengar [8]; see also [4] and [14]. We also mention that the levels are closely related
to the notion of dimensions of triangulated categories; see [1, 2.2.4], [5] and [43].

To study topological spaces with categorical representation theory, we were look-
ing for an appropriate invariant which stratifies the category of topological spaces
in some sense and found the invariant level at last. Thus a topological invariant of
a space X over a space B, which is called the cochain type level of X over the space
B, was introduced in [35].

Let C∗(B;K) be the normalized singular cochain algebra of a space B with
coefficients in a field K. Then the level of X over a space B is defined to be the level
in the sense of [1] of the DG module C∗(X;K) over the DG algebra C∗(B;K) in the
triangulated category D(C∗(B;K)); see Section 2 for more details. It turns out that
the level of X characterizes indecomposable elements of D(C∗(B;K)) which make
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up the C∗(B;K)-module C∗(X;K) in the triangulated category. Such constitutions
are called molecules of C∗(X;K) in [35]. In order to make the observation more
clear, we recall some properties of the triangulated category D(C∗(B;K)).

By applying Auslander-Reiten theory for derived categories [17] [18], Jørgensen
[23] [24] has clarified the structure of the Auslander-Reiten quiver of the full sub-
category Dc(C∗(B;K)) of compact objects of D(C∗(B;K)) provided the space B
is Gorenstein at K in the sense of Félix, Halperin and Thomas [11]. In fact, the
result [24, Theorem 0.1] tells us that each component of the quiver is of the form
ZA∞; see also [23] and [44]. Depending on the detailed information of the quiver
of Dc(C∗(Sd;K)), the computation of the level of an appropriate space over the
sphere Sd is performed in [35]. In particular, we see that the level of a space X
over Sd is less than or equal to an integer l if and only if the DG module C∗(X;K)
over C∗(Sd;K) is made up of molecules lying between the lth horizontal line and
the bottom one of the quiver; see [44, Proposition 6.6], [35, Examples 5.2 and 5.3]
and [23, Theorem 8.13].

On the other hand, the result [35, Theorem 2.12] asserts that there exists just
one vertex in the Auslander-Reiten quiver which is realized by a space over Sd via
the singular cochain functor. This means that if the level of a space X over Sd is
greater than or equal to three, then the DG module C∗(X;K) consists of at least
two molecules in Dc(C∗(Sd;K)); see [35, Theorem 2.6]. Moreover the result [35,
Proposition 2.4] implies that all of the levels of total spaces of principal G-bundles
over the 4-dimensional sphere are less than or equal to two if the cohomology of
the classifying space of G is isomorphic to a polynomial algebra on generators with
even degree.

As mentioned above, the level of a DG module M in the triangulated category
D(A) of a DG algebra A counts the number of steps to buildM out of, for example,
A via triangles in D(A). In [35, Proposition 2.6], it is shown that the cochain type
level gives a lower estimate of the number of a pile of rational spherical fibrations.
Thus an important issue is to clarify further topological quantity which the level
measures.

As a first step, many computations of levels might be needed. In this paper,
we present a method for computing the levels of spaces. In particular, we obtain
an upper bound for the level of the corner space of a fibre square; see Theorem
2.2. Moreover, we try to compute the level of path spaces and Borel constructions,
including biquotient spaces [45] and Davis-Januszkiewicz spaces [7] [41].

We also introduce the chain type level of a space and consider the relation-
ship between the level and other topological invariants. Especially, the chain type
level of the homotopy fibre of a map f gives an upper estimate for the E-category
in the sense of Kahl [26], which is an algebraic approximation of the Lusternik-
Schnirelmann category (L.-S.category) of f ; see Theorem 2.7. This is one of the
remarkable results on the level. Thus we can bring the notion of the level into the
study of L.-S. categories and their related invariants. It turns out that the L.-S.
category of a simply-connected rational space X has an upper bound described in
terms of the chain type level associated with the space X; see Corollary 2.9. This
is an answer to a topological description of the level.
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2. The (co)chain type levels and main theorems

In this section, our results are stated in detail. We begin by recalling the explicit
definition of the level.

Let D be a triangulated category and A a subcategory of D. We denote by
addΣ(A) the smallest strict full subcategory of D that contains A and is closed
under finite direct sums and all shifts. The category smd(A) is defined to be the
smallest full subcategory of D that contains A and is closed under retracts. For
full subcategories A and B of D, let A ∗ B be the full subcategory whose objects L
occur in a triangle M → L → N → ΣM with M ∈ A and N ∈ B. We define nth
thickening thicknD(C) of a full subcategory C by

thicknD(C) = smd((addΣ(C))∗n),

where thick0D(C) = {0}; see [5] and [1, 2.2.1].
Let A be a DG algebra over a field and D(A) the triangulated category of DG

modules over A [28]. We then define a numerical invariant levelD(A)(M) for an
object M in D(A), which is called the level of M , by

levelD(A)(M) := inf{n ∈ N |M ∈ thicknD(A)(A)}.

If no such integer exists, we set levelD(A)(M) = ∞. Here A is regarded as the full
subcategory of D(A) consisting of the only object A. We refer the reader to [1, 2.1]
for the levels defined in more general triangulated categories and their fundamental
properties.

In what follows, let K be a field of arbitrary characteristic and all coefficients of
(co)chain complexes are in K. Moreover, unless otherwise specified, it is assumed
that a space has the homotopy type of a CW complex whose cohomology with
coefficients in the underlying field is locally finite; that is, the ith cohomology is of
finite dimension for any i.

Let B be a space and T OPB the category of maps with the target B. For any
object f : X → B, the normalized singular cochain C∗(X;K) of the source space X
of f is regarded as a DG module over the cochain algebra C∗(B;K) via the induced
map C∗(f) : C∗(B;K) → C∗(X;K). Thus the cochain gives rise to a contravariant
functor from the category T OPB to the triangulated category D(C∗(B;K)):

C∗(s(−);K) : T OPB → D(C∗(B;K)),

where s(f) for f in T OPB denotes the source of f . We say that a morphism φ :
f → g in T OPB is a weak equivalence if so is the underlying map φ : s(f) → s(g).
We write levelD(C∗(B;K))(s(f)) for levelD(C∗(B;K))(C

∗(s(f);K)) and refer to it as the
cochain type level of the space s(f). Since a weak equivalence in T OPB induces a
quasi-isomorphism of C∗(B;K)-modules, it follows that the cochain type level is a
numerical homotopy invariant.

Let Ff be the homotopy fibre of a map f : X → B. The Moore loop space ΩB
acts on the space Ff by the holonomy action. Thus the normalized chain complex
C∗(Ff ;K) is a DG module over the chain algebra C∗(ΩB;K). The chain and the
homotopy fibre construction enable us to obtain a covariant functor

C∗(F(−);K) : T OPB → D(C∗(ΩB;K))

from the category T OPB to the triangulated category D(C∗(ΩB;K)). We then de-
fine the chain type level of the space Ff by levelD(C∗(ΩB;K))(C∗(Ff ;K)) and denote it
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by levelD(C∗(ΩB;K))(Ff ). It is immediate that the chain type level is also a numerical
topological invariant for objects in T OPB with respect to weak equivalences.

We first examine especially the cochain type levels of spaces Eφ which fit into
any of the fibre squares F1, F2 and F3 explained below. Let B be a space with
basepoint ∗ and BI the space of all maps from the interval [0, 1] to B with the
compact-open topology. Let PB denote the subspace of BI of all paths ending at
∗. We define a map εi : B

I → B by εi(γ) = γ(i) for i = 0 and 1. Then one obtains
fibre squares F1 and F2 of the forms

Eφ //

��

PB

ε0

��

Eφ //

��

BI

ε0×ε1

��
and

X
φ // B X

φ // B ×B,

respectively. Observe that Eφ in F1 is nothing but the homotopy fibre of the map
φ : X → B. In particular if the map φ in F2 is the diagonal map B → B × B,
then Eφ is the free loop space; see [46] and [37] for applications of the fibre square
to the computation of the cohomology of a free loop space.

Let G be a connected Lie group and H a closed subgroup of G × G. Let δG
denote the closed subgroup defined by δG = {(g, g) ∈ G × G | g ∈ G}. Then one
has a fibre square F3 of the form

Eφ //

��

E(G×G)/δG

q

��
BH

φ // B(G×G),

where φ denotes the map induced by the inclusion j : H → G×G between the clas-
sifying spaces; see [10, Section 4]. Here the total space Eφ is the Borel construction
E(G×G)×H G associated with the action H ×G→ G defined by (h, k)g = hgk−1

for (h, k) ∈ H and g ∈ G. We mention that this total space is homotopy equivalent
to a double coset manifold under some hypotheses; see [10] and [45, (1.7), (2.2)
Proposition] for more details.

In the fibre squares F1 and F2, if the space B is simply-connected and satisfies
the condition that dimH∗(B;K) < ∞, then the cohomology H∗(ΩB;K) of the
fibre is of infinite dimension. This follows from the Leray-Serre spectral sequence
argument for the path-loop fibration ΩB → PB → B. Therefore the results [44,
Lemma 3.9, 6.3.2] allow us to conclude that levelD(C∗(X;K))(Eφ) = ∞. Then in this
paper we shall confine ourselves to considering the cochain type level of the space
Eφ in the case where H∗(B;K) is a polynomial algebra.

The first result is concerned with an upper bound of the cochain type level of
the corner space Eφ in any of fibre squares F1, F2 and F3. To describe the result
precisely, we recall from [34] an important class of pairs of maps. We say that a space
X is K-formal if it is simply-connected and there exists a quasi-isomorphism to the
cohomology H∗(X;K) from a minimal TV -model for X in the sense of Halperin
and Lemaire [16]; see also [9]. In this case we have a sequence of quasi-isomorphisms

H∗(X;K) TVX
ϕX

≃
oo mX

≃
// C∗(X;K),
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where mX : TVX → C∗(X;K) denotes a minimal TV -model for X. Let q : E → B
and φ : X → B be maps between K-formal spaces. Then the pair (q, φ) is called
relatively K-formalizable if there exists a commutative diagram up to homotopy

H∗(E;K) TVE
ϕE

≃
oo mE

≃
// C∗(E;K)

H∗(B;K)

H∗(q)

OO

H∗(φ)
��

TVB
ϕB

≃
oo mB

≃
//

q̃

OO

φ̃
��

C∗(B;K)

q∗
OO

φ∗
��

H∗(X;K) TVX
ϕX

≃
oo mX

≃
// C∗(X;K),

in which horizontal arrows are quasi-isomorphisms. We call a map q : E → B
K-formalizable if (q, ι) is a relatively K-formalizable pair for some constant map
ι : ∗ → B.

For a graded algebra A, let A+denote the ideal ⊕i≥1A
i. We write QA for the

vector space of indecomposable elements, namely QA = A/(A+ ·A+). Observe that
the vector space QA is viewed as a subspace of A.

It follows from the proof of [34, Theorem 1.1] that a pair (q, φ) of maps between
K-formal spaces with the same target is relatively K-formalizable if the two maps
satisfy any of the following three conditions (P1), (P2) and (P3) concerning a map
π : S → T respectively.

(P1) H
∗(S;K) and H∗(T ;K) are polynomial algebras with at most countably many

generators in which the operation Sq1 vanishes when the characteristic of the field
K is 2. Here Sq1x = Sqn−1x for x of degree n; see [39, 4.9].
(P2) The homomorphismBH∗(π;K) : BH∗(T ;K) → BH∗(S;K) defined byH∗(π;K)
between the bar complexes induces an injective homomorphism on the homology.

(P3) H̃
i(S;K) = 0 for any i with dim H̃i−1(ΩT ;K)− dim(QH∗(T ;K))i ̸= 0, where

H̃∗(X;K) denotes the reduced cohomology of a space X.

The following examples show that some important maps enjoy K-formalizability.

Example 2.1. (i) Let G be a connected Lie group and K a connected subgroup.
Suppose that H∗(G;Z) and H∗(K;Z) are p-torsion free. Then the map Bi : BK →
BG between classifying spaces induced by the inclusion i : K → G satisfies the
condition (P1) with respect to the field Fp. Assume further that rank G = rank K.
Let M be the homogeneous space G/K and aut1(M) the connected component
of function space of all self-maps on M containing the identity map. Then the
universal fibration π : Maut1(M) → Baut1(M) with fibre M satisfies the condition
(P1) with respect to the field Q; see [19] and [36].
(ii) Let q : E → B be a map betweenK-formal spaces with a section. Then q satisfies
the condition (P2). This follows from the naturality of the bar construction.
(iii) Consider a map f : S4 → BG for which G is a simply-connected Lie group and

H∗(G;Z) is p-torsion free. Suppose that H̃i(S4;Fp) ̸= 0, then i = 4. One obtains

dim H̃4−1(ΩBG;Fp) − dim(QH∗(BG;Fp))4 = 0. Thus the map f : S4 → BG
satisfies the condition (P3).

One of our results is described as follows.
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Theorem 2.2. Let F be a pull-back diagram

Eφ //

��

E

q

��
X

φ // B

in which q is a fibration and the pair (q, φ) is relatively K-formalizable. Suppose
that either of the following conditions (i) and (ii) holds.

(i) The cohomology H∗(B;K) is a polynomial algebra generated by m indecom-
posable elements. Let Λ be the subalgebra of H∗(B;K) generated by the vector

subspace Γ := Ker φ∗ ∩QH∗(B;K). Then dimTorΛ∗ (H
∗(E;K),K) <∞.

(ii) There exists a homotopy commutative diagram

E

q
��

≃ // B′

∆��
B

≃
h

// B′ ×B′

in which horizontal arrows are homotopy equivalences and ∆ is the diagonal map.
Moreover H∗(B′;K) is a polynomial algebra generated by m indecomposable ele-
ments. In this case put Γ = Ker (∆∗|QH∗(B′×B′)) ∩Ker (hφ)∗.
Then one has

levelD(C∗(X;K))(Eφ) ≤ m− dimΓ + 1.

In particular, levelD(C∗(X;K))(Eφ) = 1 if φ∗ ≡ 0.

We are able to characterize a space of level one with a spectral sequence.

Proposition 2.3. Let F ′ : F
j→ E → B be a fibration with B simply-connected and

F connected. If levelD(C∗(B;K))(E) = 1, then both the Leray-Serre spectral sequence
and the Eilenberg-Moore spectral sequence for F ′ collapse at the E2-term, where the
coefficients of the spectral sequence are in the field K.

Remark 2.4. Let G be a simply-connected Lie group. As mentioned above, with
the aid of Auslander-Reiten theory over spaces by Jørgensen [23][24][25], we have
determined the level L := levelD(C∗(S4;K))(Eφ) for the total space of the G-bundle

over S4 with the classifying map φ : S4 → BG provided H∗(BG;K) is a polynomial
algebra on generators with even degree. The result [35, Proposition 2.4] asserts that
L = 2 if φ∗ ̸= 0 and L = 1 otherwise. Though the computations in [35] are ad hoc,
the result is not accidental since it is deduced from Theorem 2.2 and Proposition
2.3.

In fact, let p : EG → BG be the universal bundle. The maps φ and p satisfy
the condition (P3), respectively so that the pair (φ, p) is relatively K-formalizable;
see Example 2.1. Since EG is contractible, the condition (i) in Theorem 2.2 holds.
Thanks to the theorem, we have L ≤ 2 if φ∗ ̸= 0 and L = 1 otherwise because
dimΓ = dimQH∗(BG)− 1 if φ∗ ̸= 0.

Suppose that φ∗ ̸= 0. In the Leray-Serre spectral sequence {E∗,∗
r , dr} for the

universal bundleG→ EG→ BG, the indecomposable elements ofH∗(G;K) ∼= E0,∗
2

are chosen as transgressive ones. Since φ∗ ̸= 0, it follows that the Leray-Serre
spectral sequence for the fibration G→ Eφ → S4 does not collapse at the E2-term.
Proposition 2.3 implies that L ̸= 1. We have L = 2.
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Let us mention that the original proof of [35, Proposition 2.4] enables us to obtain
the indecomposable objects in D(C∗(S4)) which construct the DG module C∗(Eφ)
over C∗(S4). As mentioned in the introduction, such objects are called molecules
because they are viewed as structural ones smaller than cellular cochains; see [35,
Section 2, Example 6.3].

In general, taking shifts and direct sums of objects with the same level leave the
invariant unchanged. From this fact one deduces the following noteworthy result
which states that the cochain type level of a Borel construction associated with Lie
groups coincides with that of the construction with their maximal tori.

Theorem 2.5. Let G be a connected Lie group, TH and TK maximal tori of sub-
groups H and K of G, respectively. Suppose that H∗(BG;K), H∗(BH;K) and
H∗(BK;K) are polynomial algebras with generators of even dimensions. Then

levelD(C∗(BH;K))(EG×H G/K) = levelD(C∗(BTH ;K))(EG×TH
G/TK).

In the rest of this section, we focus on the chain type levels of spaces.
Let DGM be the category of supplemented differential graded modules over K;

that is, an object M is of the form M = K⊕M where dK = 0 and d(M) ⊂M . Let
A be a monoid object in DGM, namely a differential graded algebra. We denote
by A♮ the underlying graded algebra of A.

In [26], Kahl introduced three notions of algebraic approximations of the L.S.-
category of a map as numerical invariants in monoidal cofibration categories; see
also [27]. We here confine ourselves to treating such notions in DGM-A, the cat-
egory of supplemented differential graded right A-modules. Then the chain type
level of a space is related to the E-category, which is one of the approximations.
In order to describe the result, we first recall the definition of the E-category of an
object in DGM-A.

Let B(K, A,A) → K → 0 be the bar resolution ofK as a right A-module. Observe
that B(K, A,A) = T (ΣA)⊗ A as a A♮-module, where A is the augmentation ideal
of A, (ΣA)n = An−1 and T (W ) denotes the tensor coalgebra generated by a vector
space W . Define a sub A-module EnA of B(K, A,A) by EnA = T (ΣA)≤n ⊗A.

Definition 2.6. [26] The E-category for M in DGM-A, denoted EcatAM , is the
least integer n for which there exists a morphism M → EnA in the homotopy
category of DGM-A. If there is no such integer, then we set EcatAM = ∞.

Let R be a graded algebra over K and M a graded module over R. Then
the grade of M , denoted gradeRM , is defined to be the least integer k such that

ExtkR(M,R) ̸= 0. If Ext∗R(M,R) = 0, then we set gradeRM = ∞. The projective
dimension of M , denoted pdRM , is defined to be the least integer k such that M
admits a projective resolution of the form 0 → Pk → Pk−1 → · · · → P0 → M → 0.
We set pdRM = ∞ if no such integer exists. By definition, it is immediate that
gradeRM ≤ pdRM .

The grade and the projective dimension are numerical invariants which appear in
homological algebra. The E-category is an invariant described, in general, in terms
of homotopical algebra; see [26, Definition 2.1]. The level is a numerical invariant
defined in a triangulated category as is seen above. These invariants and the L.-S.
category of a map meet with inequalities in the following theorem and the ensuing
remark.
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Theorem 2.7. Let f : X → Y be a map from a connected space to a simply-
connected space. Then one has

gradeH∗(ΩY )H∗(Ff )≤EcatC∗(ΩY )C∗(Ff )≤ levelD(C∗(ΩY ))(Ff )− 1≤dimH∗(X)− 1.

Assume further that dimTor
H∗(ΩY )
−i (H∗(Ff ),K) <∞ for any i ≥ 0. Then

levelD(C∗(ΩY ))(Ff )− 1 ≤ pdH∗(ΩY )H∗(Ff ).

Remark 2.8. Let f : X → Y be a map from a connected space to a simply-
connected space. Then it follows from [26, Theorems 2.7 and 3.5] that the E-
category EcatC∗(ΩY )C∗(Ff ) is less than or equal to the L.-S. category of f . In-
deed, the result [13, Theorem 35.9] due to Félix, Halperin and Thomas asserts that
gradeH∗(ΩY )H∗(Ff ) ≤ catf without assuming that Y is simply-connected. More-

over the latter half of the result implies that, if catf = gradeH∗(ΩY )H∗(Ff ), then

the value coincides with pdH∗(ΩY )H∗(Ff ). This yields that

catf = gradeH∗(ΩY )H∗(Ff ) = levelD(C∗(ΩY ))(Ff )− 1 = pdH∗(ΩY )H∗(Ff )

provided catf = gradeH∗(ΩY )H∗(Ff ) and Tor
H∗(ΩY )
−i (H∗(Ff ),K) is of finite dimen-

sion for any i.

The result [26, Theorem 8.3] enables us to conclude that the E-category coincides
with the M-category of a map f : X → Y between simply-connected spaces in the
sense of Halperin and Lemaire [16] and Idrissi [22]: EcatC∗(ΩX)C∗(Ff ) = Mcatf .
Thus Theorem 2.7 gives upper bounds of the M-category.

With the aid of the fascinating theorem due to Hess [20], we moreover have a
remarkable result on the L.-S. category of a rational space.

Corollary 2.9. Let X be a simply-connected rational space. Then

gradeH∗(ΩX;Q)Q ≤ catX ≤ levelD(C∗(ΩX;Q))Q− 1 ≤ dimH∗(X;Q)− 1.

Thanks to Theorem 2.7 and Corollary 2.9, computational examples of chain type
levels can be obtained; see Examples 6.3 and 6.4.

An outline for the rest of the article is as follows. In the third section, after fixing
notations and terminology for this article, we recall fundamental properties of the
level of DG-modules. In Section 4, we prove Theorem 2.2 and Proposition 2.3. A
corollary and a variant of Theorem 2.2 are also established. In Section 5, by means
of our results and general theory for levels developed in [1], we consider the numer-
ical invariant for path spaces, biquotient spaces [10][45] and Davis-Januszkiewicz
spaces [7][41] which appear in toric topology. Theorem 2.5 is proved in this section.
Section 6 is devoted to proving Theorem 2.7 and Corollary 2.9. We consider other
lower and upper estimates for the level in Section 7.

3. Preliminaries

Let K be a field of arbitrary characteristic. A graded module is a family M =
{M i}i∈Z of K-modules and a differential in M is a linear map dM : M i → M i+1

of degree +1 such that d2 = 0. We use the notation Mi = M−i to write M =
{Mi}i∈Z. Following [11, Appendix], we moreover use convention and terminology
in differential homological algebra; see also [12, Section 1] and [16, Appendix].

We here recall from [31, Part III, 1] the mapping cone construction. Let I denote
the unit interval K-module; that is, it is free on generators [0], [1] ∈ I0 and [I] ∈ I−1
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with d([I]) = [0] − [1]. Let A be a differential graded algebra (DG algebra) with
the underlying graded algebra A♮ and X a differential graded right A-module (DG
module). The cone CX is defined to be the quotient module (I/K{[1]}) ⊗ X.
We define the suspension ΣX by ΣX = (I/∂I) ⊗ X, where ∂I denotes the DG
submodule of I generated by [0] and [1]. Observe that (ΣM)n ∼= Mn+1. We then
have the mapping cone construction (Cf , d) which is defined by Cf = Y ⊕ΣX and

d =

(
dY f
0 −dX

)
. Observe that, by definition, triangles in D(A) come from the

sequences of the form X
f→ Y → Cf → ΣX via the localization functor from the

category of differential graded right A-modules to the derived category D(A).
Let f : X → Y be a morphism of DG A-modules. Consider the pushout diagram

X
f //

i ��

Y

��
CX // Y ∪f CX

in which i : X → CX denotes the natural inclusion and by definition Y ∪f CX =
Y ⊕ CX/((0, [0] ⊗ x) − (f(x), 0);x ∈ X). Define a map γ : Y ⊕ CX → Cf by
γ(0, [I] ⊗ x) = (0, x), γ(y, 0) = (y, 0) and γ(0, [0] ⊗ x) = (f(x), 0) for x ∈ X and
y ∈ Y . It follows that γ gives rise to an isomorphism γ : Y ∪f CX → Cf of
differential graded right A-modules.

Let F be a DG-module over A and F ′ a sub DG-module of F such that the
quotient F/F ′ is isomorphic to a coproduct of shifts of A, say

F/F ′ ∼=
⊕
i∈J

ΣliA ∼= Σ(Z ⊗A),

where Z denotes a graded vector space ⊕i∈JΣli−1K. Then F is isomorphic to a
right A♮-module of the form F ′ ⊕ Σ(Z ⊗ A). It follows that F fits in the pushout
diagram

Z ⊗A
ξ //

i ��

F ′

��
C(Z ⊗A) // F ′ ∪ξ C(Z ⊗A) ∼= F

in which ξ is a morphism of DG-modules over A defined by

ξ(z ⊗ a) = d(Σ(z ⊗ a))− (−1)deg ΣzΣz ⊗ da = d(Σ(z ⊗ 1))a

for z ⊗ a ∈ Z ⊗A.
We recall results concerning the level, which are used frequently in the rest of

this paper. The first one is useful when considering the cochain type levels of spaces
over a K-formal space.

Theorem 3.1. [35, Theorem 1.3] Let F be a fibre square as in Theorem 2.2 for
which (q, φ) is relatively K-formalizable. Then one has

levelD(C∗(X;K))(Eφ) = levelD(H∗(X;K))(H
∗(E;K)⊗L

H∗(B;K) H
∗(X;K)).

The level of a DG moduleM is evaluated with the length of a semi-free filtration
of M .
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Definition 3.2. [1, 4.1][11][12] A semi-free filtration of a DG moduleM over a DG
algebra A is a family {Fn}n∈Z of DG submodules of M satisfying the condition:
F−1 = 0, Fn ⊂ Fn+1, ∪n≥0F

n = M and Fn/Fn−1 is isomorphic to a direct sum
of shifts of A. A module M admitting a semi-free filtration is called semi-free. We
say that the filtration {Fn}n∈Z has class at most l if F l = M for some integer l.
Moreover {Fn}n∈Z is called finite if the subquotients are finitely generated.

The above argument yields that Fn is constructed from Fn−1 via the mapping
cone construction.

Theorem 3.3. [1, Theorem 4.2] Let M be a DG module over a DG algebra A and
l a non-negative integer. Then levelD(A)(M) ≤ l if and only if M is a retract in
D(A) of some DG module admitting a finite semi-free filtration of class at most
l − 1.

4. Proofs of Theorem 2.2 and Proposition 2.3

We may write C∗(X) and H∗(X) in place of C∗(X;K) and H∗(X;K), respec-
tively.

Proof of Theorem 2.2. We first prove the assertion under the condition (i).
Let K → H∗(E) → 0 be the resolution of H∗(E) which is obtained by the

two-sided Koszul resolution of H∗(B) ∼= K[u1, ..., um]; that is,

(K, d) = (H∗(E)⊗ E[su1, ..., sum]⊗K[u1, ..., um], d),

where d(sui) = q∗ui ⊗ 1 − 1 ⊗ ui for i = 1, ...,m, bideg y ⊗ 1 = (0,deg y) for
y ∈ H∗(E), bideg sui = (−1,deg ui), bideg 1⊗ ui = (0,deg ui) and E[su1, ..., sum]
denotes the exterior algebra generated by su1, ..., sum; see [3]. Thus in D(H∗(X)),

L := H∗(E)⊗L
H∗(B) H

∗(X) ∼= (K ⊗H∗(B) H
∗(X), δ)

∼= (H∗(E)⊗ E[su1, ..., sum]⊗H∗(X), δ),

where δ(sui) = q∗ui ⊗ 1 − 1 ⊗ φ∗ui. Put s = dimΓ. Without loss of generality,
it can be assumed that the set {um−s+1, ..., um} is a basis of Γ. Let K⟨M⟩ denote
the vector space spanned by a set M , where K⟨ϕ⟩ = K. Put F 0 = H∗(E) ⊗
E[um−s+1, ..., um]⊗H∗(X). For any integer l with 1 ≤ l ≤ m− s, we define a DG
submodule F l of L by

F l = H∗(E)⊗ E[sum−s+1, ..., sum]

⊗K⟨sui1 · · · suik | 0 ≤ k ≤ l, 1 ≤ i1 < · · · < ik ≤ m− s⟩ ⊗H∗(X).

Then {F l}0≤l≤m−s is a finite semi-free filtration of L. In fact,
∪

0≤l≤m−s F
l = L

and the quotient F l/F l−1 is isomorphic to a finite direct sum of shifts of H∗(X) in

D(H∗(X)). Observe that TorΛ(H∗(E),K) = H(H∗(E)⊗E[sum−s+1, ..., sum]) is of
finite dimension by assumption. It follows from Theorem 3.3 that levelD(H∗(X))(L)
is less than or equal tom−s+1. In view of Theorem 3.1, we have levelD(C∗(X))(Eφ) =
levelD(H∗(X))(L). One obtains the inequality.

Suppose that the condition (ii) holds. It is immediate that Ker (∆∗|QH∗(B′×B′)) ∼=
K⟨z1 ⊗ 1 − 1 ⊗ z1, ..., zm ⊗ 1 − 1 ⊗ zm⟩. We have a free resolution of H∗(B′) as a
right H∗(B′ ×B′)-module of the form

(E[sz1, ..., szm]⊗H∗(B′ ×B′), ∂) → H∗(B′) → 0
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in which ∂(szi) = zi⊗1−1⊗ zi for i = 1, ...,m ; see [46] [32, Proposition 1.1]. This
enables us to conclude that in D(H∗(X))

H∗(BIψ)⊗L
H∗(B×B) H

∗(X) ∼= (E[sz1, ..., szm]⊗H∗(X), ∂̃)

for which ∂̃(szi) = ψ∗(zi ⊗ 1 − 1 ⊗ zi) for i = 1, ...,m. By adapting the above
argument, we obtain the result. �

Corollary 4.1. Let F → E
q→ B be a fibration for which q is K-formalizable.

Suppose that H∗(B;K) is a polynomial algebra generated by m indecomposable el-
ements. Then levelD(C∗(E;K))(F ) ≤ m− dim(Ker q∗ ∩QH∗(B;K)) + 1.

Proof. By assumption q isK-formalizable; that is, (q, ι) is a relativelyK-formalizable
pair for some constant map ι : ∗ → B. We choose the element ι(∗) as a basepoint
of B. Consider the fibre square of the form

Fq //

��

PB
π��

E
q // B

in which π : PB → B is the path fibration. Observe that Fq is the homotopy fibre
of q and hence F ≃ Fq. Let ι′ : ∗ → PB be a homotopy equivalence map with
ι = πι′. Then we have a diagram

TVB
mB

≃
//

π̃��

C∗(B)

π∗
��

ι∗

xx

K
mPB

≃ //

= ))SSS
SSS

SSS
S C∗(PB)

(ι′)∗≃ ��
C∗(∗) = K,

where π̃ and mPB are the augmentation and the unit, respectively. Observe that
mPB is a quasi-isomorphism. Since the outer square and the triangle are commuta-
tive and ι∗ = (ι′)∗π∗, it follows from [12, Theorem 3.7] that π∗mB ≃ mPBπ̃. This
implies that (q, π) is relatively K-formalizable. It is immediate that the dimension

of TorK[Ker q∗∩QH∗(B)](H∗(PB),K) is finite because H∗(PB) = K. Theorem 2.2
yields the result. �

We have a variant of Theorem 2.2.

Proposition 4.2. Let F be the fibre square as in Theorem 2.2 for which the con-
dition (i) holds. Let Fφ denote the homotopy fibre of φ : X → B.

(1) Suppose that TorΛ∗ (H
∗(E;K),K) is a trivial H∗(B;K)/(Λ+)-module. Then

levelD(C∗(X;K))(Eφ) = levelD(C∗(X;K))(Fφ).

(2) Suppose that the cohomology H∗(X;K) is a polynomial algebra and the di-
mension of H∗(Fφ) is finite. Then

levelD(C∗(X;K))(Fφ) = dimQH∗(X;K) + 1.

Proof. With the same notation as in the proof of Theorem 2.2, we see that in
D = D(H∗(X))

L ∼= (TorΛ(H∗(E),K)⊗ E[su1, ..., sum−s]⊗H∗(X), δ).
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Since TorΛ(H∗(E),K) is a trivial H∗(B)/(Λ+)-module by assumption, it follows
that δ(sui) = −1⊗ φ∗(ui) for i = 1, ...,m− s. Thus we see that

L ∼=
⊕
i

ΣliK⊗L
K[u1,...,um−s]

H∗(X)

in D for some integers li. On the other hand,

K⊗L
H∗(B) H

∗(X) ∼= E[sum−s+1, ..., sum]⊗ E[su1, ..., sum−s]⊗H∗(X)

∼=
⊕
k

ΣlkE[su1, ..., sum−s]⊗H∗(X)

∼=
⊕
k

ΣlkK⊗L
K[u1,...,um−s]

H∗(X)

for some integers lk. The result [1, Lemma 2.4 (1)(3)] allows us to conclude that

levelD(H
∗(E)⊗L

H∗(B) H
∗(X)) = max

i
{levelD(ΣliK⊗L

K[u1,...,um−s]
H∗(X))}

= levelD(K⊗L
K[u1,...,um−s]

H∗(X))

= levelD(K⊗L
H∗(B) H

∗(X))

= levelD(C∗(X))(Fφ).

The last equality follows from Theorem 3.1 since φ is K-formalizable.
Applying the result [1, Corollary 5.7] to the DG module K ⊗L

H∗(B) H
∗(X) over

H∗(X), we have the latter half of the proposition. �

Remark 4.3. Let F be the fibre square as in Theorem 2.2. Theorem 3.1 and [1,
Proposition 3.4 (1)] imply that

levelD(C∗(X))(Eφ) = levelD(H∗(X))(H
∗(E)⊗L

H∗(B)H
∗(X)) ≤ levelD(H∗(B))(H

∗(E)).

Proof of Proposition 2.3. Let {Er, dr} and {Êr, d̂r} be the Eilenberg-Moore spec-
tral sequence and the Leray-Serre spectral sequence for F ′ with coefficients in K,
respectively. Since levelD(C∗(B))(E) = 1, it follows from Theorem 3.3 that C∗(E)
is a retract of a free C∗(B)-module of finite rank in D(C∗(B)). Thus H∗(E) is a
projective H∗(B)-module and hence

(4.1) Tor
H∗(B)
−l,∗ (H∗(E),K) = 0 for l > 0.

Since E∗,∗
2

∼= Tor
H∗(B)
−l,∗ (H∗(E),K), it follows that {Er, dr} collapses at the E2-term.

The induced map j∗ : H∗(E) → H∗(F ) factors through the edge homomorphism
edge and coincides with the composite

H∗(E) // // TorH
∗(B)

0,∗ (H∗(E),K)
edge // H∗(F ).

By virtue of (3.1), we see that the edge homomorphism is an isomorphism. This

yields that j∗ is an epimorphism. Hence {Êr, d̂r} collapses at the E2-term. �
Proposition 2.3 and the following lemma enable us to show that Eφ in Theorem 2.2
is not of level one in some cases; see Section 5 for such examples.

Lemma 4.4. Let F be the fibre square as in Theorem 2.2. If the differential graded
module H∗(E)⊗L

H∗(B) H
∗(X) is of level one, then so is H∗(Eφ).
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Proof. The DG module H∗(E)⊗L
H∗(B)H

∗(X) is a retract of a free H∗(X)-module

⊕ΣliH∗(X). Thus H∗(H∗(E) ⊗L
H∗(B) H

∗(X)) is a retract of H∗(⊕ΣliH∗(X)) =

⊕ΣliH∗(X). We see that H∗(H∗(E) ⊗L
H∗(B) H

∗(X)) is in thick1D(H∗(X))(H
∗(X)).

Since (q, φ) is relatively K-formalizable, it follows from [34, Proposition 3.2] that
H∗(Eφ) is isomorphic to H∗(H∗(E)⊗L

H∗(B)H
∗(X)) as an H∗(X)-module. We have

the result. �

5. Examples

By applying Theorem 2.2, Proposition 4.2, Proposition 2.3 and some results in
[1], we obtain computational examples of the cochain type levels of spaces.

We begin by recalling an important space which appears in toric topology. Let
Tm be the m-torus and D2 the disc in C, namely D2 = {z ∈ C | |z| ≤ 1}. Let V
be the set of ordinals [m] = {1, 2, ...,m}. For a subset w ⊂ V , we define

Bw := {(z1, ..., zm) ∈ (D2)m | |zi| = 1 for i /∈ w}.

Let S be an abstract simplicial complex with the vertex set V and ZS denote the
subspace (D2)m defined by

ZS = ∪σ∈SBσ.
Then the m-torus Tm acts on ZS via the natural action of Tm on (D2)m. We then

have a Borel fibration FS of the form ZS → ETm×Tm ZS
q→ BTm. Let DJ(S) be

the Davis-Januszkiewicz space associated with the given abstract simplicial complex
S; that is,

DJ(S) = ∪σ∈S(BT )σ
for which (BT )σ is the subspace of BTm defined by

(BT )σ = {(x1, ..., xm) ∈ BTm | xi = ∗ for i /∈ σ}.

The Stanley-Reisner algebra K[S] is defined to be the quotient graded algebra of
the form

K[t1, ..., tm]/(ti1 · · · til ; (i1, ..., il) /∈ S),

where deg ti = 2 for any i = 1, ...,m. Observe that H∗(DJ(S)) is isomorphic

to the Stanley-Reisner algebra K[S] and H∗(ZS ;K) ∼= TorH
∗(BTm)

∗ (K[S],K) as an
algebra; see [6] and [41].

Since the construction of the Davis-Januszkiewicz space is natural with respect
to simplicial maps; that is, for a simplicial map ϕ : K → S, we have a map
DJ(K) → DJ(S). In particular, the inclusion of abstract simplicial complex S
with the vertex set [m] to the standard m-dimensional simplicial complex ∆[m]

gives rise to the inclusion i : DJ(S) → DJ(∆[m]) = BTm.
The result [6, Theorem 6.29] due to Buchstaber and Panov asserts that there

exists a deformation retract j : ETm ×Tm ZS → DJ(S) such that the diagram

ETm ×Tm ZS
p //

j
��

BTm

DJ(S)
i

// BTm

is commutative. Thus we see that the homotopy fibre of the inclusion i : DJ(S) →
BTm has the homotopy type of the moment-angle complex ZS . The singular
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cochain complex C∗(DJ(S)) is viewed as a C∗(BTm)-module via the induced map
C∗(i). We then have

Proposition 5.1. levelD(C∗(BTm))(DJ(S)) = sup{i|TorH
∗(BTm)

−i,∗ (K[S],K) ̸= 0}+1.

This result is proved by using formality of the Davis-Januszkiewicz space and
the following proposition. The proof is postponed to Section 7.

Proposition 5.2. (cf. [1, Corollary 4.10]) Let p : E → B be a fibration. If p is
K-formalizable, then

levelD(C∗(B;K))(E) = pdH∗(B;K)(H
∗(E;K)) + 1

= sup{i|TorH
∗(B;K)

−i,∗ (H∗(E;K),K) ̸= 0}+ 1.

Proof of Proposition 5.1. The result [40, Theorem 4.8] due to Notbohm and Ray
implies that the cochain algebra C∗(DJ(S);K) is connected to the cohomology
H∗(DJ(K);K) with natural quasi-isomorphisms. Therefore, by applying the lifting
Lemma, we have a homotopy commutative diagram

H∗(DJ(S);K) TVDJ(S)
≃oo ≃ // C∗(DJ(S);K)

H∗(BTm;K)

H∗(i)

OO

TVBTm≃
oo

≃
//

OO

C∗(BTm;K)

C∗(q)

OO

in which horizontal arrows are quasi-isomorphisms. Thus it follows that the pair
(i, idBTm) is relatively K-formalizable. The result follows from Proposition 5.2.

�

Remark 5.3. Let ω be a subset of [m] and Sω the full subcomplex of a simplicial
complex S defined by Sω = {σ ∈ S | σ ⊆ ω}. Hochster’s result asserts that

Tor
K[t1,..,tm]
−i (K[S],K) ∼=

⊕
w⊆[m]

H̃ |ω|−1−i(Sω;K),

where H̃−1(ϕ) = K; see [41, Theorem 5.1]. Thus we have

levelD(C∗(BTm))(DJ(S)) = sup{i | ⊕w⊆[m] H̃
|ω|−1−i(Sω;K) ̸= 0}+ 1.

We next deal with the level of a path space which fits into the fibre square F2

mentioned in the introduction.
Let k be an integer and φk : S4 → BSU(n) a representative of the element k in

π4(BSU(n)) ∼= Z. Let ∆ : S4 → S4 × S4 be the diagonal map. We have a fibre
square of the form

BIk
//

��

BSU(n)I

ε0×ε1��
S4

(1×φk)∆
// BSU(n)×BSU(n).

Proposition 5.4. Let K be a field of characteristic p. Then one has

levelD(C∗(S4))(B
I
k) =

{
2 if 1− k is not divisible by p
1 otherwise.
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Proof. We first observe that H∗(BSU(n)) is a polynomial algebra generated by
n− 1 indecomposable elements with even degree. It is immediate that

Ker (∆∗|QH∗(B×B)) ∩Ker ψ∗
k = n− 1− 1

if 1 − k is not divisible by p, where ψk = (1 × φk)∆ and B = BSU(n). By virtue
of Theorem 2.2, we have L := levelD(C∗(S4))(B

I
k) ≤ 2. Suppose that L = 1. By

Lemma 4.4, we see that levelD(H∗(S4))(H
∗((BIk)) = 1. Proposition 2.3 implies that

H∗(BIk)
∼= H∗(ΩBSU(n))⊗H∗(S4) as a vector space. On the other handH∗(BIk) =

H(H∗(BSU(n)) ⊗L
H∗(BSU(n)×BSU(n)) H

∗(Sd)) ∼= H(E[sz1, ..., szn−1] ⊗H∗(X), ∂).

Since ψ∗
k ̸= 0, we have ∂ ̸= 0. This yields that

dimH∗(BIk) = dimH(E[sz1, ..., szn−1]⊗H∗(S4), ∂) < dimH∗(ΩBSU(n)))⊗H∗(S4),

which is a contradiction. Hence L = 2.
If 1 − k is divisible by p, then Ker (∆∗|QH∗(B×B)) ∩ Ker ψ∗

k = n − 1. Theorem
2.2 yields that L = 1. �

Let G be a connected Lie group and H a closed subgroup of G. Then we have

a fibration of the form G/H
i→ BH

Bj→ BG. The induced map i∗ : C∗(BH;K) →
C∗(G/H;K) makes C∗(G/H;K) a DG module over C∗(BH;K).

Proposition 5.5. Suppose that H∗(G;K) and H∗(H;K) are polynomial algebras
with generators of even dimensions. Then

levelD(C∗(BH;K))(G/H) = dimQH∗(BH;K) + 1.

Proof. The induced map Bj is K-formalizable; see [39, Section 7]. Thus Proposition
4.2 yields the result. �

To prove Theorem 2.5, we invoke the following lemma.

Lemma 5.6. (cf. [1, Proposition 3.4(1)]) Let ψ : A → B be a morphism of DG
algebras and M a DG module over B. For a DG module N over B, let ψ∗N denote
the DG module over A via ψ. Suppose that ψ∗B is a finite direct sum of shifts of
A. Then

levelD(A)(ψ∗M) ≤ levelD(B)(M).

Proof. Put l = levelD(B)(M). It follows from Theorem 3.3 that M admits a finite

semi-free filtration {Fn}0≤n≤l−1 of class at most l − 1. By definition, Fn/Fn−1

is isomorphic to a finite direct sum of shifts of B. Therefore ψ∗F
n/ψ∗F

n−1 is
isomorphic to a direct sum of shifts of A since so is ψ∗B. This completes the
proof. �

Proof of Theorem 2.5. We first observe that EG ×H G/K and EG ×TH G/TK fit
into the fibre squares

EG×H G/K
ξ //

��

BK

��

EG×TH G/TK
ξ //

��

BTK

��
and

BH // BG BTH // BG,

respectively, where ξ sends [x, g] to [xg]; see [33, (2.2)]. Thanks to Theorem 2.2, to
prove the result, it suffices to show that levelD(H∗(BH))(H

∗(BK)⊗L
H∗(BG)H

∗(BH))
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is equal to levelD(H∗(BTH))(H
∗(BTK)⊗L

H∗(BG)H
∗(BTH)). As is known [2, 6.3 The-

orem], H∗(BTH) ∼= H∗(BH)⊗H∗(H/TH) as an H∗(BH)-module and H∗(BTK) ∼=
H∗(BK) ⊗ H∗(H/TK) as an H∗(BK)-module. Observe that these isomorphisms
are also morphisms of H∗(BG)-modules. Thus one has

L1 := levelD(H∗(BH))(H
∗(BTK)⊗L

H∗(BG) H
∗(BTH))

= levelD(H∗(BH))(H
∗(K/TK)⊗H∗(BK)⊗L

H∗(BG) H
∗(BTH))

= levelD(H∗(BH))(H
∗(BK)⊗L

H∗(BG) H
∗(BTH))

= levelD(H∗(BH))(H
∗(BK)⊗L

H∗(BG) H
∗(BH))

≥ levelD(H∗(BTH))(H
∗(BK)⊗L

H∗(BG) H
∗(BTH))

= levelD(H∗(BTH))(H
∗(BTK)⊗L

H∗(BG) H
∗(BTH)) =: L2.

The second and third equalities follow from [1, Lemma 2.4 (1)(3)]. The existence
of the exact functor − ⊗L

H∗(BH) H
∗(BTH) : D(H∗(BH)) → D(H∗(BTH)) yields

the inequality; see [1, Lemma 3.4 (1)]. In view of Lemma 5.6, we have L1 ≤ L2 and
hence L1 = L2. This implies the result. �

6. Proof of Theorem 2.7 and computational examples

We first mention that the proof of Theorem 2.7 depends heavily on the proof of
[13, Theorem 35.9] and results due to Kahl in [26].

We prove the first inequality. Let A andM denote the differential graded algebra
C∗(ΩY ) and the C∗(ΩY )-module C∗(Ff ), respectively. Suppose that EcatAM = n.
Then by definition, there exists a morphism u : C∗(Ff ) → EnA in the homotopy
category of DGM-A. Let (R, d) be the Eilenberg-Moore resolution of M [13][15].
Then we have a composite

(R, d)
≃ // M

AW◦C∗(∆) // M ⊗M
1⊗u // M ⊗ EnA

in the homotopy category of DGM-A for which A acts diagonally on the target,
where AW : C∗(X ×X) → C∗(X)⊗ C∗(X) denotes the Alexander-Whitney map.
Observe that the A-module (R, d) has a semi-free filtration. Therefore by means of
the lifting Lemma, we see that there exists a morphism

ψ : (R, d) // M ⊗ EnA =M ⊗ T≤n(ΣA)⊗A

in DGM-A. Thus we can proceed the proof of [13, Theorem 35.9] from its Step 4
with the map ψ. In consequence, we have the first inequality.

Before proving the second inequality, we recall the definition of the trivial cate-
gory in the sense of Kahl; see [26, Definition 2.1].

We call a morphism f : P → Q in DGM-A an elementary cofibration if there
exists an inclusion i : X → Y between differential graded vector spaces such that f
is a cobase extension of the map i⊗ idA : X ⊗ A → Y ⊗ A; that is, the morphism
f fits in the pushout diagram

X ⊗A

i⊗idA
��

// P

f
��

Y ⊗A // Q
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in DGM-A for an appropriate morphism X⊗A→ P of supplemented DG modules

over A. We denote an elementary cofibration by f : P // // Q .

Definition 6.1. LetM be an object ofDGM-A. The trivial category ofM , denoted

trivcatAM , is the least integer n for which there exists a sequence P 0 // // · · · // // Pn

of elementary cofibrations such that P 0 is a free A-module and Pn is isomorphic
to M in the homotopy category of DGM-A. If no such integer exists, we set
trivcatAM = ∞.

Lemma 6.2. Let M be an object in DGM-A. Then there exists an object M ′ in
DGM-A such that M is a retract of M ′ in the homotopy category DGM-A and

levelD(A)M − 1 ≥ trivcatAM
′.

Proof. Suppose that levelD(A)M = l. By virtue of Theorem 3.3, there exists an
DG-module M ′ such that M is a retract of M ′ in D(A) and M ′ admits a finite
semi-free resolution {Fn}n≥−1 of class at most l− 1. Since M is supplemented and
M ′ is connected to a DG-module of the formM⊕N for a DG-module N with quasi-
isomorphisms, it follows that M ′ is also supplemented. We write M ′ = K⊕M ′ for
which d1 = 0 and d(M ′) ⊂M ′.

Suppose that there exists an integer i such that F i+1 is supplemented but not
F i. Thus we see that F i+1 ∼= F i⊕Σ(Zi+1⊗A) as an A♮-module for which Zi+1 is a
finite dimensional graded vector space endowed with the trivial differential. We may
further assume that K is a direct summand of Zi+1

−1 and the element 1 ∈ K ⊂ Zi+1

corresponds to the element 1 in F i+1 under the isomorphism mentioned above.
We shall construct a sequence of elementary cofibrations with M ′ as the target.

Put F̃ s = F s for s > i and F̃ s = F s ⊕ A for s ≤ i. We define ιs : F̃ s → F̃ s+1

by ι̃s = ιs for s > i and ι̃s = ιs ⊕ id for s < i, where ιs : F s → F s+1 denotes

the inclusion. Moreover define ι̃i : F̃
i = F i ⊕ A → F i+1 ∼= F i ⊕ Σ(Zi+1 ⊗ A) by

ι̃i(1) = Σ1 for 1 ∈ A and ι̃i(w) = ι(w) for w ∈ F i. We write Zi+1 = K⊕ Z. Then
it follows that

F i ⊕ Σ(Zi+1 ⊗A) ∼= F i ⊕ (ΣK⊗A⊕ Σ(Z ⊗A)) ∼= F̃ i ⊕ Σ(Z ⊗A).

Consider the pushout diagram

(Z ⊕K)⊗A (Z ⊗A)⊕A
ξ //

i
��

F i ⊕A = F̃ i

��
(CZ ⊕K)⊗A C(Z ⊗A)⊕A // F̃ i ∪ξ (C(Z ⊗A)⊕A))

in DGM-A in which ξ is a morphism of DG A-modules defined by ξ(z ⊗ a) =
d(Σ(z⊗ a))− (−1)deg ΣzΣz⊗ da = d(Σ(z⊗ 1))a for z⊗ a ∈ Z ⊗A and ξ(a) = a for
a ∈ 0⊕A; see Section 1. We then see that

F̃ i ∪ξ (C(Z ⊗A)⊕A)) = F i ⊕A⊕ C(Z ⊗A)⊕A/(ξ(w)− i(w);w ∈ (Z ⊗A)⊕A)

∼= {F i ⊕ C(Z ⊗A)/(ξ(w)− i(w);w ∈ (Z ⊗A))} ⊕A

∼= F i ⊕A⊕ Σ(Z ⊗A) ∼= F̃ i+1.

Thus the inclusion F̃ i → F̃ i+1 is an elementary cofibration.



18 KATSUHIKO KURIBAYASHI

In the case where s > i, there exists an inclusion ιs : F
s → F s+1 ∼= F s⊕Σ(Z⊗A)

such that ιs(1) = 1. Thus we obtain a pushout diagram

(Z ⊕K)⊗A (Z ⊗A)⊕A
ξ′ //

i
��

F s

��
(CZ ⊕K)⊗A C(Z ⊗A)⊕A // F s ∪ξ′ (C(Z ⊗A)⊕A))

in DGM-A in which ξ′ is defined by ξ′(z) = d(Σ(z ⊗ 1)) for z ∈ Z and ξ′(1) = 1
for 1 ∈ 0⊕A. It follows that

F s ∪ξ′ (C(Z ⊗A)⊕A)) ∼= F s ⊕ C(Z ⊗A)/(ξ′(w)− i(w);w ∈ Z ⊗A) ∼= F s+1.

In the case where s < i, we obtain a pushout diagram

(Z ⊕K)⊗A (Z ⊗A)⊕A
ζ⊕idA //

i
��

F s ⊕A = F̃ s

��
(CZ ⊕K)⊗A C(Z ⊗A)⊕A // (F s ⊕A) ∪ζ⊕idA (C(Z ⊗A)⊕A))

in DGM-A in which ζ is defined by ζ(z) = d(Σ(z ⊗ 1)) for z ∈ Z. It follows that

(F s ⊕A) ∪ζ⊕idA (C(Z ⊗A)⊕A)) ∼= {F s ∪ζ C(Z ⊗A)} ⊕A ∼= F s+1 ⊕A = F̃ s+1.

The above argument enables us to obtain a sequence of elementary cofibrations

F̃ 0 // // F̃ 2 // // · · · // // F̃ i // // F̃ i+1 // // · · · // // F̃ l−1 =M ′.

This yields that trivcatAM
′ ≤ l − 1. �

We are now ready to prove the second inequality. Let M ′ be the supplemented
DG-module described in Lemma 6.2. The result [26, Theorem 2.6] allows us to
conclude that n := trivcatAM

′ ≥ EcatAM
′. Thus there exists a morphism M ′ →

EnM in the homotopy category Ho(DGM-A) . SinceM is a retract ofM ′, we have
a morphism M → M ′ in Ho(DGM-A). This implies that EcatAM

′ ≥ EcatAM .
We have the second inequality.

The result [44, Lemma 6.5] implies that levelD(A)M ≤ dimH(M ⊗L
A K). In our

case, we have H(M ⊗L
AK) = H(C∗(Ff )⊗L

C∗(ΩY )K) ∼= H∗(X;K). The isomorphism

follows from the Eilenberg-Moore theorem; see for example [15, Theorem 3.9]. This
enables us to obtain the last inequality.

The latter half of the assertion follows from Lemma 7.1 below.

Proof of Corollary 2.9. As described in Section 2, the E-category in DGM−C∗(ΩX)
coincides with the M-category; that is, we have EcatC∗(ΩX)Q = Mcat(TV, d), where
the right hand side denotes the M-category of a TV-model for X in the sense of
Halperin and Lemaire [16]. It follows from [16, Theorem 3.3 (ii)] and the main
theorem in [20] that Mcat(TV, d) = catX. We have the result. �

Example 6.3. Let X be a simply-connected space whose cohomology with coeffi-
cients in K is generated by a single element x. Suppose that xl ̸= 0 and xl+1 = 0.
We compute levelD(C∗(ΩX;K))K. Theorem 2.7 yields that

Mcat(TV ) = EcatC∗(ΩX;K)K ≤ levelD(C∗(ΩX;K))K− 1 ≤ dimH∗(X;K)− 1,
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where (TV, d) is a TV-model for X. The result [16, Proposition 1.5] implies that
the cup length c(X) of H∗(X;K) is a lower bound of the M-category. Thus we have
levelC∗(ΩX;K)K = l + 1.

Example 6.4. We next consider levelC∗(ΩX;Q)Q for a simply-connected rational H-
space X with dimH∗(X;Q) < ∞. It follows that H∗(X;Q) is isomorphic, as a
Hopf algebra, to the exterior algebra generated by primitive elements with odd
degrees, say H∗(X;Q) = ∧(x1, ..., xl). We see that H∗(ΩX;Q) ∼= Q[y1, ..., yl] as an
algebra, where deg yi = deg xi − 1. Theorem 2.7 and Corollary 2.9 yield that

l = c(X) ≤ catX = levelD(C∗(ΩX;Q))Q− 1 ≤ pdH∗(ΩX)Q = l.

We have catX + 1 = levelD(C∗(ΩY ;Q))Q = l + 1.

7. Lower and upper bounds of the levels

In this section, we prove Proposition 5.2. To this end, we need lemmas.
Throughout this section, it is assumed that a DGA A is non-negative; that is,

Ai = 0 for i < 0.

Lemma 7.1. (cf. [1, Theorem 5.5]) Let A be a non-negatively graded DGA over a
field K with H0(A) = K and M a DG module over A. Suppose that there exists an

integer N such that Hj(M) = 0 for j < N . Assume further that Tor
H(A)
−i (H(M),K)

is of finite dimension for any i ≤ 0. Then one has

levelD(A)(M) ≤ pdH(A)(H(M)) + 1 = sup{i|TorH(A)
−i (H(M),K) ̸= 0}+ 1.

The same assertion as above holds for the homological case.

Proof. Suppose that pdH(A)(H(M)) + 1 = l < ∞. Then we have a projective

resolution of H(M) as a right H(A)-module of the form

0 → Pl → · · · → P1 → P0 → H(M) → 0.

We can assume that Pl,k = 0 for k < N . Since H0(A) = K, it follows from
[38, 12.2.8 Theorem] that each Pi is a free H(A)-module, say Pi = Xi ⊗K H(A);
see also [13, page 274, Remark 1]. We further assume that the resolution is
minimal. Observe that the same argument as in the proof of [42, Theorem 2.4]
is applicable when constructing a minimal projective resolution of H(M) as an
H(A)-module since H(M) and H(A) are locally finite. By assumption, we have

dimTor
H(A)
−i (H(M),K) <∞ for i ≤ 0. This fact yields that dimXi <∞.

The result [15, Theorem 2.1] implies that there exists a quasi-isomorphism

⊕iP̃i
≃→M such that P̃i = Xi⊗KA as an A♮-module and that ⊕iP̃i admits semi-free

filtration {Fn} with Fn = ⊕i≤nP̃i. By Theorem 3.3, we have levelD(A)(M) ≤ l+1.
This completes the proof. �
Lemma 7.2. Let A be a graded algebra over a field and M a right A-module. Then
pdA(M) + 1 ≤ levelD(A)(M).

Proof. The assertion follows from the proof of the result [30, Lemma 2.4] due to
Krause and Kussin. �

By Lemmas 7.1 and 7.2, we have

Corollary 7.3. Under the same assumption as in Lemmas 7.1,

levelD(A)(M) ≤ levelD(H(A))(H(M)).
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Proof of Proposition 5.2. Lemma 7.1 and its proof yield that

levelD(C∗(B))(E) ≤ pdH∗(B)(H
∗(E)) + 1 = sup{i|TorH

∗(B)
−i (H∗(E),K) ̸= 0) + 1.

We view the fibration p : E → B as a pull-back of itself by the identity map
B → B. Since p is K-formalizable, it follows that (p, idB) is a K-formalizable pair.
By Theorem 3.1, we see that

levelD(C∗(B))(E) = levelD(H∗(B))(H
∗(E)⊗L

H∗(B) H
∗(B))

= levelD(H∗(B))(H
∗(E)).

Lemma 7.2 implies that pdH∗(B;K)(H
∗(E;K)) + 1 ≤ levelD(H∗(B))(H

∗(E)). We
have the result. �

Remark 7.4. The inequality in Lemma 7.1 may be strict. For example, we consider
the Hopf map S3 → S2 with fibre S1. Then C∗(S3;K) is viewed as C∗(S2;K)-
module via the Hopf map and hence it is in D(C∗(S2;K)). The results [35, Propo-
sition 2.10] and [44, Proposition 6.6] allow us to conclude that levelD(C∗(S2;K))(S

3) =

2. On the other hand, we can construct a minimal projective resolution ofH∗(S3;K)
as an H∗(S2;K)-module of the form

K = (∧(x3)⊗ Γ[w]⊗ ∧(s−1x2)⊗K[x2]/(x
2
2), d) → ∧(x3) → 0,

for which d(w) = s−1x2 · x2, bideg s−1x2 = (−1, 2), bideg w = (−2, 4), x2 and x3
are generators of H∗(S2;K) and H∗(S3;K), respectively. Here Γ[w] denotes the
divided power algebra generated by w. We see that

TorH
∗(S2;K)

∗ (H∗(S3;K),K) = ∧(x3)⊗ Γ[w]⊗ ∧(s−1x2).

It is readily seen that the torsion product is of infinite dimension. This implies that
pdH∗(S2;K)(H

∗(S3;K)) = ∞.

We conclude this section by deducing a lower bound of the level.
Let A be a DGA. Following Hovey and Lockridge [21], we call a map f :M → N

in D(A) a ghost if H(f) = 0. Moreover M ∈ D(A) is said to have ghost length n,
denoted gh.len.M = n, if every composition

M
f1→ Y1

f2→ · · · fn+1→ Yn+1

of n+ 1 ghost is trivial in D(A), and there exists a composite of n ghosts from M
is non trivial in D(A).

Proposition 7.5. [44, Lemma 6.7] For any M ∈ D(A), one has

gh.len.M + 1 ≤ levelD(A)(M).

In order to prove Proposition 7.5, we recall the so-called Ghost lemma.

Lemma 7.6. [43] [30, Lemma 2.3] Let D be a triangulated category and let

H1
F1→ H2

F2→ · · · Fn+1→ Hn+1

be a sequence of morphism between cohomological functors Dop → Ab. Let X be
a subcategory of D such that Fi vanishes on thick1D(X ) = smd((addΣ(X ))). Then
the composite Fn ◦ · · · ◦ F1 vanishes on thicknD(X ).
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Proof of Proposition 7.5. For an object M ∈ D(A), suppose that there exists a

composite M
f1→ Y1

f2→ · · · fn→ Yn of n ghosts which is non trivial in D(A). We have
a sequence

HomD(A)(−,M)
(f1)∗→ HomD(A)(−, Y1)

(f2)∗→ · · · (fn)∗→ HomD(A)(−, Yn)

of morphisms between cohomological functors. Since HomD(A)(Σ
−nA,M) = Hn(M)

and each fi is a ghost, it follows that (fi)∗ is vanishes on thick1D(A). By Lemma
7.6, we see that (fn)∗◦· · ·◦(f1)∗ vanishes on thicknD(A). Thus ifM is in thicknD(A),
then fn ◦ · · · ◦ f1 = (fn)∗ ◦ · · · ◦ (f1)∗(idM ) :M → Yn is trivial in D(A), which is a
contradiction and hence we have the result. �
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