THE BV ALGEBRA IN STRING TOPOLOGY OF CLASSIFYING SPACES

KATSUHIKO KURIBAYASHI AND LUC MENICHI

Abstract. For almost any compact connected Lie group $G$ and any field $\mathbb{F}_p$, we compute the Batalin-Vilkovisky algebra $H^{*+\dim G}(LBG; \mathbb{F}_p)$ on the loop cohomology of the classifying space introduced by Chataur and the second author. In particular, if $p$ is odd or $p = 0$, this Batalin-Vilkovisky algebra is isomorphic to the Hochschild cohomology $HH^*(H_*(G), H_*(G))$. Over $\mathbb{F}_2$, such isomorphism of Batalin-Vilkovisky algebras does not hold when $G = SO(3)$ or $G = G_2$.

1. Introduction

Let $M$ be a closed oriented smooth manifold and let $LM$ denote the space of free loops on $M$. Chas and Sullivan [4] have defined a product on the homology of $LM$, called the loop product, $H_*(LM) \otimes H_*(LM) \to H_{*-\dim M}(LM)$. They showed that this loop product, together with the homological BV-operator $\Delta : H_*(LM) \to H_{*-1}(LM)$, make the shifted free loop space homology $H_*(LM) := H_{*+\dim M}(LM)$ into a Batalin-Vilkovisky algebra, or BV algebra. Over $\mathbb{Q}$, when $M$ is simply-connected, this BV algebra can be computed using Hochschild cohomology [11]. In particular, if $M$ is formal over $\mathbb{Q}$, there is an isomorphism of BV algebras between $H_*(LM)$ and $HH^*(H_*(M; \mathbb{Q}), H_*(M; \mathbb{Q}))$, the Hochschild cohomology of the symmetric Frobenius algebra $H^*(M; \mathbb{Q})$. Over a field $\mathbb{F}_p$, if $p \neq 0$, this BV algebra $H_*(LM)$ is hard to compute. It has been computed only for complex Stiefel manifolds [40], spheres [33], compact Lie groups [19, 34] and complex projective spaces [5, 17].

Let $G$ be a connected compact Lie group of dimension $d$ and let $BG$ its classifying space. Motivated by Freed-Hopkins-Teleman twisted K-theory [13] and by a structure of symmetric Frobenius algebra on $H_*(G)$, Chataur and the second author [6] have proved that the homology of the free loop space $LBG$ with coefficients in a field $K$ admits the structure of a $d$-dimensional homological conformal field theory (More generally, if $G$ acts smoothly on $M$, Behrend, Ginot, Noohi and Xu [1, Theorem 14.2] have proved that $H_*(L(EG \times G M))$ is a $(d - \dim M)$-homological conformal field theory.). In particular, the operation associated with a cobordism connecting one dimensional manifolds called the pair of pants, defined a product on the cohomology of $LBG$, called the dual of the loop coproduct, $H^*(LBG) \otimes H^*(LBG) \to H^{*-d}(LBG)$. Chataur and the second author showed that the dual of the loop coproduct, together with the cohomological BV-operator $\Delta : H^*(LBG) \to H^{*-1}(LBG)$, make the shifted free loop space cohomology $H^*(LBG) := H^{*-d}(LBG)$ into a BV algebra up to signs. Over $\mathbb{F}_2$, Hepworth and Lahtinen [18] have extended this result to non connected compact Lie group

2010 Mathematics Subject Classification: 55P50, 81T40, 55R35
Key words and phrases. String topology, Batalin-Vilkovisky algebra, Classifying space.

Department of Mathematical Sciences, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan e-mail:kuri@math.shinshu-u.ac.jp

Département de Mathématiques Faculté des Sciences Université d’Angers 49045 Angers France e-mail:luc.menichi@univ-angers.fr
and more difficult, they showed that this $d$-dimensional homological conformal field theory, in particular this algebra $\mathbb{H}^*(LBG)$, has an unit. Our first result is to solve the sign issues and to show that indeed, $\mathbb{H}^*(LBG)$ is a BV algebra (Corollary 9.3). In fact, we show more generally that the dual of a $d$-homological field theory has a structure of BV algebra (Theorem 9.1).

In [29], Lahtinen computes some non-trivial higher operations in the structure of this $d$-dimensional homological conformal field theory on the cohomology of $BG$ for some compact Lie groups $G$. In this paper, we compute the most important part of this $d$-dimensional homological conformal field theory, namely the BV-algebra $\mathbb{H}^*(LBG;\mathbb{F}_p)$ for almost any connected compact Lie group $G$ and any field $\mathbb{F}_p$. According to our knowledge, this BV-algebra $\mathbb{H}^*(LBG;\mathbb{F}_p)$ has never been computed on any example.

Our method is completely different from the methods used to compute the BV algebra $\mathbb{H}_*(LM)$ in the known cases recalled above. Suppose that the cohomology algebra of $BG$ over $\mathbb{F}_p$, $\mathbb{H}^*(BG;\mathbb{F}_p)$, is a polynomial algebra $\mathbb{F}_p[y_1,...,y_N]$ (few connected compact Lie groups do not satisfy this hypothesis). Then the cup product on $\mathbb{H}^*(LBG;\mathbb{F}_p)$ was first computed by the first author in [27] (see [23] for a quick calculation). In his paper [41] entitled "cap products in String topology", Tamanoi explains the relations between the cap product and the loop product on $H_*(LM)$. Dually, in Theorem 2.2 entitled "cup products in String topology of classifying spaces", we give the relations between the cup product on $\mathbb{H}^*(LBG)$ and the BV algebra $\mathbb{H}^*(LBG)$. Knowing the cup product on $\mathbb{H}^*(LBG)$, these relations give the dual of the loop coproduct, $m$ on $\mathbb{H}^*(LBG)$ (Theorem 3.1). But now, since the cohomological BV-operator $\Delta$ (see section 11) is a derivation with respect to the cup product, $\Delta$ is easy to compute. So finally, on $\mathbb{H}^*(LBG)$, we have computed at the same time, the cup product and the BV-algebra structure. This has never be done for the BV algebra $\mathbb{H}_*(LM)$.

If there is no top degree Steenrod operation $Sq_1$ on $\mathbb{H}^*(BG;\mathbb{F}_2)$, if $p$ is odd or $p = 0$, applying Theorem 3.1, we give an explicit formula for the dual of the loop coproduct $m$ in Theorem 4.1 and we show in Theorem 6.2 that there is an isomorphism of BV algebras between $\mathbb{H}^*(LBG;\mathbb{F}_p)$ and $HH^*(H_*(G;\mathbb{F}_p), H_*(G;\mathbb{F}_p))$, the Hochschild cohomology of the symmetric Frobenius algebra $H_*(G;\mathbb{F}_p)$.

The case $p = 2$ is more intriguing. When $p = 2$, we don’t give in general an explicit formula for the dual of the loop coproduct $m$ (however, see Theorem 5.4 for a general equation satisfied by $m$). But for a given compact Lie group $G$, applying Theorem 3.1, we are able to give an explicit formula. As examples, in this paper, we compute the dual of the loop coproduct when $G = SO(3)$ (Theorem 5.7) or $G = G_2$ (Theorem 5.1). We show (Theorem 6.3) that the BV algebras $\mathbb{H}^*(LBSO(3);\mathbb{F}_2)$ and $HH^*(H_*(SO(3);\mathbb{F}_2), H_*(SO(3);\mathbb{F}_2))$, the Hochschild cohomology of the symmetric Frobenius algebra $H_*(SO(3);\mathbb{F}_2)$, are not isomorphic although the underlying Gerstenhaber algebras are isomorphic. Such curious result was observed in [33] for the Chas-Sullivan BV algebras $\mathbb{H}_*(LS^2;\mathbb{F}_2)$.

However, for any connected compact Lie group such that $\mathbb{H}^*(BG;\mathbb{F}_p)$, is a polynomial algebra, we show (Corollary 4.3 and Theorem 5.8) that as graded algebras

$$\mathbb{H}^*(LBG;\mathbb{F}_p) \cong H_*(G;\mathbb{F}_p) \otimes \mathbb{H}^*(BG;\mathbb{F}_p) \cong HH^*(H_*(G;\mathbb{F}_p), H_*(G;\mathbb{F}_p)).$$

Such isomorphisms of Gerstenhaber algebras should exist (Conjecture 6.1).

We give now the plan of the paper:
Section 2: We carefully recall the definition of the loop product and of the loop coproduct insisting on orientation (Theorem 2.1). Theorem 2.2 mentioned above is proved.

Section 3: When $H^*(X)$ is a polynomial algebra, following [27] or [23], we give the cup product on $H^*(\Lambda(X))$. Therefore (Theorem 3.1) the dual of the loop coproduct is completely given by Theorems 2.1 and 2.2.

Section 4 is devoted to the simple case when the characteristic of the field is different from two or when there is no top degree Steenrod operation.

Section 5: The field is $\mathbb{F}_2$. We give some general properties of the dual of the loop coproduct (Lemma 5.3, Theorem 5.4). In particular, we show that it has an unit (Theorem 5.5). As examples, we compute the dual of the loop coproduct on $H^*(LBSO(3); \mathbb{F}_2)$ and on $H^*(LBG_2; \mathbb{F}_2)$ (Theorems 5.7 and 5.1). Up to an isomorphism of graded algebras, $H^*(LX; \mathbb{F}_2)$ is just the tensor product of algebras $H^*(X; \mathbb{F}_2) \otimes H_{-\ast}(\Omega X; \mathbb{F}_2) = \mathbb{F}_2[V] \otimes \Lambda(sV)^\vee$ (Theorem 5.8). As examples, we compute the BV-algebra $H^{\ast+3}(LBSO(3); \mathbb{F}_2) \cong \Lambda(u_{-1}, u_{-2}) \otimes \mathbb{F}_2[v_1, v_2]$ (Theorem 5.13) and the BV-algebra $H^{\ast+14}(LBG_2; \mathbb{F}_2) \cong \Lambda(u_{-3}, u_{-5}, u_{-6}) \otimes \mathbb{F}_2[v_4, v_6, v_7]$ (Theorem 5.14).

Section 6: After studying the formality and the coformality of $BG$, we compare the associative algebras, the Gerstenhaber algebras, the BV-algebras $H^*(LBG)$ and $HH^*(H_\ast(G), H_\ast(G))$ under various hypothesis.

Section 7: We solve some sign problems in the results of Chataur and the second author. In particular, we correct the definition of integration along the fibre and the main cotheorem of [6] concerning the prop structure on $H^*(LX)$.

Section 8: Therefore $H^*(LX)$ is equipped with a graded associative and graded commutative product $m$.

Section 9: In fact, $H^*(LX)$ equipped with $m$ and the BV-operator $\Delta$ is a BV-algebra since the BV identity arises from the lantern relation.

Section 10: This BV identity comes from seven equalities involving Dehn twists and the prop structure on the mapping class group.

Section 11: We compare different definitions of the BV-operator $\Delta : H^*(LX) \to H^{\ast-1}(LX)$.

Section 12: We compute the Gerstenhaber algebra structure on the Hochschild cohomology $HH^*(S(V), S(V))$ of a free commutative graded algebra $S(V)$ (Theorem 12.3). In particular, we give the BV-algebra structure on the Hochschild cohomology $HH^*(\Lambda(V), \Lambda(V))$ of a graded exterior algebra $\Lambda(V)$.

Section 13: In this last section independent of the rest of the paper, we show that the loop product on $H_\ast(LBG; \mathbb{F}_p)$ is trivial if and only if the inclusion of the fibre $i : \Omega BG \hookrightarrow LBG$ induces a surjective map in cohomology if and only if $H^*(BG; \mathbb{F}_p)$ is a polynomial algebra if and only if $BG$ is $\mathbb{F}_p$-formal (when $p$ is odd).

2. THE DUAL OF THE LOOP COPRODUCT

In this paper, all the results are stated for simplicity for a connected compact Lie group $G$. But they are also valid for an exotic $p$-compact group. Indeed, following [6], we only require that $G$ is a connected topological group (or a pointed loop space) with finite dimensional cohomology $H^*(G; \mathbb{F}_p)$. This is the main difference with [18], where Hepworth and Lahtinen require the smoothness of $G$.

Let $X$ be a simply-connected space satisfying the condition that $H^*(\Omega X; \mathbb{K})$ is of finite dimension. Then there exists an unique integer $d$ such that $H^d(\Omega X; \mathbb{K}) = 0$.
for \( i > d \) and \( H^d(\Omega X; \mathbb{K}) \cong \mathbb{K} \). In order to describe our results, we first recall the definitions of the product \( D\text{lcop} \) on \( H^{* + d}(LX; \mathbb{K}) \) and of the loop product on \( H_{* - d}(LM; \mathbb{K}) \) defined by Chataur and the second author in [6].

Let \( F \) be the pair of pants regarded as a cobordism between one ingoing circle and two outgoing circles. The ingoing map \( \text{in} : S^1 \coprod S^1 \hookrightarrow F \) and outgoing map \( \text{out} : S^1 \coprod S^1 \hookrightarrow F \) give the correspondence

\[
\begin{array}{ccc}
LX & \xrightarrow{\text{map(in,} \ X)} & \text{map}(F, \ X) \\
\xrightarrow{\text{map(out,} \ X)} & \xrightarrow{\text{map(out,} \ X)} & LX \\
\end{array}
\]

where \( \text{map(in,} \ X) \) and \( \text{map(out,} \ X) \) are orientable fibrations. After orienting them, the integration along the fibre induces a map in cohomology

\[
\text{map(in,} \ X)^! : H^{* + d}(\text{map}(F, \ X)) \to H^*(LX)
\]

and a map in homology

\[
\text{map(out,} \ X)_! : H_*(LX)^{\otimes 2} \to H_{* + d}(\text{map}(F, \ X)).
\]

See Section 7 for the definition of the integration along the fibre. By definition, the loop product is the composite

\[
H_*(\text{map(in,} \ X)) \circ \text{map(out,} \ X)_! : H_{p - d}(LX) \otimes H_{q - d}(LX) \to H_{p + q - d}(\text{map}(F, \ X))
\to H_{p + q - d}(LX).
\]

By definition, the dual of the loop coproduct, \( D\text{lcop} \) is the composite

\[
\text{map(in,} \ X)^! \circ H^*(\text{map(out,} \ X)) : H^{p + d}(LX) \otimes H^{q + d}(LX) \to H^{p + q + 2d}(\text{map}(F, \ X))
\to H^{p + q + d}(LX).
\]

The pair of pants \( F \) is the mapping cylinder of \( c \coprod \pi : S^1 \coprod (S^1 \coprod S^1) \to S^1 \vee S^1 \) where \( c : S^1 \to S^1 \vee S^1 \) is the pinch map and \( \pi : S^1 \coprod S^1 \to S^1 \vee S^1 \) is the quotient map. Therefore the wedge of circles \( S^1 \vee S^1 \) is a strong deformation retract of the pair of pants \( F \). The retract \( r : F \xrightarrow{=} S^1 \vee S^1 \) corresponds to lower his pants and tuck up his trouser legs at the same time:

**Figure 1.** the homotopy between the pairs of pants and the figure eight.

Thus we have the commutative diagram

\[
\begin{array}{ccc}
LX & \xrightarrow{\text{map(in,} \ X)} & \text{map}(F, \ X) \\
\xrightarrow{\text{map(out,} \ X)} & \xrightarrow{\text{map(out,} \ X)} & LX \times 2 \\
\xrightarrow{\text{Comp} \ q} & \xrightarrow{\text{map(r,} \ X)_!} & LX \times_X LX \\
\end{array}
\]

where \( \text{Comp} \) is the composition of loops and \( q \) is the inclusion. If \( X \) was a closed manifold \( M \) of dimension \( d \), \( \text{Comp} \) and \( q \) would be embeddings. And the Chas-Sullivan loop product is the composite

\[
H_*(\text{Comp} \ q) : H_{p + d}(LM) \otimes H_{q + d}(LM) \to H_{p + q + d}(LM \times_M LM) \to H_{p + q + d}(LM).
\]
while the dual of the loop coproduct is the composite
\[ \text{Comp} \circ H^*(q) : H^{p-d}(LM) \otimes H^{q-d}(LM) \to H^{p+q-2d}(LM \times_{\Delta} LM) \to H^{p+q-d}(LM). \]
Therefore although \( \text{Comp} \) and \( q \) are not fibrations, by an abuse of notation, sometimes, we will say that in the case of string topology of classifying spaces \([6]\), the loop product on \( H_{-d}(LM) \) is still \( H_{-d}(\text{Comp}) \circ q \) while \( \text{Dlcop} \) is \( \text{Comp} \circ H^*(q) \).

The shifted cohomology \( \mathbb{H}^*(LM) := H^{*-d}(LM) \) together with the dual of the loop coproduct \( \text{Dlcop} \) defined by Chataur and the second author in \([6]\) is a Batalin-Vilkovisky algebra, in particular a graded commutative associative algebra, only up to signs for two reasons:

- First, the integration along the fibre defined in \([6]\) as usually does not satisfy the usual property with respect to the product. We have corrected this sign mistake of \([6]\) in section 7.
- Second, as explained in section 7, this is also due to the non-triviality of the prop \( \det H_1(F, \partial\text{out}; \mathbb{Z}) \) if \( d \) is odd.

Nevertheless, we show Theorem 9.1. In particular, we have that \( \mathbb{H}^*(LM) \) equipped with the operator \( \Delta \) induced by the action of the circle on \( LX \) (See our definition in section 11) is a Batalin-Vilkovisky algebra with respect to the product \( m \) defined by

\[ m(a \otimes b) = (-1)^{d-|a|} \text{Dlcop}(a \otimes b) \]

for \( a \otimes b \in H^*(LM) \otimes H^*(LM) \); see Corollary 9.3 below.

In order to investigate \( \text{Dlcop} \) more precisely, we need to know how the fibration \( \text{map}(in,X) \) is oriented. As explained in \([6]\), we have to choose a pointed homotopy equivalence \( f : F/\partial in \xrightarrow{\equiv} S^1 \). Then the fibre \( \text{map}_*(F/\partial in, X) \) of \( \text{map}(in, X) \) is oriented by the composite

\[ \tau \circ H^d(\text{map}_*(f, X)) : H^d(\text{map}_*(F/\partial in, X)) \to H^d(\Omega X) \to \mathbb{K}. \]

where \( \tau \) is the orientation on \( \Omega X \) that we choose. In this paper, we choose \( f \) such that we have the following homotopy commutative diagram

\[ \begin{array}{c}
\text{map}_*(F/\partial in, X) \\
\text{map}_*(f,X) \\
\Omega X \\
j
\end{array} \]

\[ \begin{array}{c}
\xrightarrow{\text{incl}}
\xrightarrow{\cong}
\xrightarrow{j}
l_x \times X
\end{array} \]

where \( \text{incl} \) is the inclusion of the fibre of \( \text{map}(in, X) \) and \( j \) is the map defined by \( j(\omega) = (\omega, \omega^{-1}) \).

**Theorem 2.1.** Let \( i : \Omega X \hookrightarrow LX \) be the inclusion of pointed loops into free loops. Let \( S \) be the antipode of the Hopf algebra \( H^*(\Omega X) \). Let \( \tau : H^d(\Omega X) \to \mathbb{K} \) be the chosen orientation on \( \Omega X \). Let \( a \in H^p(LX) \) and \( b \in H^q(LX) \) such that \( p+q = d \).

Then with the above choice of pointed homotopy equivalence \( f : F/\partial in \xrightarrow{\equiv} S^1 \),

\[ m(a \otimes b) = (-1)^{d-p} \tau(H^p(\text{inc})a) \cup S \circ H^q(\text{inc})b \in H^*(LM). \]

**Proof.** Let \( F \xrightarrow{\text{incl}} E \xrightarrow{\partial} B \) be an oriented fibration with orientation \( \tau : H^d(F) \to \mathbb{K} \). By definition or by naturality with respect to pull-backs, the integration along the fibre \( \partial' \) is in degree \( d \) the composite

\[ H^d(E) \xrightarrow{H^d(\text{inc})} H^d(F) \xrightarrow{\tau} \mathbb{K} \xrightarrow{\partial} H^0(B) \]
where \( \eta \) is the unit of \( H^*(B) \). Therefore \( \text{Dlcop} \) is given by the commutative diagram

\[
\begin{array}{cccc}
H^d(LX \times LX) & H^d(map(out, X)) & H^d(map(r, X)) & H^d(incl) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
H^d(map(F, X)) & H^d(LX \times X LX) & H^d(\Omega X \times \Omega X) & H^d(\Omega X \times \Omega X) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
H^d(map(F, \partial a)) & H^d(\Omega X) & H^d(\Omega X) & H^d(\Omega X) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
H^0(LX) & H^0(LX) & H^0(LX) & \mathbb{K}
\end{array}
\]

where \( \text{incl} : \Omega X \times \Omega X \to LX \times LX \) is the inclusion and \( \text{Inev} : \Omega X \to \Omega X \) maps a loop \( \omega \) to its inverse \( \omega^{-1} \). Therefore

\[
\text{Dlcop}(a \otimes b) = \tau (H^p(i)(a) \cup S \circ H^q(i)(b)) 1_{H^*(LX)}.
\]

\[
\square
\]

We define a bracket \{ , \} on \( H^*(LX) \) with the product \( m \) and the Batalin-Vilkovisky operator \( \Delta : H^*(LX) \to H^{*-1}(LX) \) by

\[
\{a, b\} = (-1)^{|a|} \Delta(m(a \otimes b)) - (-1)^{|a|} m(\Delta(a) \otimes b) - m(a \otimes \Delta(b))
\]

for \( a, b \) in \( H^*(LX) \). By Theorem 9.3, this bracket is exactly a Lie bracket. The following theorem is the analogue for string topology of classifying spaces [6] of the theorems of Tamanoi in [41] for Chas-Sullivan string topology [4]. This analogy is quite surprising and complete. For our calculations, in the rest of the paper, we use only parts (1) and (2) of this theorem. Let \( ev : LX \to X \) be the evaluation map defined by \( ev(\gamma) = \gamma(0) \) for \( \gamma \in LX \).

**Theorem 2.2. (Cup products in string topology of classifying spaces)** Let \( X \) be a simply-connected space such that \( H_*(\Omega X; \mathbb{K}) \) is finite dimensional. Let \( P, Q \in H^*(X) \) and \( a, b \in H^*(LX) \).

1. (Compare with [41, Theorem A (1.2)]) The dual of the loop coproduct \( m : \mathbb{H}^*(LX) \otimes \mathbb{H}^*(LX) \to \mathbb{H}^*(LX) \) is a morphism of left \( H^*(X) \otimes H^*(X) \)-modules:

\[
m(ev^*(P) \otimes a \otimes ev^*(Q) \otimes b) = (-1)^{|a|-d} Q ev^*(P) \cup ev^*(Q) \cup m(a \otimes b).
\]

2. (Compare with [41, Theorem A (1.3)]) The cup product with \( \Delta(ev^*(P)) \) is a derivation with respect to the algebra \( \mathbb{H}^*(LX), m \):

\[
\Delta(ev^*(P)) \circ m(a \otimes b) = m(\Delta(ev^*(P)) \cup a \otimes b) + (-1)^{|P|-1} \Delta ev^*(P) \cup m(a \otimes \Delta(ev^*(P)) \cup b).
\]

3. (Compare with [41, Theorem A(1.4)]) The cup product with \( \Delta(ev^*(P)) \) is a derivation with respect to the bracket

\[
\Delta(ev^*(P)) \cup \{a, b\} = \{\Delta(ev^*(P)) \cup a, b\} + (-1)^{|P|-1} \{a, \Delta(ev^*(P)) \cup b\}.
\]

4. (Compare with [41, formula p. 16, line -3]) The following formula gives a relation for the cup product of \( ev^*(P) \) with the bracket

\[
\{ev^*(P) \cup a, b\} = ev^*(P) \cup \{a, b\} + (-1)^{|P|-1} m(a \otimes \Delta(ev^*(P)) \cup b)
\]
(5) (Compare with [41, Theorem B]) The direct sum $H^*(X) \oplus H^*(LX)$ is a Batalin-Vilkovisky algebra where the dual of the loop coproduct $\Delta$, the bracket and the $\Delta$ operator are extended by $m(P \otimes a) := ev^*(P) \cup a, m(P \otimes Q) = P \cup Q, \{P, a\} = (-1)^{|P|} \Delta(ev^*(P)) \cup a, \{P, Q\} = 0$ and $\Delta(P) = 0$.

(6) (Compare with [41, Theorem C]) Suppose that the algebra $(\mathbb{H}^*(LX), m)$ has an unit $1$. Let $s^i : H^*(X) \rightarrow H^{*+d}(LX)$, be the map mapping $P$ to $ev^*(P) \cup 1$. Then $s^i$ is a morphism of Batalin-Vilkovisky algebras with respect to the trivial BV-operator on $H^*(X)$ and

$$ev^*(P) \cup a = m(s^i(P) \otimes a) \quad \text{and} \quad (-1)^{|P|} \Delta(ev^*(P)) \cup a = \{s^i(P), a\}.$$

(7) Let $r \geq 0$. Let $P_1, \ldots, P_r$ be $r$ elements of $H^*(LX)$. Denote by $X_i := \Delta(ev^*(P_i))$. Then

$$m(ev^*(P) \cup a \otimes ev^*(Q) \cup X_1 \cup \cdots \cup X_r \cup b) = (-1)^{|a|+|\{Q\}|+|X_1|+\cdots+|X_r|} \chi_{0 \leq j_1, \ldots, j_r \leq 1} \pm ev^*(P) \cup ev^*(Q) \cup X_{1}^{1-j_1} \cup \cdots \cup X_{r}^{1-j_r} \cup m(X_{j_1} \cup \cdots \cup X_{j_r} \cup a \otimes b)$$

where $\pm$ is the sign $(-1)^{j_1+\cdots+j_r+\sum k_i (1-j_k)|X_k| |X_1|+\cdots+|X_{k-1}| |X_{k-1}|}.$

To prove parts (1) and (2), it is shorter to use the following Lemma. This Lemma is just the cohomological version of [4, Theorem 8.2] when we replace the correspondence

$$LM \times LM \xleftarrow{q} LM \times_M LM \xrightarrow{Comp} LM$$

by its opposite

$$LM \xleftarrow{comp} LX \times_M LX \xrightarrow{q} LX \times LX.$$ Similarly, it would have been shorter for Tamanoi to prove parts (1.2) and (1.3) of [41, Theorem A] using [4, Theorem 8.2].

**Lemma 2.3.** Let $a = \sum a_1 \otimes a_2 \in H^*(LX \times LX)$ and $A \in H^*(LX)$ such that $H^*(Comp)(A) = H^*(q)(a)$. Then for any $z \in H^*(LX \times LX)$,

$$A \cup m(z) = \sum (-1)^{|a_2|} m(a_1 \otimes a_2 \cup z).$$

**Proof.** Since the integration along the fibre $Comp^j$ is exactly with signs, a morphism of left $H^*(LX)$-modules (See our definition of integration along the fibre in cohomology in section 7)

$$Comp^j(H^*(Comp)(A) \cup y) = (-1)^{|j|} A \cup Comp^j(y).$$

Since $H^*(q)$ is a morphism of algebras,

$$(-1)^{|j|} Dlcop(a \cup z) = (-1)^{|j|} Comp^j \circ H^*(q)(a \cup z)$$

$$= (-1)^{|j|} Comp^j(H^*(Comp)(A) \cup H^*(q)(z)) = A \cup Comp^j \circ H^*(q)(z) = A \cup Dlcop(z).$$

By linearity, we can suppose that $z = z_1 \otimes z_2$. Then the previous equation is

$$A \cup (-1)^{|z_1|+d} m(z_1 \otimes z_2) = \sum (-1)^{|a_1|+|a_2|} (-1)^{|a_1|+|z_1|-d} m(a_1 \otimes a_2 \cup z_1 \otimes z_2).$$

$\square$
Proof of Theorem 2.2. (1) We have the commutative diagram

\[
\begin{array}{ccc}
LX & \xrightarrow{\text{Comp}} & LX \times_X LX \\
\downarrow \quad ev & & \downarrow q \\
X & \rightarrow & LX \times X \\
\downarrow \quad \Delta & & \downarrow ev \times ev \\
X \times X & \end{array}
\]

Therefore by applying Lemma 2.3 to \(a := H^*(ev \times ev)(P \otimes Q)\) and \(A := H^*(\Delta \circ ev)(P \otimes Q)\), we obtain

\[H^*(ev)(P) \cup H^*(ev)(Q) \cup m(a \otimes b) = (-1)^{d(Q)}m(H^*(ev)(P) \otimes H^*(ev)(Q) \cup a \otimes b).\]

(2) By [41, Proof of Theorem 4.2 (4.5)]

\[\text{Comp}^*(\Delta(ev^*(P))) = q^*(\Delta(ev^*(P))) \times 1 + 1 \times \Delta(ev^*(P)).\]

So we can apply Lemma 2.3 to \(a := \Delta(ev^*(P)) \times 1 + 1 \times \Delta(ev^*(P))\) and \(A := \Delta(ev^*(P))\), we obtain

\[\Delta(ev^*(P)) \cup (m(a \otimes b) = m((\Delta(ev^*(P)) \otimes 1) + (-1)^{d(|P|-1)}m(1 \otimes \Delta(ev^*(P))) \cup (a \otimes b)).\]

(3) By using the formula (2), the same argument as in [41, Proof of Theorem 4.5] deduces the derivation formula on the bracket.

(4) Again, the arguments are identical as those given by Tamanoi: see [41, end of proof of Theorem 4.7].

(5) As explained in [41, proof of Theorem 4.7] by Tamanoi, (2), (3) and (4) are equivalent to the Poisson and Jacobi identities in the Gerstenhaber algebra \(H^*(X) \oplus \mathbb{H}^*(LX)\). By definition of the bracket, this Gerstenhaber algebra is a Batalin-Vilkovisky algebra: see [41, proof of Theorem 4.8].

(6) Since \(H^{*+d}(LX; \mathbb{Z})\) is a \(H^*(X)\)-algebra (formula (1) of Theorem 2.2), the map \(s^*: H^*(X) \rightarrow H^{*+d}(LX), P \mapsto ev^*(P) \cup \mathbb{I}\), is a morphism of unital commutative graded algebras (we denote this map \(s^*\) because this map should coincide with some Gysin map of the trivial section \(s : X \hookrightarrow LX[6]\)).

Since the cup product with \(\Delta(ev^*(P))\) is a derivation with respect to the dual of the loop coproduct, \(\Delta(ev^*(P)) \cup \mathbb{I} = 0\). Since \(\mathbb{H}^*(LX)\) is a Batalin-Vilkovisky algebra, \(\Delta(\mathbb{I}) = 0\). Therefore, since \(\Delta\) is a derivation with respect to the cup product,

\[\Delta(s^*(P)) = \Delta(ev^*(P)) \cup \mathbb{I} + (-1)^{|P|}ev^*(P) \cup \Delta(\mathbb{I}) = 0 + 0.\]

Now we can conclude using the same arguments as in [41, proof of Theorem 5.1].

(7) The case \(r = 0\) is just (1). Now, by induction on \(r\),

\[m(ev^*(P) \cup a \otimes ev^*(Q) \cup X_1 \cup \cdots \cup X_{r-1} \cup (X_r \cup b)) = (-1)^{|a| - d(|Q| + |X_1| + \cdots + |X_{r-1}|)} \times \sum_{0 \leq j_1, \ldots, j_{r-1} \leq 1} \pm ev^*(P) \cup ev^*(Q) \cup X_1^{1-j_1} \cup \cdots \cup X_{r-1}^{1-j_{r-1}} \cup m(X_1^{j_1} \cup \cdots \cup X_{r-1}^{j_{r-1}} \cup a \otimes X_r \cup b)\]

where \(a\) and \(b\) is a \(\mathbb{Z}\)-module.
Remark 2.4. Suppose that the algebra $H^*(LX)$ is generated by $H^*(X)$ and $\Delta(H^*(X))$. Then by formula (7) of Theorem 2.2 in the case $b = 1$, we see that the dual of the loop coproduct $m$ is completely given by the cup product, by the $\Delta$ operator and by its restriction on $H^*(LX) \otimes 1$. In the following section, we show that this is the case when $H^*(X)$ is a polynomial (see remark 3.2).

3. The cup product on free loops and the main theorem

Let $X$ be a simply-connected space with polynomial cohomology: $H^*(X)$ is a polynomial algebra $\mathbb{K}[y_1, \ldots, y_N]$. The cup product on the free loop space cohomology $H^*(LX; \mathbb{K})$ was first computed by the first author in [27, Theorem 1.6]. We now explain how to recover simply this computation following [23, p. 648].

By Borel theorem [37, Chapter VII, Corollary 2.8(2)] (which can be easily proved using the Eilenberg-Moore spectral sequence associated to the path fibration $\Omega X \hookrightarrow PX \twoheadrightarrow X$ since $E_2^{s,t} \cong \Lambda(\sigma(y_1), \ldots, \sigma(y_N)))$,

$$H^*(\Omega X; \mathbb{K}) = \Delta(\sigma(y_1), \ldots, \sigma(y_N))$$

where $\Delta \sigma(y_i)$ denotes an algebra with simple system of generators $\sigma(y_i)$ [37, Definition p. 367]. If $ch(\mathbb{K}) \neq 2$, $\Delta \sigma(y_i)$ is just the exterior algebra $\Lambda \sigma(y_i)$.

Let $\Delta : H^*(LX) \to H^{*-1}(LX)$ be the operator induced by the action of the circle on $LX$ (See section 11). Let $D := \Delta \circ ev^*$ denote the module derivation of the first author in [27]. Since $\Delta$ is a derivation with respect to the cup product, $D$ is a $(ev^*, ev^*)$-derivation [27, Proposition 3.3]. Since $\Delta$ and $H^*(ev)$ commutes with the Steenrod operations, $D$ also [27, Proposition 3.3]. Since the composite $i^* \circ D$ is the suspension homomorphism $\sigma$ [23, Proposition 2(1)], $i^*$ is surjective and so by Leray-Hirsch theorem,

$$H^*(LX; \mathbb{K}) = H^*(X) \otimes \Delta(D(y_1), \ldots, D(y_N))$$

as $H^*(X)$-algebra. Modulo 2, it follows from above that $H^*(LX; \mathbb{Z}/2)$ is the polynomial algebra

$$\mathbb{Z}/2[ev^*(y_i), Dy_i]$$

quotiented by the relations

$$(Dy_i)^2 = D(Sq^{[y_i]-1}y_i).$$

In particular, we have $\Delta(ev^*(y_i)) = Dy_i$ and $\Delta(Dy_i) = 0$ since $\Delta \circ \Delta = 0$. Therefore, we know the cup product and the $\Delta$ operator on $H^*(LX; \mathbb{K})$. The following theorem claims that we also know the dual of the loop coproduct.

Theorem 3.1. Let $X$ be a simply-connected space such that $H^*(X; \mathbb{K})$ is the polynomial algebra $\mathbb{K}[y_1, \ldots, y_N]$. Denote again by $y_i$, the element of $H^*(LX)$, $ev^*(y_i)$, and by $x_i$, $\Delta \circ ev^*(y_i)$. With respect to the cup product, as algebras

$$H^*(LX) = \mathbb{K}[y_1, \ldots, y_N] \otimes \Delta(x_1, \ldots, x_N).$$
Let $d$ be the degree of $x_1 \ldots x_N$. Then the dual of the loop coproduct
\[ m : H^i(LX) \otimes H^j(LX) \to H^{i+j-d}(LX) \]

is given inductively (see remark 3.2) by the following four formulas

1. For any $a$ and $b \in H^*(LX)$, $\forall 1 \leq i \leq N$,
\[ m(a \otimes x_i) = (-1)^{|x_i|(|a|-d)}x_i m(a \otimes b) \]

2. Let $\{i_1, \ldots, i_l\}$ and $\{j_1, \ldots, j_m\}$ be two disjoint subsets of $\{1, \ldots, N\}$ such that $\{i_1, \ldots, i_l\} \cup \{j_1, \ldots, j_m\} = \{1, \ldots, N\}$. If we orient $\tau : H^d(\Omega X) \xrightarrow{\pi} K$ by $\tau \circ H^*(i)(x_1 \ldots x_N) = 1$ then
\[ m(x_{i_1} \ldots x_{i_l} \otimes x_{j_1} \ldots x_{j_m}) = (-1)^{Nm + m \varepsilon} \]

where $\varepsilon$ is the signature of the permutation
\[ \left( \begin{array}{c}
1 \ldots l + m \\
 i_1 \ldots i_lj_1 \ldots j_m
\end{array} \right). \]

3. Let $\{i_1, \ldots, i_l\}$ and $\{j_1, \ldots, j_m\}$ be two disjoint subsets of $\{1, \ldots, N\}$ such that $\{i_1, \ldots, i_l\} \cup \{j_1, \ldots, j_m\} \neq \{1, \ldots, N\}$. Then
\[ m(x_{i_1} \ldots x_{i_l} \otimes x_{j_1} \ldots x_{j_m}) = 0. \]

4. $m$ is a morphism of left $H^*(X) \otimes H^*(X)$-modules: $\forall P, Q \in H^*(X), \forall a$ and $b \in H^*(LX)$, $m((-1)^{|Q|(|a|-d)}Pa \otimes Qb) = PQm(a \otimes b)$.

**Proof.** Note that if $y_i$ is of odd degree then $2 = 0$ in $K$. (1) and (4) are particular cases of (1) and (2) of Theorem 2.2. Since $x_1 \ldots x_i \otimes x_{j_1} \ldots x_{j_m}$ is of degree less than $d$, for degree reasons, we have (3).

(2) Since $\iota^*(x_i) = \iota^* \circ \Delta \circ ev^*(y_i)$ is the suspension of $y_i$, denoted $\sigma(y_i)$, by Theorem 2.1,
\[ m(x_{i_1} \ldots x_{i_l} \otimes x_{j_1} \ldots x_{j_m}) = (-1)^{Nm + m \varepsilon} \sigma(y_{i_1}) \ldots \sigma(y_{i_l}) \cup S(\sigma(y_{j_1}) \ldots \sigma(y_{j_m})). \]

Since $\sigma(y_i)$ is a primitive element, $S(\sigma(y_i)) = -\sigma(y_i)$. Since also the antipode $S : H^*(\Omega X) \to H^*(\Omega X)$ is a morphism of commutative graded algebras,
\[ m(x_{i_1} \ldots x_{i_l} \otimes x_{j_1} \ldots x_{j_m}) = (-1)^{Nm + m \varepsilon} \sigma(y_{i_1}) \ldots \sigma(y_{i_l}) \cup S(\sigma(y_{j_1}) \ldots \sigma(y_{j_m})). \]

\[ \square \]

**Remark 3.2.** We explain now why the four formulas of Theorem 3.1 determine inductively the dual of the loop coproduct $m$. For $P \in H^*(X)$ and $\{i_1, \ldots, i_l\}$ a strict subset of $\{1, \ldots, N\}$, by (2), (3) and (4), $m(Px_{i_1} \ldots x_{i_l} \otimes 1) = 0$ and $m(Px_{i_1} \ldots x_{i_l} \otimes 1) = 0$. Therefore, we know the restriction of $m$ on $H^*(LX) \otimes 1$. Since the algebra $H^*(LX)$ is generated by $H^*(X)$ and $\Delta(H^*(X))$, $m$ is now given inductively by (1) and (4) (see remark 2.4).

The restriction of $m : H^*(LX) \otimes 1 \to H^*(X)$ looks similar to the intersection morphism $i_\ast : H_\ast(LM) \to H_\ast(\Omega M)$ for manifold given by the loop product with the constant pointed loop.

### 4. Case p odd or no $Sq_1$

Let $Sq_1$ be the operator $H^*(BG; \mathbb{Z}/2) \to H^*(BG; \mathbb{Z}/2)$ is defined by $Sq_1(x) = Sq^{deg}x^{-1}x$ for $x \in H^*(BG; \mathbb{Z}/2)$.

Suppose that $H^*(BG)$ is a polynomial algebra, say $\mathbb{K}[V]$ and that

\[ (H) : \quad Sq_1 \equiv 0 \text{ on } H^*(BG) \text{ if } p = 2 \text{ or } p \text{ is odd or } p = 0 \] (Since $Sq(x^2) = x^2 Sq_1(y) + Sq_1(x)y^2$, it suffices to check that $Sq_1 \equiv 0$ on $V$).
Then it follows that
\[H^*(LBG; \mathbb{Z}/p) \cong \wedge(sV) \otimes K[V]\]
as an algebra; see [25, Remark 3.4] for example. We moreover have

**Theorem 4.1.** Under the hypothesis \(H\), an explicit form of the dual of the loop coproduct \(m : H^*(LBG; \mathbb{Z}/p) \otimes H^*(LBG; \mathbb{Z}/p) \to H^{*-\dim G}(LBG; \mathbb{Z}/p)\) is given by

\[m(sv_{i_1} \cdots sv_{i_l} a \otimes sv_{j_1} \cdots sv_{j_m} b) = (-1)^{\epsilon + u + \dim s + N} sv_{k_1} \cdots sv_{k_r} ab\]

if \(\{i_1, \ldots, i_l\} \cup \{j_1, \ldots, j_m\} = \{1, \ldots, N\}\) and \(m(sv_{i_1} \cdots sv_{i_l} a \otimes sv_{j_1} \cdots sv_{j_m} b) = 0\) otherwise, where \(\{i_1, \ldots, i_l\} \cap \{j_1, \ldots, j_m\} = \{k_1, \ldots, k_r\}\), \(a, b \in H^*(BG)\),

\[(-1)^\epsilon = \text{sgn}\left(\begin{array}{c} j_1 \ldots j_m \\ k_1 \ldots k_r \end{array}\right)\]

and \((-1)^\epsilon' = \text{sgn}\left(\begin{array}{c} i_1 \ldots i_l \ldots N \\ 1 \ldots N \end{array}\right)\).

Over \(\mathbb{R}\), [1, 17.23] have a similar formula (surprisingly without any signs) for their dual hidden loop product on \(H^*(G/G)\).

**Proof of Theorem 4.1.** By (4) of Theorem 3.1 to prove Theorem 4.1, it suffices to show that the formula for the element \(x_{i_1} \cdots x_{i_l} \otimes x_{j_1} \cdots x_{j_m}\), namely in the case where \(a = b = 1\).

Since \(x_{k_1}^2 = 0\), \(m(x_{i_1} \cdots x_{i_l} x_{k_1} \otimes x_{j_1} \cdots x_{j_m}) = 0\). So by (1) of Theorem 3.1,

\[m(x_{i_1} \cdots x_{i_l} \otimes x_{j_1} \cdots x_{j_m}) = (-1)^{|x_{i_1}||x_{i_l}| - d} \text{sgn}\left(\begin{array}{c} j_1 \ldots j_m \\ k_1 \ldots k_r \end{array}\right) m(x_{i_1} \cdots x_{i_l} \otimes x_{j_1} \cdots x_{j_m}).\]

By induction on \(u\),

\[m(x_{i_1} \cdots x_{i_l} \otimes x_{j_1} \cdots x_{j_m}) = (-1)^{|x_{i_1}||x_{i_l}| - d} \text{sgn}\left(\begin{array}{c} j_1 \ldots j_m \\ k_1 \ldots k_r \end{array}\right) m(x_{i_1} \cdots x_{i_l} \otimes x_{j_1} \cdots x_{j_m}).\]

By (2) and (3) of Theorem 3.1,

\[m(x_{i_1} \cdots x_{i_l} \otimes x_{j_1} \cdots x_{j_m}) = \begin{cases} (-1)^{N(m-u) + m + u} & \text{if } \{i_1, \ldots, i_l\} \cup \{j_1, \ldots, j_m\} = \{1, \ldots, N\}, \\ 0 & \text{otherwise}. \end{cases}\]

Here \(\hat{x}\) means that the element \(x\) disappears from the presentation. \(\square\)

**Corollary 4.2.** Under the hypothesis \(H\), the graded associative commutative algebra \((\mathbb{H}^*(LBG), m)\) of Corollary 8.3 is unital.

**Proof.** We see that \(x_1 \cdots x_N\) is the unit. Theorem 4.1 yield that

\[m(x_{i_1} \cdots x_{i_l} \otimes x_{j_1} \cdots x_{j_m} b) = \text{sgn}\left(\begin{array}{c} j_1 \ldots j_m \\ j_1 \ldots j_m \end{array}\right) \text{sgn}\left(\begin{array}{c} 1 \ldots N \\ 1 \ldots N \end{array}\right) (-1)^{m + m + N + Nm} x_{i_1} \cdots x_{j_m} b.\]

\[m(ax_{i_1} \cdots x_{i_l} \otimes x_{1} \cdots x_{N}) = \text{sgn}\left(\begin{array}{c} 1 \ldots N \\ i_1 \ldots i_l \ldots \hat{i}_1 \ldots \hat{i}_l \ldots N \end{array}\right) \text{sgn}\left(\begin{array}{c} i_1 \ldots i_l \ldots \hat{i}_1 \ldots \hat{i}_l \ldots N \\ 1 \ldots N \end{array}\right) (-1)^{N + l + l^2 + N^2} ax_{i_1} \cdots x_{i_l}.\]

\(\square\)
Theorem 4.3. Under the hypothesis (H), \( \mathbb{H}^*(LBG) = H^{*+dim G}(LBG; \mathbb{K}) \) is isomorphic as BV algebras to the tensor product of algebras

\[
H^*(BG; \mathbb{K}) \otimes H_{-\cdot}(G; \mathbb{K}) \cong K[V] \otimes (sV)^\vee
\]

equipped with the BV-operator \( \Delta \) given by \( \Delta(x_i^y \wedge x_j^z) = \Delta(y_i y_j) = \Delta(x_i^y) = \Delta(y_i) = 0 \) for any \( i, j \) and

\[
\Delta(y_i \otimes x_j^y) = \begin{cases} 
0 & \text{if } i \neq j, \\
1 & \text{if } i = j.
\end{cases}
\]

Proof. Since \( H^*(G) \) is the Hopf algebra \( \Lambda x_i \) with \( x_i = \sigma(y_i) \) primitive, its dual is the Hopf algebra \( \Lambda x_i^y \). By Corollary 8.3 and Corollary 4.2, we see that the shifted cohomology \( H^*(LBG) \) is a graded commutative algebra with unit \( x_1 \ldots x_N \). This enables us to define a morphism of algebras \( \Theta \) from

\[
H^*(BG; \mathbb{K}) \otimes H_{-\cdot}(G; \mathbb{K}) = K[y_1, \ldots, y_n] \otimes \Lambda(x_1^y, \ldots, x_N^y)
\]

to

\[
\mathbb{H}^*(LBG) = K[y_1, \ldots, y_n] \otimes \Lambda(x_1, \ldots, x_N)
\]

by

\[
\Theta(1 \otimes x_j^y) = (-1)^{j-1} \otimes (x_1 \wedge \ldots \wedge x_j \wedge \ldots \wedge x_N) \quad \text{and} \quad \Theta(a \otimes 1) = a \otimes (x_1 \wedge \ldots \wedge x_N)
\]

for any \( a \in K[V] \). By induction on \( p \), using Theorem 4.1, we have that

\[
\Theta(a \otimes (x_j^y \wedge \ldots \wedge x_k^y)) = \pm a \otimes (x_1 \wedge \ldots \wedge x_j \wedge \ldots \wedge x_k \wedge \ldots \wedge x_N)
\]

for any \( a \in K[V] \). Therefore the map \( \Theta \) is an isomorphism.

The isomorphism \( \Theta \) sends \( 1 \otimes \Lambda(x_1^y, \ldots, x_N^y) \) on \( 1 \otimes \Lambda(x_1, \ldots, x_N) \) and \( K[y_1, \ldots, y_N] \otimes 1 \) on \( K[y_1, \ldots, y_N] \otimes x_1 \ldots x_N \). Since \( \Delta \) is null on \( 1 \otimes \Lambda(x_1, \ldots, x_N) \) and \( K[y_1, \ldots, y_N] \otimes x_1 \ldots x_N \), \( \Delta \) is null on \( 1 \otimes \Lambda(x_1^y, \ldots, x_N^y) \) and \( K[y_1, \ldots, y_N] \otimes 1 \) : we have the first equalities. Moreover, we see that \( \Theta(y_i \otimes x_j^y) = (-1)^{j-1}y_i x_1 \wedge \ldots \wedge x_j \wedge \ldots \wedge x_N \) and hence \( \Delta \Theta(y_i \otimes x_j^y) = 0 \) if \( i \neq j \). The equalities \( \Delta((-1)^{j-1}y_i x_1 \wedge \ldots \wedge x_j \wedge \ldots \wedge x_N) = x_1 \wedge \ldots \wedge x_N = \Theta(1) \) enable us to obtain the second formula.

5. Mod 2 Case

In the case where the operation \( S_0 \) is non-trivial on \( H^*(BG; \mathbb{Z}/2) \), the loop coproduct structure on \( H^*(LBG; \mathbb{Z}/2) \) is more complicated in general. For example, we compute the dual to the loop coproduct on \( H^*(LBG_2; \mathbb{Z}/2) \), where \( G_2 \) is the simply-connected compact exceptional Lie group of rank 2. Recall that

\[
H^*(LBG_2; \mathbb{Z}/2) \cong \Delta(x_3, x_5, x_6) \otimes \mathbb{Z}/2[y_4, y_6, y_7]
\]

\[
\cong \mathbb{Z}/2[x_3, x_5] \otimes \mathbb{Z}/2[y_4, y_6, y_7] / \left( x_3^4 + x_5y_7 + x_3^2y_6 \right)
\]

as algebras over \( H^*(BG_2; \mathbb{Z}/2) \cong \mathbb{Z}/2[y_4, y_6, y_7] \), where \( \deg x_i = i \) and \( \deg y_j = j \); see [27, Theorem 1.7].

Theorem 5.1. The dual of the loop coproduct

\[
\text{Dcop} : H^*(LBG_2; \mathbb{Z}/2) \otimes H^*(LBG_2; \mathbb{Z}/2) \to H^{-14}(LBG_2; \mathbb{Z}/2)
\]
is commutative strictly and the only non-trivial forms restricted to the submodule \( \Delta(x_3, x_5, x_6) \otimes \Delta(x_3, x_5, x_6) \) are given by \( D_{lcop}(x_3 x_5 x_6 \otimes 1) = D_{lcop}(x_3 x_5 \otimes x_6) = D_{lcop}(x_3 x_6 \otimes x_5) = D_{lcop}(x_5 x_6 \otimes x_3) = 1 \),

\[
\begin{align*}
D_{lcop}(x_3 x_5 x_6 \otimes x_3) &= D_{lcop}(x_3 x_5 \otimes x_3 x_6) = x_3, \\
D_{lcop}(x_3 x_5 x_6 \otimes x_5) &= D_{lcop}(x_3 x_5 \otimes x_5 x_6) = x_5, \\
D_{lcop}(x_3 x_5 x_6 \otimes x_6) &= D_{lcop}(x_3 x_6 \otimes x_5 x_6) = x_6 + y_6, \\
D_{lcop}(x_3 x_5 x_6 \otimes x_3 x_5) &= x_3 x_5, \\
D_{lcop}(x_3 x_5 x_6 \otimes x_3 x_6) &= x_3 x_6 + x_3 y_6, \\
D_{lcop}(x_3 x_5 x_6 \otimes x_5 x_6) &= x_5 x_6 + x_3 y_6 + y_4 y_7, \\
D_{lcop}(x_3 x_5 x_6 \otimes x_5 x_6) &= x_3 x_5 x_6 + x_3 x_5 y_6 + x_3 y_4 y_7 + y_4^2.
\end{align*}
\]

**Lemma 5.2.** Let \( k : \{1, \ldots, q\} \to \{1, \ldots, N\} \), \( j \mapsto k_j \) be a map such that \( \forall 1 \leq i \leq N \), the cardinality of the inverse image \( k^{-1}(\{i\}) \) is \( \leq 2 \). In \( H^*(LX; F_2) = F_2[y_1, \ldots, y_N] \otimes \Delta(x_1, \ldots, x_N) \), the cup product satisfies the equality

\[
x_{k_1} \cdots x_{k_q} = \sum_{0 \leq l \leq \text{cardinal of } (k_1, \ldots, k_q), \ 1 \leq i_1 < \cdots < i_l \leq N} P_{i_1, \ldots, i_l} x_{i_1} \cdots x_{i_l}
\]

where \( P_{i_1, \ldots, i_l} \) are elements of \( F[y_1, \ldots, y_N] \).

**Proof.** Suppose by induction that the lemma is true for \( q-1 \). If the elements \( k_1, \ldots, k_q \) are pairwise distinct, take \( \{i_1, \ldots, i_l\} = \{k_1, \ldots, k_q\} \). Otherwise by permuting the elements \( x_{k_1}, \ldots, x_{k_q} \), suppose that \( k_{q-1} = k_q \).

\[
x_{k_q}^2 = \Delta \circ ev^* \circ Sq^{|y_{k_q}| - 1}(y_{k_q}) \sum_{i=1}^N x_i P_i
\]

where \( P_1, \ldots, P_N \) are elements of \( F[y_1, \ldots, y_N] \). So

\[
x_{k_1} \cdots x_{k_q} = \sum_{i=1}^N x_{k_1} \cdots x_{k_{q-2}} x_i P_i.
\]

Since \( k_q = k_{q-1} \), by hypothesis, \( k_q \notin \{k_1, \ldots, k_{q-2}\} \). Therefore the cardinal of \( \{k_1, \ldots, k_{q-2}, i\} \) is less or equal to the cardinal of \( \{k_1, \ldots, k_q\} \). By our induction hypothesis,

\[
x_{k_1} \cdots x_{k_{q-2}} x_i = \sum_{0 \leq l \leq \text{cardinal of } (k_1, \ldots, k_{q-2}, i), \ 1 \leq i_1 < \cdots < i_l \leq N} P_{i_1, \ldots, i_l} x_{i_1} \cdots x_{i_l}.
\]

\[\square\]

**Lemma 5.3.** Let \( k : \{1, \ldots, q + r\} \to \{1, \ldots, N\} \), \( j \mapsto k_j \) be a non-surjective map such that \( \forall 1 \leq i \leq N \), the cardinality of the inverse image \( k^{-1}(\{i\}) \) is \( \leq 2 \). Then

\[
D_{lcop}(x_{k_1} \cdots x_{k_q} \otimes x_{k_{q+1}} \cdots x_{k_{q+r}}) = 0.
\]

**Proof.** We do an induction on \( r \geq 0 \).

Case \( r = 0 \): By Lemma 5.2, since the cardinal of \( \{k_1, \ldots, k_q\} < N \),

\[
D_{lcop}(x_{k_1} \cdots x_{k_q} \otimes 1) = \sum_{0 \leq l \leq N, \ 1 \leq i_1 < \cdots < i_l \leq N} D_{lcop}(P_{i_1, \ldots, i_l} x_{i_1} \cdots x_{i_l} \otimes 1)
\]
where \( P_{i_1, \ldots, i_l} \) are elements of \( F[y_1, \ldots, y_N] \). By (3) and (4) of Theorem 3.1, since \( l < N \),
\[
Dlcop(P_{i_1, \ldots, i_l} x_{i_1} \cdots x_{i_l} \otimes 1) = 0.
\]
Suppose now by induction that the Lemma is true for \( r - 1 \). Then by (1) of Theorem 3.1,
\[
Dlcop(x_{k_1} \cdots x_{k_q} \otimes x_{k_{q+1}} \cdots x_{k_{q+r}}) = x_{k_{q+1}} Dlcop(x_{k_1} \cdots x_{k_q} \otimes x_{k_{q+2}} \cdots x_{k_{q+r}})
\]
\[
+ Dlcop(x_{k_1} \cdots x_{k_{q+1}} \otimes x_{k_{q+2}} \cdots x_{k_{q+r}}) = x_{k_{q+1}} \times 0 + 0.
\]

Let \( I = \{i_1, \ldots, i_l\} \subset \{1, \ldots, N\} \). In \( \Delta(x_1, \ldots, x_N) \), denote by \( x_I \) the generator \( x_{i_1} \cup x_{i_2} \cup \cdots \cup x_{i_l} \). Since mod 2, the cup product is strictly commutative, we don’t need to assume that \( i_1 < i_2 < \cdots < i_l \).

**Theorem 5.4.** Let \( I \) and \( J \) be two subsets of \( \{1, \ldots, N\} \). Then
\[
Dlcop(x_I \otimes x_J) = \begin{cases} 
Dlcop(x_1 \cdots x_N \otimes x_I \cap J) & \text{if } I \cap J = \{1, \ldots, N\}, \\
0 & \text{otherwise}.
\end{cases}
\]
In particular, \( \{x_I, x_J\} = \Delta(Dlcop(x_I \otimes x_J)) = \Delta(Dlcop(x_{I \cup J} \otimes x_{I \cap J})) = \{x_I \cup J, x_J \cap I\} \).

**Proof.** Let \( \{i_1, \ldots, i_l\} \) denote the elements of the relative complement \( I - J \). Let \( \{j_1, \ldots, j_m\} \) denote the elements of the relative complement \( J - I \). Let \( \{k_1, \ldots, k_u\} \) denote the elements of the intersection \( I \cap J \).

By Lemma 5.3, \( Dlcop(x_{i_1} \cdots x_{i_l} x_{k_1} \cdots x_{k_u} \otimes x_{j_1} \cdots x_{j_m} x_{k_1} \cdots x_{k_u}) = 0 \). So by (1) of Theorem 3.1,
\[
Dlcop(x_{i_1} \cdots x_{i_l} x_{k_1} \cdots x_{k_u} \otimes x_{j_1} \cdots x_{j_m} x_{k_1} \cdots x_{k_u}) = x_{j_1} \times 0
\]
\[
+ Dlcop(x_{i_1} \cdots x_{i_l} x_{j_1} x_{k_1} \cdots x_{k_u} \otimes x_{j_2} \cdots x_{j_m} x_{k_1} \cdots x_{k_u}).
\]
By induction on \( m \), this is equal to
\[
Dlcop(x_{i_1} \cdots x_{i_l} x_{j_1} \cdots x_{j_m} x_{k_1} \cdots x_{k_u} \otimes x_{k_1} \cdots x_{k_u}).
\]
So we have proved that \( Dlcop(x_I \otimes x_J) = Dlcop(x_{I \cup J} \otimes x_{I \cap J}) \). By Lemma 5.3, if \( I \cup J \neq \{1, \ldots, N\} \) then \( Dlcop(x_I \otimes x_J) = 0 \).

**Theorem 5.5.** Let \( X \) be a simply-connected space such that \( H^*(X; \mathbb{F}_2) \) is the polynomial algebra \( \mathbb{F}_2[y_1, \ldots, y_N] \). The dual of the loop coproduct admits \( Dlcop(x_1 \cdots x_N \otimes x_1 \cdots x_N) \in H^d(\mathbb{L}X; \mathbb{F}_2) \) as unit.

**Lemma 5.6.** Let \( a \in H^*(\mathbb{L}X; \mathbb{F}_2) \).

1. For \( 1 \leq i \leq N \), \( x_i Dlcop(a \otimes a) = 0 \).
2. For any \( b \in H^*(\mathbb{L}X; \mathbb{F}_2) \),
\[
Dlcop(Dlcop(a \otimes a) \otimes b) = b Dlcop(Dlcop(a \otimes a) \otimes 1).
\]

**Proof of Lemma 5.6.** (1) By (1) of Theorem 3.1,
\[
Dlcop(a \otimes ax_i) = x_i Dlcop(a \otimes a) + Dlcop(ax_i \otimes a).
\]
Since \( Dlcop \) is graded commutative \([6]\), \( Dlcop(a \otimes ax_i) = Dlcop(ax_i \otimes a) \). So \( x_i Dlcop(a \otimes a) = 0 \).

(2) By (1) and (1) of Theorem 3.1,
\[
Dlcop(Dlcop(a \otimes a) \otimes bx_i) = x_i Dlcop(Dlcop(a \otimes a) \otimes b) + 0.
\]
Therefore by induction
\[ D\text{lcop}(D\text{lcop}(a \otimes a) \otimes x_{i_1} \ldots x_{i_n}) = x_{i_1} \ldots x_{i_n} D\text{lcop}(D\text{lcop}(a \otimes a) \otimes 1). \]

Using (4) of Theorem 3.1, we obtain (2).

\[ \square \]

**Proof of Theorem 5.5.** Since \( D\text{lcop} \) is graded associative [6] and using (2) of Theorem 3.1 twice,
\[
D\text{lcop}(D\text{lcop}(x_{i_1} \ldots x_{i_N} \otimes x_1 \ldots x_N) \otimes 1) = D\text{lcop}(x_{i_1} \ldots x_{i_N} \otimes D\text{lcop}(x_1 \ldots x_N) \otimes 1) = D\text{lcop}(x_1 \ldots x_N \otimes 1) = 1.
\]

Therefore using (2) of Lemma 5.6,
\[
D\text{lcop}(D\text{lcop}(x_{i_1} \ldots x_{i_N} \otimes x_1 \ldots x_N) \otimes b) = b D\text{lcop}(D\text{lcop}(x_{i_1} \ldots x_{i_N} \otimes x_1 \ldots x_N) \otimes 1) = b \times 1 = b.
\]

\[ \square \]

The simplest connected Lie group with non-trivial Steenrod operation \( Sq_1 \) in the cohomology of its classifying space is \( SO(3) \).

**Theorem 5.7.** The cap product and the dual of the loop coproduct on the mod 2 free loop cohomology of the classifying space of \( SO(3) \) are given by
\[
H^*(LBSO(3); \mathbb{Z}/2) \cong \Delta(x_1, x_2) \otimes \mathbb{Z}/2[y_2, y_3]
\]
\[
\cong \mathbb{Z}/2[x_1, x_2] \otimes \mathbb{Z}/2[y_2, y_3] / \left( \begin{array}{c}
x_1^2 + x_2 \\
x_1^2 + x_2y_2 + y_3x_1
\end{array} \right)
\]
as algebras over \( H^*(BSO(3); \mathbb{Z}/2) \cong \mathbb{Z}/2[y_2, y_3] \), where \( \deg x_i = i \) and \( \deg y_j = j \).

\[ D\text{lcop}(x_1x_2 \otimes 1) = D\text{lcop}(x_1 \otimes x_2) = 1, \\
D\text{lcop}(x_1x_2 \otimes x_1) = x_1, \\
D\text{lcop}(x_1x_2 \otimes x_2) = x_2 + y_2, \\
D\text{lcop}(x_1x_2 \otimes x_1x_2) = x_1y_2 + x_1y_2 + y_3.
\]

**Proof.** The cohomology \( H^*(BSO(3); \mathbb{Z}/2) \) is the polynomial algebra on the Stiefel-Whitney classes \( y_2 \) and \( y_3 \) of the tautological bundle \( \gamma^3 \) ([36, Theorem 7.1] or [37, III.Corollary 5.10]). By Wu formula [37, III.Theorem 5.12(1)], \( Sq^1y_2 = y_3 \) and \( Sq^2y_3 = y_2y_3 \). Now the computation of the cup product and of the dual of the loop coproduct follows from Theorem 3.1.

In the following proof, we detail the computation of the cup product and the dual of the loop coproduct following Theorem 3.1 for a more complicated example of Lie group.

**Proof of Theorem 5.1.** Observe that \( Sq^2y_1 = y_6, \ Sq^1y_6 = y_7 \) [37, VII.Corollary 6.3] and hence \( Sq^3y_4 = Sq^1y_6 = y_7y_7 = y_9y_7 \). Therefore the computation of the cup product on \( H^*(LBG_2; \mathbb{Z}/2) \) follows from Theorem 3.1: \( x_1^2 = x_6, \ x_2^2 = x_3y_7 + y_4x_6 \) and \( x_3^2 = x_5y_7 + y_6x_6 \).

Lemma 5.3 implies that monomials with non-trivial loop coproduct are ones only listed in the theorem.

By (2) of Theorem 3.1,
\[
D\text{lcop}(x_3x_5x_6 \otimes 1) = D\text{lcop}(x_3x_5x_6 \otimes x_6) = D\text{lcop}(x_3x_6\otimes x_5) = D\text{lcop}(x_5x_6 \otimes x_3) = 1.
\]

By Lemma 5.3, \( D\text{lcop}(x_3x_5^2 \otimes 1) = 0 \). By (1) of Theorem 3.1,
\[
D\text{lcop}(x_3x_5x_6 \otimes x_6) = x_6D\text{lcop}(x_3x_5x_6 \otimes 1) + D\text{lcop}(x_3x_5^2x_6 \otimes 1).
\]

Since \( x_3x_5x_6^2 = x_3x_5(x_3y_7 + y_6x_6) \), by (4) of Theorem 3.1,
\[
Dlcop(x_3x_5x_6^2 \otimes 1) = y_7 Dlcop(x_3x_5^2 \otimes 1) + y_6 Dlcop(x_3x_5x_6 \otimes 1) = y_7 x_5 + y_6 x_6.
\]
So finally \( Dlcop(x_3x_5x_6 \otimes x_6) = x_6 + y_6 \).

By Theorem 5.4, \( Dlcop(x_3x_6 \otimes x_5x_6) = Dlcop(x_3x_5x_6 \otimes x_6) \).

Since \( x_3x_5^2x_6 = x_5y_7^2 + x_6y_6y_7 + x_3x_5y_7y_4 + x_3x_6y_6y_4 \), by (1) of Theorem 3.1 and Lemma 5.3,
\[
Dlcop(x_3x_5x_6 \otimes x_5x_6) = x_5 Dlcop(x_3x_5x_6 \otimes x_6) + Dlcop(x_3x_5^2x_6 \otimes x_6) = x_5(x_6 + y_6) + y_7^2 x_5 + y_6 y_7 x_5 + y_6 y_4 x_5 + y_6 y_4 x_5 x_6.
\]

The other computations are left to the reader.

We would like to emphasize that Theorem 5.1 gives at the same time, the cup product and the dual of the loop coproduct on \( H^* (LBG_2; Z/2) \). As mentioned in Introduction, if we forget the cup product, then the following Theorem shows that the dual of the loop coproduct is really simple:

**Theorem 5.8.** Let \( X \) be a simply-connected space such that \( H^* (X; \mathbb{F}_2) \) is the polynomial algebra \( \mathbb{F}_2[V] \). Then with respect to the dual of the loop coproduct, there is an isomorphism of graded algebras between \( H^{*+d}(LX; \mathbb{F}_2) \) and the tensor product of algebras \( H^* (X; \mathbb{F}_2) \otimes H_{-*}(\Omega X; \mathbb{F}_2) \cong \mathbb{F}_2[V] \otimes (sV)^\vee \).

**Lemma 5.9.** Let \( X \) be a simply-connected space such that \( H^* (X; \mathbb{F}_2) = \mathbb{F}_2[V] \).

1) Suppose that \( \{i_1, \ldots, i_l\} \cup \{j_1, \ldots, j_m\} = \{1, \ldots, N\} \). Let \( \{k_1, \ldots, k_u\} := \{i_1, \ldots, i_l\} \cap \{j_1, \ldots, j_m\} \). Then
\[
H^* (i_1) \circ Dlcop(x_{i_1} \cdots x_{i_l} \otimes x_{j_1} \cdots x_{j_m}) = x_{k_1} \cdots x_{k_u}.
\]

2) Let \( \Theta : H_{-*}(\Omega X) = \wedge (sV)^\vee \cong H^{*+d}(\Omega X) = \Delta (sV) \) be the linear isomorphism defined by
\[
\Theta (x_{j_1} \wedge \cdots \wedge x_{j_m}) = x_{i_1} \cup \cdots \cup \widetilde{x}_{j_1} \cup \cdots \cup \widetilde{x}_{j_m} \cup \cdots \cup x_N.
\]

Here \( \vee \) denotes the dual and \( \sim \) denotes omission. Then the composite \( \Theta^{-1} \circ H^* (i) : H^{*+d}(LX) \to H^{*+d}(\Omega X) \cong H_{-*}(\Omega X) \) is a morphism of graded algebras preserving the units.

**Proof of Lemma 5.9.** 1) Suppose that \( |x_{k_i}| \geq \cdots \geq |x_{k_u}| \). There exists polynomials \( P_1, \ldots, P_N \in \mathbb{F}[y_1, \ldots, y_N] \) possibly null such that
\[
x_{k_i}^2 = \Delta \circ ev^* \circ Sq^{y_{k_i}, i-1} (y_{k_i}) = \sum_{i=1}^{N} x_i P_i.
\]
If \( P_i \) is of degree 0, since \( |x_i| > |x_{k_i}| \), \( x_i \) is not one of the elements \( x_{k_1}, \ldots, x_{k_u} \) and so by Lemma 5.3 \( Dlcop(x_{i_1} \cdots \widetilde{x}_{k_i} \cdots x_i \otimes x_{j_1} \cdots \widetilde{x}_{j_m} \cdots x_j) = 0 \).

If \( P_i \) is of degree \( \geq 1 \), by (4) of Theorem 3.1, \( H^* (i) \circ Dlcop(P_i \cdot x_{k_1} \cdots \widetilde{x}_{k_i} \cdots x_i \cdot x_{j_1} \cdots \widetilde{x}_{j_m} \cdots x_j) = 0 \).

Therefore \( H^* (i) \circ Dlcop(x_{i_1} \cdots \widetilde{x}_{k_i} \cdots x_i \cdot x_{j_1} \cdots \widetilde{x}_{j_m} \cdots x_j) = 0 \). Now the same proof as the proof of Theorem 4.1 shows 1).

2) Since \( H^* (\Omega X; \mathbb{F}_2) \) is generated by the \( x_i : = \sigma(y_i), 1 \leq i \leq N \) which are primitives, by [35, 4.20 Proposition], all squares vanish in \( H_r (\Omega X; \mathbb{F}_2) \). Therefore \( H_r (\Omega X; \mathbb{F}_2) \) is the exterior algebra \( \Lambda (y_i)^\vee \).
Let $I = \{ i_1, \ldots, i_t \} \subset \{ 1, \ldots, N \}$. Recall from Theorem 5.4 that in $\Delta(x_1, \ldots, x_N)$, $x_i$ denotes the generator $x_{i_1} \cup x_{i_2} \cup \cdots \cup x_{i_t}$. Denote also in the exterior algebra $D_{\text{cop}}(x_i, \ldots, x_N)$ by $x_j$ the element $x_{i_1} \wedge x_{i_2} \wedge \cdots \wedge x_{i_t}$. Then with this notation, $\Theta(\phi) = x_I$ where $I$ is the complement of $I$ in $\{ 1, \ldots, N \}$. Let $\text{comp}^2 : H^* (LX) \otimes H^* (LX) \rightarrow H^* (LX)$ be the multiplicity defined by $\text{comp}^2(x_i \otimes x_j) = x_{i+1}$ if $i \cup j = \{ 1, \ldots, N \}$ and 0 otherwise. By (1) and Lemma 5.3, $H^*(i) : H^* (LX) \rightarrow H^* (LX)$ commutes with the products $D_{\text{cop}}$ and $\text{comp}^2$.

By Theorem 5.5, $D_{\text{cop}}(x_1 \ldots x_N \otimes x_1 \ldots x_N)$ is the unit of $D_{\text{cop}}$. By (1),

$$\Theta^{-1} \circ H^*(i) \circ D_{\text{cop}}(x_1 \ldots x_N \otimes x_1 \ldots x_N) = \Theta^{-1}(x_1 \ldots x_N) = 1.$$ 

Therefore $\Theta^{-1} \circ H^*(i)$ preserves also the units.

**Proof of Theorem 5.8.** Denote by $I := D_{\text{cop}}(x_1 \ldots x_N \otimes x_1 \ldots x_N)$ the unit of $H^* (LX; \mathbb{F}_2)$ (Theorem 5.5). By (6) of Theorem 2.2, the map $s^i : H^*(X) \rightarrow H^* (LX)$, $a \mapsto ev^*(a)I$, is a morphism of unital commutative graded algebras.

By Lemma 5.3, we have $D_{\text{cop}}(x_1 \ldots x_i \ldots x_N \otimes x_1 \ldots x_i \ldots x_N) = 0$. So let $\sigma : H^* (LX) \rightarrow H^* (LX)$ be the unique linear map such that for all $1 \leq i \leq N$, $\sigma(x_1 \ldots x_i \ldots x_N) = x_1 \ldots x_i \ldots x_N$ and such that $\sigma \circ \Theta : H^*(\Omega X) = \Lambda(s^i)^* \rightarrow H^*(LX)$ is a morphism of unital commutative graded algebras. For $1 \leq i \leq N$, $\Theta^{-1} \circ H^*(i) \circ \sigma \circ \Theta(x_i) = x_i$. By Lemma 5.9, the composite $\Theta^{-1} \circ H^*(i) : H^* (LX) \rightarrow H^* (\Omega X)$ is a morphism of graded algebras. So the composite $\Theta^{-1} \circ H^*(i) \circ \sigma \circ \Theta$ is the identity map and $\sigma$ is a section of $H^*(i)$. So by Leray-Hirsch theorem, the linear morphism of $H^*(X)$-modules $H^*(X) \otimes H^*(\Omega X) \rightarrow H^*(LX)$, $a \otimes g \mapsto ev^*(a)\sigma(g)$, is an isomorphism.

The composite

$$\varphi : H^*(X) \otimes H^*(\Omega X) \xrightarrow{s^i \circ \Theta} H^* (LX) \otimes H^* (LX) \xrightarrow{D_{\text{cop}}} H^* (LX)$$

is a morphism of commutative graded algebras with respect to the dual of the loop coproduct. By (4) of Theorem 3.1 and since $I$ is an unit for $D_{\text{cop}}$, $\varphi(a \otimes g) = D_{\text{cop}}(ev^*(a)I \otimes \sigma \circ \Theta(g)) = ev^*(a)\sigma \circ \Theta(g)$. Therefore $\varphi$ is an isomorphism.

**Example 5.10.** With respect to the dual of the loop coproduct, there is an isomorphism of algebras between $H^{*+3}(\text{BSO}(3); Z/2)$ and

$$H^* (\text{SO}(3); Z/2) \otimes H^* (\text{BSO}(3); Z/2) \cong \wedge(u_{-1}, u_{-2}) \otimes Z/2[v_2, v_3].$$

**Proof.** By Theorem 5.5, $D_{\text{cop}}(x_1 x_2 \otimes x_1 x_2) = x_1 x_2 + x_1 y_2 + y_3$ is an unit for the dual of the loop coproduct on $H^{*+3}(\text{BSO}(3); Z/2)$. By Lemma 5.3,

$$D_{\text{cop}}(x_1 \otimes x_1) = D_{\text{cop}}(x_2 \otimes x_2) = 0.$$ 

So let $\varphi : \wedge(u_{-1}, u_{-2}) \otimes Z/2[v_2, v_3] \rightarrow H^{*+3}(\text{BSO}(3); Z/2)$ be the unique morphism of algebras such that $\varphi(u_{-2}) = x_1$, $\varphi(u_{-1}) = x_2$, $\varphi(v_2) = y_2(x_1 x_2 + x_1 y_2 + y_3)$ and $\varphi(v_3) = y_3(x_1 x_2 + x_1 y_2 + y_3)$.

For all $i, j \geq 0$, we see that $\varphi(v_i v_j) = y_2^i y_j^j(x_1 x_2 + x_1 y_2 + y_3)$, $\varphi(u_{-1} u_{-2} v_i v_j) = y_2^i y_2^j$, $\varphi(u_{-1} u_{-2} v_i v_j) = x_2 y_i y_j^j$ and $\varphi(u_{-2} u_{-3} v_i v_j) = x_1 y_i y_j^j$. Therefore $\varphi$ sends a linear basis of $\wedge(u_{-1}, u_{-2}) \otimes Z/2[v_2, v_3]$ to a linear basis $H^{*+3}(\text{BSO}(3); Z/2)$. So $\varphi$ is an isomorphism.
Example 5.11. With respect to the dual of the loop coproduct, there is an isomorphism of algebras between $H^{*+14}(BG_2; Z/2)$ and $H_{−∗}(G_2; Z/2)⊙H^{∗}(BG_2; Z/2) ≅ \wedge(u_{−3}, u_{−5}, u_{−6}) ⊙ Z/2[v_4, v_6, v_7]$.

Proof. By Theorem 5.5, $Dlcop(x_3x_5x_6 ∩ x_3x_5x_6) = x_3x_5x_6 + x_3x_5y_6 + x_3y_4y_7 + y_7^2$ is an isomorphism for the dual of the loop coproduct on $H^{*+14}(BG_2; Z/2)$. By Lemma 5.3,

$$Dlcop(x_3x_5x_6 ∩ x_3x_6) = Dlcop(x_3x_5 ∩ x_3x_5) = 0.$$

So let $\varphi : \wedge(u_{−3}, u_{−5}, u_{−6}) ⊙ Z/2[v_4, v_6, v_7] → H^{*+14}(BG_2; Z/2)$ be the unique isomorphism of algebras such that $\varphi(u_{−3}) = x_3x_5, \varphi(u_{−5}) = x_3x_6, \varphi(u_{−6}) = x_3x_5, \varphi(v_4) = y_4(x_3x_5x_6 + x_3x_5y_6 + x_3y_4y_7 + y_7^2), \varphi(v_6) = y_6(x_3x_5x_6 + x_3x_5y_6 + x_3y_4y_7 + y_7^2)$ and $\varphi(v_7) = y_7(x_3x_5x_6 + x_3x_5y_6 + x_3y_4y_7 + y_7^2)$.

For all $i, j$ and $k ≥ 0$, we see that $\varphi(v_i^k v_j^k) = y_i^k y_j^k (x_3x_5x_6 + x_3x_5y_6 + x_3y_4y_7 + y_7^2), \varphi(u_{−3}u_{−5}u_{−6}v_i^k v_j^k) = y_i^k y_j^k, \varphi(u_{−3}u_{−5}u_{−6}v_i^k v_j^k) = (x_6 + y_6)y_i^k y_j^k, \varphi(u_{−3}u_{−6}v_i^k v_j^k) = x_3y_4y_7^2, \varphi(u_{−3}u_{−6}v_i^k v_j^k) = x_3y_4y_7^2, \varphi(u_{−6}v_i^k v_j^k) = x_3y_4y_7^2, \varphi(u_{−6}v_i^k v_j^k) = x_3y_4y_7^2$ and $\varphi(u_{−6}v_i^k v_j^k) = x_3y_4y_7^2$. Therefore $\varphi$ sends a linear basis of $\wedge(u_{−3}, u_{−5}, u_{−6}) ⊙ Z/2[v_4, v_6, v_7]$ to a linear basis $H^{*+14}(BG_2; Z/2)$. So $\varphi$ is an isomorphism.

Lemma 5.12. Let $(A, ⋅)$ be a commutative unital associative graded algebra such that $x ∗ x = 1$. Let $ψ : A → A$ be the linear morphism mapping $a$ to $x ∗ a$. Then $ψ$ is an involutive isomorphism such that $ψ(a) ∗ ψ(b) = a ∗ b$.

Proof. $ψ(a) ∗ ψ(b) = (x ∗ a) ∗ (x ∗ b) = (x ∗ x) ∗ (a ∗ b) = 1 ∗ (a ∗ b) = a ∗ b$. □

Second proof of Theorem 5.8 which gives another (better?) algebra isomorphism. By commutativity and associativity of Dcop and Theorem 5.5, applying Lemma 5.12,

$ψ : H^∗(X) ⊙ H^{∗+d}(ΩX) → H^{∗+d}(ΑX)$ defined by

$$ψ(a ⊗ x_{k_1} ... x_{k_n}) = Dlcop(x_1 ... x_N ∩ ax_{k_1} ... x_{k_n})$$

is an involutive isomorphism such that

$$Dlcop(ψ(a ⊗ x_I) ∗ ψ(b ⊗ x_J)) = Dlcop(ax_I ⊙ bx_J)$$

for any subsets I and J of $\{1, ..., N\}$.

Case I ∪ J = $\{1, ..., N\}$. By Theorem 5.4,

$$Dlcop(ax_I ⊙ bx_J) = Dlcop(x_1 ... x_N ⊙ ax_{I,J}) = ψ(aj ⊙ x_{I,J}) = ψ(ab ⊙ comp^I(x_I ⊙ x_J)).$$

Case I ∪ J ≠ $\{1, ..., N\}$. By Theorem 5.4, $Dlcop(ax_I ⊙ bx_J) = 0$ and $comp^I(x_I ⊙ x_J) = 0$.

Therefore $ψ$ is a morphism of graded algebras.

One can shows that $\{ψ(1 ⊗ Θ(x_{I,J})), ψ(1 ⊗ Θ(x_{I,J}'))\} = 0$. That is why this isomorphism might be better. □

Theorem 5.13. As Batalin-Vilkovisky algebra,

$$H^{*+3}(LBSO(3); Z/2) ≅ \wedge(u_{−1}, u_{−2}) ⊙ Z/2[v_2, v_3]$$

where for all $i, j, k ≥ 0, \Delta(v_i^k v_j^k) = 0, \Delta(u_{−1}u_{−2}v_i^k v_j^k) = iu_{−2}v_i^{k−1} + jv_{−2}v_j^{k−1}, \Delta(u_{−2}v_i^k v_j^k) = iu_{−1}v_i^{k−1}v_j + jv_{−2}v_j^{k−1}v_i + ju_{−1}u_{−2}v_i^{k−1}v_j + ju_{−1}u_{−2}v_j^{k−1}v_i, \Delta(u_{−1}v_i^k v_j^k) = iu_{−1}v_i^{k−1}v_j + (i+j)u_{−2}v_i^{k−1}v_j + iu_{−1}u_{−2}v_i^{k−1}v_j + ju_{−1}u_{−2}v_i^{k−1}v_j.$$

In particular $1 ∉ Im \Delta$. 

Proof. Theorem 5.7 gives the BV-algebra $H^{+3}(LBSO(3); Z/2)$ since $\Delta$ is a derivation with respect to the cup product. In the proof of Example 5.10, the isomorphism of algebras $\varphi : \Lambda(u_{-1}, u_{-2}) \otimes Z/2[\nu_2, \nu_3] \to H^{+3}(LBSO(3); Z/2)$ of Theorem 5.8 is made explicit on generators. We now transport the operator $\Delta$ using $\varphi$.

In degree 1, the $\Delta$ operator is given by $\Delta(u_{-1}u_{-2}v^2_2) = 0$ and

$$\Delta(u_{-2}v_3) = \Delta(u_{-1}v_2) = 1 + u_{-2}v_2 + u_{-1}u_{-2}v_3.$$
\[ \Delta(u_{-6}v_7) = \Delta(u_{-5}v_6) = \Delta(u_{-3}v_4) = 1 + u_{-6}v_6 + u_{-5}u_{-6}v_4v_7 + u_{-3}u_{-5}u_{-6}v_2^2. \]

\[ Note that \phi^{-1} \circ \Delta \circ \phi(y_i \otimes x_i^y) = \phi^{-1}(x_1 \ldots x_N) \text{ is independent of } i. \]

6. RELATION WITH HOCHSCHILD COHOMOLOGY

Let \( k \) be any field. Let \( G \) be a connected compact Lie group of dimension \( d \).

**Conjecture 6.1.** [6, Conjecture 68] There is an isomorphism of Gerstenhaber algebras

\[ H^{*+d}(LBG) \cong H^*(S_*(G), S_*(G)). \]

Suppose that \( H^*(BG; K) \) is a polynomial algebra \( K[V] = K[y_1, \ldots, y_N] \). It follows from [39, Theorem 9, p. 572] (See also [30, Proposition 8.21]) that \( BG \) is \( K \)-formal. Then \( BG \) is \( K \)-coformal and \( H_*(G; K) \) is the exterior algebra \( \Lambda(sV)^\vee \). Indeed, since \( BG \) is \( K \)-formal, the Cobar construction \( \Omega H_*(BG) \) is weakly equivalent to \( S_*(G) \). Let \( A_i \) denote the exterior algebra \( \Lambda s^{-1}(y_i^y) \). Then \( EZ \), the Eilenberg-Zilber map and \( \varepsilon \), the counit of the adjunction between the Bar and the Cobar construction give the quasi-isomorphisms of algebras

\[ \Omega H_*(BG) = \bigoplus_{i=1}^{N} \Omega B A_i \cong \bigoplus_{i=1}^{N} \Omega B A_i \cong \bigoplus_{i=1}^{N} \Lambda A_i = \Lambda s^{-1} V^\vee. \]

Alternatively, since \( BG \) is \( K \)-formal, you can use the implication (2) \( \Rightarrow \) (1) in Theorem 2.14 of [2].

Therefore, we have the isomorphism of Gerstenhaber algebras

\[ HH^*(S_*(G), S_*(G)) \cong HH^*(H_*(G; k), H_*(G; k)) \cong HH^*(\Lambda(sV)^\vee, \Lambda(sV)^\vee). \]

By Theorem 12.3 as graded algebras

\[ HH^*(\Lambda(sV)^\vee, \Lambda(sV)^\vee) \cong \Lambda(sV)^\vee \otimes K[V] \cong H_*(G; k) \otimes H^*(BG; k). \]

So in Theorem 5.8, we have checked Conjecture 6.1 only for the algebra structure when \( k = \mathbb{F}_2 \). When \( k = \mathbb{F}_2 \), we would like to check conjecture 6.1 also for the Gerstenhaber algebra structure.

The following theorem shows that the conjecture is true for the Gerstenhaber algebra structure when \( k \) is a field of characteristic different from 2.

**Theorem 6.2.** Under the hypothesis (H), the free loop space cohomology of the classifying space of \( G \), \( H^{*+dimG}(LBG; F) \) is isomorphic as Batalin-Vilkovisky algebra to the Hochschild cohomology of \( H_*(G; F) \), \( HH^*(H_*(G; F), H_*(G; F)) \). In particular the underlying Gerstenhaber algebras are isomorphic.

**Proof.** By hypothesis, \( H^*(BG) \cong K[V] = K[y_i] \) as algebras. Then \( H_*(G) \cong \Lambda(sV)^\vee = \Lambda x_j^y \) as algebras.

Let \( \Psi : sV \rightarrow (sV)^\vee \) be the canonical isomorphism of the graded vector space \( sV \) into its bidual. By definition, \( \Psi(sv)(x) = (-1)^{|x||sv|} \varphi(sv) \) for any linear form \( \varphi \) on \( sV \).

By Theorem 12.3, we have the BV-algebra isomorphism \( HH^*(H_*(G), H_*(G)) \cong \Lambda(sV)^\vee \otimes K[s^{-1}(sv)^\vee] \) where for any \( v \in V \) and \( \varphi \in (sV)^\vee \),

\[ \Delta((1 \otimes s^{-1}(sv))(\varphi \otimes 1)) = (-1)^{|\varphi||sv|} s^{-1}(sv), \varphi = -\Psi(sv)(\varphi) = (-1)^{|\varphi||sv|} \varphi(sv) \]

and where \( \Delta \) is trivial on \( \Lambda(sV)^\vee \) and on \( K[s^{-1}(sv)^\vee] \).
The isomorphism of algebras \( Id \otimes \mathbb{K}[s^{-1}\Psi] : \Lambda(sV)^\vee \otimes \mathbb{K}[s^{-1}(sV)^\vee] \) is a isomorphism of BV-algebras if for any \( v \in V \) and \( \varphi \in (sV)^\vee \), \( \Delta((1 \otimes v)(\varphi \otimes 1)) = -(1)^{[v][sv]} \varphi(sv) \) and if \( \Delta \) is trivial on \( \Lambda(sV)^\vee \) and on \( \mathbb{K}[V] \).

Taking \( v = y_i \) and \( \varphi = \sigma(y_j)^\vee = x_j^\vee \), we obtained that \( \Delta(y_i \otimes x_j^\vee) = 1 \) if \( i = j \) and 0 otherwise like in Theorem 4.3.

\( \square \)

**Theorem 6.3.** For \( G = SO(3) \) or \( G = G_2 \), the free loop space modulo 2 cohomology of the classifying space of \( G \), \( H^{* + \dim G}(LBG; \mathbb{F}_2) \) is not isomorphic as Batalin-Vilkovisky algebra to the Hochschild cohomology of \( H_*(G; \mathbb{F}_2) \), \( HH^*(H_*(G; \mathbb{F}_2); H_*(G; \mathbb{F}_2)) \) although when \( G = SO(3) \) the underlying Gerstenhaber algebras are isomorphic.

The main result of [33] is that the same phenomenon appears for Chas-Sullivan string topology even in the simple case of the two dimensional sphere \( S^2 \).

**Lemma 6.4.** Let \( A \) and \( B \) two unital BV-algebras. Let \( \varphi : A \to B \) be a linear map preserving the units and commuting with the BV-operators \( \Delta \) (For example if \( \varphi \) is an isomorphism preserving the multiplications and the \( \Delta \)'s). If \( 1_A \in \text{Im} \Delta \) then \( 1_B \in \text{Im} \Delta \).

**Proof.** There exists \( a \in A \) such that \( \Delta(a) = 1_A \). So
\[ 1_B = \varphi(1_A) = \varphi(\Delta(a)) = \Delta(\varphi(a)) \in \text{Im} \Delta. \]

\( \square \)

**Lemma 6.5.** Let \( d \in \mathbb{N} \) be a non-negative integer. Let \( f : A \to B \) be a morphism of augmented graded algebras such that \( B = B_{\geq -d} \), i. e. \( B \) is concentrated in degrees greater or equal than \( -d \) and such that \( B_0 = \mathbb{F} \). Then \( f \) is surjective iff \( Q(f) \) is surjective.

**Proof.** When \( d = 0 \), this Lemma is Proposition 3.8 of [35]. But the proof of [35] cannot be easily generalized. Therefore we provide a proof.

Filter \( A \) by wordlength: \( F^n(A) := A \cdot A \cdot \cdots \cdot A \) for any \( n \geq 0 \). The sequence
\[ \bigoplus_{i=1}^n A^{\otimes i-1} \otimes A \cdot A \otimes A^{\otimes n-i} \to A^{\otimes n} \to Q(A)^{\otimes n} \to 0 \]
is exact. Alternatively, since over a field \( \mathbb{F} \), \( A = A \cdot A \otimes Q(A), \)
\[ 0 \to \bigoplus_{i=1}^n A^{\otimes i-1} \otimes A \cdot A \otimes A^{\otimes n-i} \to A^{\otimes n} \to Q(A)^{\otimes n} \to 0 \]
is a short exact sequence. Therefore the iterated multiplication of \( A \) induces a natural map \( Q(A)^{\otimes n} \to F^n(A)/F^{n+1}(A) \) obviously surjective.

Assume that \( Q(f) \) is surjective. Then \( Q(f)^{\otimes n} : Q(A)^{\otimes n} \to Q(B)^{\otimes n} \) is also surjective. Since the following square is commutative by naturality,
\[
\begin{array}{ccc}
Q(A)^{\otimes n} & \longrightarrow & F^n(A)/F^{n+1}(A) \\
\downarrow Q(f)^{\otimes n} & & \downarrow Gr f \\
Q(B)^{\otimes n} & \longrightarrow & F^n(B)/F^{n+1}(B),
\end{array}
\]
the map induced by $f$, $Gr_n f$, is also surjective. In a fixed degree, consider the commutative diagram

$$
\begin{array}{c}
0 \\ f|F^{n+1}(A)\downarrow \\
F^n(A) \longrightarrow F^n(A)/F^{n+1}(A) \longrightarrow 0 \\
Gr_n f \\
F^{n+1}(B) \longrightarrow F^n(B)/F^{n+1}(B) \longrightarrow 0
\end{array}
$$

with exact rows. Suppose by induction that the restriction of $f$ to $F^{n+1}(A)$, $f|F^{n+1}(A)$, is surjective. Then by the five Lemma, $f|F^n(A)$, is also surjective. Since $F^n(B)$ is concentrated in degrees greater or equal than $n - 2d$, in a fixed degree, for large $n$, $F^n(B)$ is trivial and we can start the induction. Therefore $f = f|F^n(A)$ is surjective. □

Proof of Theorem 6.3. Since $H_n(G)$ is an exterior algebra, by Example 12.2 b), $1 \in 1m \Delta$ in the BV-algebra $H^*(H_n(G); H_n(G))$. On the contrary, by Theorems 5.13 and 5.14, the unit 1 does not belong to the image of $\Delta$ in the BV-algebra $H^{+dimG}(LBG; \mathbb{F}_2)$. So by Lemma 6.4, the BV-algebras $HH^*(H_n(G); H_n(G))$ and $H^{+dimG}(LBG; \mathbb{F}_2)$ are not isomorphic.

The BV-algebra $HH^*(H_n(SO(3)); H_n(SO(3)))$ is explicitly computed in the proof of Theorem 6.2 and is isomorphic to the tensor product of algebras $\Lambda(x_{-2}, x_{-1}) \otimes \mathbb{F}_2[y_2, y_3]$ with $\Delta(x_{-2}y_2) = 1$, $\Delta(x_{-2}y_3) = 0$, $\Delta(x_{-1}y_2) = 1$, $\Delta(x_{-1}y_3) = 0$, and $\Delta$ is trivial on $\Lambda(x_{-2}, x_{-1}) \otimes 1$ and on $1 \otimes \mathbb{F}_2[y_2, y_3]$. The BV-algebra $H^{+dimG}(LBOSO(3); \mathbb{F}_2) \cong \Lambda(u_{-2}, u_{-1}) \otimes \mathbb{F}_2[v_2, v_3]$ is explicated by Theorem 5.13.

Let $\varphi : \Lambda(x_{-2}, x_{-1}) \otimes \mathbb{F}_2[y_2, y_3] \to \Lambda(u_{-2}, u_{-1}) \otimes \mathbb{F}_2[v_2, v_3]$ be any morphism of graded algebras. Since $\Lambda(u_{-2}, u_{-1}) \otimes \mathbb{F}_2[y_2, y_3]$ and $\Lambda(u_{-2}, u_{-1}) \otimes \mathbb{F}_2[v_2, v_3]$ are of the same finite dimension in each degree, $\varphi$ is an isomorphism if $\varphi$ is surjective. By Lemma 6.5, $\varphi$ is surjective iff $Q(\varphi)$ is surjective. Therefore if $\varphi$ is an isomorphism of algebras iff

$$
\varphi(x_{-2}) = u_{-2}, \\
\varphi(x_{-1}) = u_{-1} + \varepsilon u_{-1}u_{-2}v_2, \\
\varphi(y_2) = v_2 + au_{-2}v_2^2 + bu_{-1}u_{-2}v_2v_3 + cu_{-1}v_3, \\
\varphi(y_3) = v_3 + \alpha u_{-2}v_2v_3 + \beta u_{-1}u_{-2}v_2^2 + \gamma u_{-1}u_{-2}v_3^2 + \delta u_{-1}v_2^2
$$

where $\varepsilon, a, b, c, \alpha, \beta, \gamma, \delta$ are 8 elements of $\mathbb{F}_2$. Since $(u_{-2})^2 = (u_{-1} + \varepsilon u_{-1}u_{-2}v_2)^2 = 0$, the above 4 formulas define always a morphism $\varphi$ of algebras.

By the Poisson rule, a morphism of algebras between Gerstenhaber algebras is a morphism of Gerstenhaber algebras iff the brackets are compatible on the generators.

Note that modulo 2, in a BV-algebra, for any elements $z$ and $t$, $\{z + t, z + t\} = \{z, z\} + \{t, t\}$ and $\{z, z\} = \Delta(z^2)$. Therefore it is easy to check that $\varphi((x_{-2}, x_{-2})) = 0 = \{\varphi(x_{-2}), \varphi(x_{-2})\}$, $\varphi((x_{-1}, x_{-1})) = 0 = \{\varphi(x_{-1}), \varphi(x_{-1})\}$, $\varphi((y_2, y_2)) = 0 = \{\varphi(y_2), \varphi(y_2)\}$ and $\varphi((y_3, y_3)) = 0 = \{\varphi(y_3), \varphi(y_3)\}$.

Note that $\Delta(\varphi(x_{-1})) = \varepsilon u_{-2}$, $\Delta(\varphi(x_{-2})) = 0$, $\Delta(\varphi(y_2)) = (b + c)(u_{-2}v_3 + u_{-1}v_2)$ and $\Delta(\varphi(y_3)) = \alpha u_{-1}v_3 + \alpha v_2 + (\alpha + \gamma)u_{-2}v_2^2 + \alpha u_{-1}u_{-2}v_2v_3$.

Therefore $\varphi((x_{-2}, y_2)) = 0$, $\{\varphi(x_{-2}), \varphi(y_2)\} = (1 + c)u_{-1} + (b + c)u_{-1}u_{-2}v_2$, $\varphi((x_{-1}, y_2)) = 1$, $\{\varphi(x_{-1}), \varphi(y_2)\} = 1 + (1 + \varepsilon)u_{-2}v_2 + (\varepsilon + 1 + b + c)u_{-1}u_{-2}v_3$, $\varphi((x_{-2}, x_{-1})) = 0 = \{\varphi(x_{-2}), \varphi(x_{-1})\}$, $\varphi((x_{-2}, y_3)) = 1$, $\{\varphi(x_{-2}), \varphi(y_3)\} = 1 + (1 + \alpha)u_{-2}v_2 + (1 + \alpha)u_{-1}u_{-2}v_3$, $\varphi((x_{-1}, y_3)) = 1$, $\{\varphi(x_{-1}), \varphi(y_3)\} = 1 + (1 + \beta)u_{-1}u_{-2}v_3$, $\varphi((x_{-2}, x_{-1})) = \varepsilon u_{-2}$, $\varphi((x_{-1}, x_{-1})) = 1$, $\{\varphi(x_{-1}), \varphi(x_{-1})\} = 1 + (1 + \gamma)u_{-2}v_2^2 + (\gamma + 1 + \alpha + \beta)u_{-1}u_{-2}v_3$, $\varphi((x_{-2}, x_{-2})) = 0 = \{\varphi(x_{-2}), \varphi(x_{-2})\}$. \]
\( \varphi(x_1, y_1) = 0, \{ \varphi(x_1), \varphi(y_1) \} = (1 + \alpha + \varepsilon + \alpha) u_{-1} v_2 + (\varepsilon + 1 + \alpha + \varepsilon) u_{-2} v_3 + (\varepsilon \delta + \alpha + \gamma + \varepsilon \alpha) u_{-1} u_{-2} v_2^2, \)
\( \varphi(y_2, y_3) = 0, \)
\( \{ \varphi(y_2), \varphi(y_3) \} = \Delta \varphi(y_2) \varphi(y_3) + \Delta(\varphi(y_2) \varphi(y_1)) + \varphi(y_2) \Delta \varphi(y_3) \)
\( = (b + c)(u_{-2} v_3^2 + u_{-1} v_2 v_3 + (\alpha + \delta) u_{-1} u_{-2} v_2^2 v_3^2) + \Delta \left( (a + \alpha) u_{-1} v_2^2 v_3 + (b + c + \beta) u_{-1} u_{-2} v_2 v_3^2 + \beta u_{-1} v_3^2 \right) + \varphi(y_2) \Delta \varphi(y_3) \)
\( = (a + \alpha + \delta + \alpha) v_2^2 + (a + \alpha + \delta + \alpha + \gamma + \alpha a) u_{-2} v_3^3 \)
\( + (b + c)(\alpha + \delta) + a + \alpha + \delta + \alpha + \alpha a + b a + \alpha a + \alpha a) u_{-1} u_{-2} v_2 v_3 \)
\( + (b + c + b + c + \beta) u_{-1} v_2 v_3 + (b + c + b + c + \beta) u_{-1} v_3^2. \)

Therefore, by symmetry of the Lie brackets, \( \varphi \) is a morphism of Gerstenhaber algebras if \( \varepsilon = b = c = \alpha = 1, \beta = 0 \) and \( a = \gamma = \delta. \) Conclusion: we have found two isomorphisms of Gerstenhaber algebras between \( H^{*+3}(LBSO(3); \mathbb{F}_2) \) and \( HH^*(H_*(SO(3)), H_*(SO(3))). \)


In this section, we review the results of Chataur and the second author in [6]. And we correct a sign mistake.

Integration along the fibre in homology with corrected sign. Let \( F \to E \overset{p}{\to} B \) be an oriented fibration with \( B \) path-connected; that is, the homology \( H_*(F; \mathbb{K}) \) is concentrated in degree less than or equal to \( n, \pi_1(B) \) acts on \( H_n(F; \mathbb{K}) \) trivially and \( H_n(F; \mathbb{K}) \cong \mathbb{K}. \) In what follows, we write \( H_*(X) \) for \( H_*(X; \mathbb{K}). \) We choose a generator \( \omega \) of \( H_*(F; \mathbb{K}), \) which is called an orientation class. Then the integration along the fibre \( p_\omega^* : H_*(B) \to H_{*+n}(E) \) is defined by the composite

\[ H_*(B) \overset{\eta}{\to} H_*(B) \otimes H_n(F) = E^2_{*,n} \to E^\infty_{*,n} = F^s/F^{s-1} = F^s \subset H_{*+n}(E), \]

where \( \eta \) sends the \( x \in H_*(B) \) to the element \((-1)^n x \otimes \omega \in H_*(B) \otimes H_n(F) \) and \( \{ F^s \}_{s \geq 0} \) denotes the filtration of the Leray-Serre spectral sequence \( \{ E^s_{*,*} \} \) of the fibration \( F \to E \overset{p}{\to} B. \) This Koszul sign \((-1)^n \) does not appear in the usual definition of integration along the fibre recalled in [6, 2.2.1].

Products: Let \( F' \to E' \overset{p'}{\to} B' \) be another oriented fibration with orientation class \( \omega' \in H_*(F'). \) We will choose \( \omega \otimes \omega' \in H_{n+n'}(F \times F') \) as an orientation class of the fibration \( F \times F' \to E \times E' \overset{p \times p'}{\to} B \times B'. \) By [38, 3 Theorem, page 493], the cross product \( \times \) induces a morphism of spectral sequences between the tensor product of the Serre spectral sequences associated to \( p \) and \( p' \) and the Serre spectral sequence associated to \( p \times p'. \) Therefore the interchange on \( H_*(B) \otimes H_*(F) \otimes H_*(B') \otimes H_*(F') \) between the orientation class \( \omega \in H_*(F) \) and elements in \( H_*(B') \) yields the formula given (without proof) in [6, section 2.3]

\[ (p \times p')^\omega \times \omega'(a \times b) = (-1)^{|\omega| |\omega'|} p_\omega^*(a) \times p'^\omega'(b). \]

Note that with the usual definition of integration along the fibre recalled in [6, 2.2.1], the Koszul sign \((-1)^{|\omega| |\omega'|} \) must be replaced by the awkward sign \((-1)^{|\omega| |b|}. \) Therefore there is a sign mistake in [6, section 2.3].

Integration along the fibre in cohomology with corrected sign. Let \( F^{incl} \overset{\tau}{\to} E \overset{p}{\to} B \) be an oriented fibration with orientation \( \tau : H^n(F) \to \mathbb{K}. \) By definition,
$p_\tau : H^{*+n}(E) \to H^*(B)$ is the composite

$$H^{*+n}(E) \to E_{*+n}^\infty \subset E_{*+n}^2 = H^*(B) \otimes H^n(F) \xrightarrow{id \otimes \tau} H^*(B)$$

where $(id \otimes \tau)(b \otimes f) = (-1)^{|b||f|}br(f)$. This Koszul sign $(-1)^{|b||f|}$ does not appear in the usual definition of integration along the fibre recalled in [3, p. 268].

By [3, IV.14.1],

$$p_\tau^i(H^*(p)(\beta) \cup \alpha) = (-1)^{|\beta||\alpha|} \cup p_\tau^i(\alpha)$$

for $\alpha \in H^*(E)$ and $\beta \in H^*(B)$. This means that the degree $-n$ linear map $p_\tau^i : H^*(E) \to H^{*+n}(B)$ is a morphism of left $H^*(B)$-modules in the sense that $f(xm) = (-1)^{|f||m|}xf(m)$ as quoted in [9, p. 44].

**Example: trivial fibrations.** Let $\omega \in H_n(F; \mathbb{K})$ be a generator. Define the orientation $\tau : H^n(F) \to \mathbb{K}$ as the image of $\omega$ by the natural isomorphism of the homology into its double dual, $\psi : H_n(F; \mathbb{K}) \to \text{Hom}(H^n(F; \mathbb{K}), \mathbb{K})$. Explicitly,

$$\tau(f) = (-1)^{|\omega|} < f, \omega > = |f|$$

where $<,>$ is the Kronecker bracket.

Let $p_1 : B \times F \to B$ be the projection on the first factor. Then for any $f \in H^*(F)$ and $b \in H^*(B)$, $p_1^i(b \times f) = (-1)^{|b||f|}br(f)$. Let $p_2 : F \times B \to B$ be the projection on the second factor. Since $p_2$ is the composite of $p_1$ and the exchange homeomorphism, by naturality of integration along the fibre,

$$p_2^i(f \times b) = p_1^i((-1)^{|b||f|}b \times f) = br(f) = (-1)^{|f|} < f, \omega > = b.$$

**Main coTheorem of [6] with signs.** The main theorem of [6] states that $H_*(LX)$ is a $d$-dimensional (non-unital non co-unital) homological conformal field theory: that is $H_*(LX)$ is an algebra over the tensor product of graded linear props

$$\bigoplus_{F_{p+q}} \det H_1(F, \partial_m; \mathbb{Z}) \otimes \mathbb{K} H_*(BDiff f^+(F, \partial); \mathbb{K}).$$

See [6, Sections 3 and 11] for the definition of this prop. The prop $\det H_1(F, \partial_m; \mathbb{Z})$ manages the degree shift and the sign of each operation. In [6], Chataur and the second author did not pay attention to this prop $\det H_1(F, \partial_m; \mathbb{Z})$ (in p. 120 neither, it seems). Therefore, in order to get the signs correctly, we need to review all the results of [6] by taking this prop into account. Explicitly, we have maps

$$\nu_* : (F_{q+p}, \partial_m; \mathbb{Z}) \otimes \mathbb{K} H_*(BDiff f^+(F_{q+p}, \partial)) \otimes \mathbb{K} \to H_*(BDiff f^+(F, \partial))^\otimes q$$

and

$$s \otimes a \circ \nu = \nu_* (F_{q+p}, s \otimes a).$$

Therefore (Compare with [6, Section 6.3]), its dual $H^*(LX)$ is an algebra over the opposite prop

$$\bigoplus_{F_{p+q}} \text{det} H_1(F, \partial_m; \mathbb{Z})^{op \otimes d} \otimes \mathbb{K} H_*(BDiff f^+(F, \partial))^{op}.$$

which is isomorphic to the prop

$$\bigoplus_{F_{p+q}} \text{det} H_1(F, \partial_m; \mathbb{Z}) \otimes \mathbb{K} H_*(BDiff f^+(F, \partial)),$$

since $\det H_1(F_{p+q}, \partial_m; \mathbb{Z}) = \det H_1(F_{q+p}, \partial_m; \mathbb{Z})$ and $\text{Diff} f^+(F_{q+p}, \partial) = \text{Diff} f^+(F_{q+p}, \partial)$. Explicitly, the degree 0 map

$$\nu^*(F_{p+q}) : \text{det} H_1(F_{q+p}, \partial_m; \mathbb{Z}) \otimes \mathbb{K} H_*(BDiff f^+(F_{q+p}, \partial)) \otimes \mathbb{K} \to H^*(LX)^{op}$$

send the element $s \otimes a \otimes a$ to

$$\nu^*(F_{q+p}) s \otimes a \otimes a (\alpha) := (-1)^{|\alpha|(|s|)} \alpha \circ \nu_* (F_{q+p}) s \otimes a \otimes a.$$
Note that here, we have defined the transposition of a map \( f \) as
\[
^t f(\alpha) = (-1)^{\|\alpha\|} f|\alpha \circ f.
\]

This means the following five propositions.

**Proposition 7.1.** (Compare with [6, Proposition 24]) Let \( F \) and \( F' \) be two cobordisms with same incoming boundary and same outgoing boundary. Let \( \phi : F \to F' \) be an orientation preserving diffeomorphism, fixing the boundary (i.e., an equivalence between the two cobordisms \( F \) and \( F' \)).

Let \( c_{\phi} : \text{Diff}^+(F, \partial) \to \text{Diff}^+(F', \partial) \) be the isomorphism of groups, mapping \( f \) to \( \phi \circ f \circ \phi^{-1} \). Then for \( s \otimes a \in \det H_1(F, \partial; \mathbb{Z}) \otimes H_*(\text{Diff}^+(F, \partial)) \),
\[
\nu^{s \otimes a}(F) = \nu^{\det H_1(F, \partial; \mathbb{Z}) \otimes H_*(\text{Diff}^+(F, \partial))}(s \otimes H_*(\text{Diff}^+(F, \partial))).
\]

**Remark 7.2.** In Proposition 7.1, suppose that \( F = F' \). By a variant of [6, Proposition 19], \( H_1(F, \partial; \mathbb{Z}) \) is of determinant +1. Since the natural surjection \( \text{Diff}^+(F, \partial) \to \text{Diff}^+(\partial) \) is a homotopy equivalence [7] and \( \pi_0(c_{\phi}) \) is the conjugation by the isotopy class of \( \phi \), \( H_*(\text{Diff}^+(F, \partial)) \) is the identity. So the conclusion of Proposition 7.1 is just \( \nu^{s \otimes a}(F) = \nu^{s \otimes a}(F) \).

Using Proposition 7.1, it is enough to define the operation \( \nu^* \) for a set of representatives \( F \) of oriented classes of cobordisms (therefore the direct sum over a set \( \otimes_F \) in the above definition of the prop has a meaning). Conversely, if \( \nu^* \) is defined for a cobordism \( F \) then using Proposition 7.1, we can define \( \nu^*(F') \) for any equivalent cobordism \( F' \) using an equivalence of cobordism \( \phi : F \to F' \). Two equivalences of cobordism \( \phi, \phi' : F \to F' \) define the same operation \( \nu^* \) since \( \det H_1(\phi) \circ \det H_1(\phi')^{-1} = \det H_1(\phi \circ \phi'^{-1}) = \text{Id} \) and \( H_*(\text{Diff}^+) \circ H_*(\text{Diff}^+) \) is the identity.

**Proposition 7.3.** (Compare with [6, Proposition 30 Monoidal]) Let \( F \) and \( F' \) be two cobordisms. For \( s \otimes a \in \det H_1(F, \partial; \mathbb{Z}) \otimes H_*(\text{Diff}^+(F, \partial)) \) and \( t \otimes b \in \det H_1(F', \partial; \mathbb{Z}) \otimes H_*(\text{Diff}^+(F', \partial)) \),
\[
\nu^{(s \otimes t) \otimes (a \otimes b)}(F \coprod F') = (-1)^{|t||a|} \nu^{s \otimes a}(F) \otimes \nu^{t \otimes b}(F').
\]

**Proposition 7.4.** (Compare with [6, Proposition 31 Gluing]) Let \( F_{p+q} \) and \( F_{q+r} \) be two composable cobordisms. Denote by \( F_{q+r} \circ F_{p+q} \) the cobordism obtained by gluing. For \( s_1 \otimes m_1 \in \det H_1(F_{p+q}, \partial; \mathbb{Z}) \otimes H_*(\text{Diff}^+(F_{p+q}, \partial)) \) and \( s_2 \otimes m_2 \in \det H_1(F_{q+r}, \partial; \mathbb{Z}) \otimes H_*(\text{Diff}^+(F_{q+r}, \partial)) \),
\[
\nu^{s_2 \otimes m_2}(F_{q+r}) \circ \nu^{s_1 \otimes m_1}(F_{p+q}) = (-1)^{|m_2||s_1|} \nu^{s_2 \otimes s_1}(m_2 \otimes m_1)(F_{q+r} \circ F_{p+q}).
\]

Here \( \circ : H_*(\text{Diff}^+(F_{q+r}, \partial)) \otimes H_*(\text{Diff}^+(F_{p+q}, \partial)) \to H_*(\text{Diff}^+(F_{q+r} \circ F_{p+q}, \partial)) \)
\[
\circ : H_*(\text{Diff}^+(F_{q+r}, \partial)) \otimes H_*(\text{Diff}^+(F_{p+q}, \partial)) \to H_*(\text{Diff}^+(F_{q+r} \circ F_{p+q}, \partial))
\]
mapping \( m_2 \otimes m_1 \) to \( m_2 \circ m_1 \) is induced by the gluing of \( F_{p+q} \) and \( F_{q+r} \).

As noted by [18] with their notion of h-graph cobordism, [6] never used the smooth structure of the cobordisms. So in fact, our cobordisms are topological. Therefore the cobordism \( F_{q+r} \circ F_{p+q} \) obtained by gluing is canonically defined [24, 1.3.2]. Note that by [7] and [16], the inclusion \( \text{Diff}^+(F, \partial) \xrightarrow{\sim} \text{Homeo}^+(F, \partial) \) is a homotopy equivalence since \( \pi_0(\text{Diff}^+(F, \partial)) \cong \pi_0(\text{Homeo}^+(F, \partial)) \) [8, p. 45].
Proposition 7.5. (Compare with [6, Corollary 28 i) identity]) Let \( id_1 \in \det H_1(F_{0,1+1}, \partial_{out}; \mathbb{Z}) \) and \( id_1 \in \det H_0(\text{Di}ff^+(F_{0,1+1}, \partial)) \) be the identity morphisms of the object 1 in the two props. Then
\[
\nu^{id_1} \otimes id_1(F_{0,1+1}) = \text{Id}_{H^*(LX)}.
\]

Proposition 7.6. (Compare with [6, Corollary 28 ii) symmetry]) Let \( C_\phi \) be the twist cobordism of \( S^1 \coprod S^1 \). Let \( \tau \in \det H_1(C_\phi, \partial_{out}; \mathbb{Z}) \), \( \tau \in \det H_0(\text{Di}ff^+(C_\phi, \partial)) \) and \( \tau \in \text{End}(H^*(LX) \otimes \mathbb{Z}) \) be the exchange isomorphisms of the three props. Then
\[
\nu^{\tau \otimes \tau} \otimes \tau(C_\phi) = \tau.
\]

Let \( F \) be a cobordism. Let \( \iota_F \) be the generator of \( H_0(\text{Di}ff^+(F, \partial)) \) which is represented by the connected component of \( \text{Di}ff^+(F, \partial) \). We may write \( \iota \) instead of \( \iota_F \) for simplicity. If \( \chi(F) = 0 \) then \( H_1(F, \partial_{out}; \mathbb{Z}) = \{0\} \) has an unique orientation class which correspond to the generator \( 1 \in \det H_1(F, \partial_{out}; \mathbb{Z}) = \Lambda^{-\chi(F)}H_1(F, \partial_{out}; \mathbb{Z}) = \mathbb{Z} \).

The identity morphism \( id_1 \) and the exchange isomorphism \( \tau \) of the prop \( \det H_1(F, \partial_{out}; \mathbb{Z}) \) correspond to these unique orientation classes of \( H_1(F_{0,1+1}, \partial_{out}; \mathbb{Z}) \) and \( H_1(C_\phi, \partial_{out}; \mathbb{Z}) \).

The identity morphism \( id_1 \) and the exchange isomorphism \( \tau \) of the prop \( H_*(\text{Di}ff^+(F, \partial)) \) are just \( \iota_{F_{0,1+1}} \) and \( \iota_{C_\phi} \).

8. Commutativity and associativity of the dual to the Loop coproduct

Theorem 8.1. Let \( d \geq 0 \). Let \( H^* \) (upper graded) be an algebra over the (lower graded) prop \( \det H_1(F, \partial_{out}; \mathbb{Z}) \otimes \mathbb{Z} H_0(\text{Di}ff^+(F, \partial)). \)

Let \( s \in \det H_1(F_{0,2+1}, \partial_{out}; \mathbb{Z}) \otimes \mathbb{Z} \) be a chosen orientation. Let

\[
D\text{cop} := \nu^{**}(\otimes_1(F_{0,2+1})).
\]

Let \( m \) be the product defined by
\[
m(a \otimes b) = (-1)^{d(a \otimes b)} D\text{cop}(a \otimes b)
\]
for \( a \otimes b \in H^1 \otimes H^1 \). Let \( H^{**} := H^{** + d} \). Then \( (H^{**}, m) \) is a graded associative and commutative algebra.

Proof. Using Propositions 7.3, 7.4 and 7.5,
\[
D\text{cop} \circ (D\text{cop} \otimes 1) = \nu^{**}(s \otimes id_1, \otimes s \otimes id_1)(F_{0,2+1} \circ (F_{0,2+1} \prod F_{0,1+1})) \text{ and}
\]
\[
D\text{cop} \circ (1 \otimes D\text{cop}) = \nu^{**}(id_1, \otimes 1, id_1, \otimes id_1)(F_{0,2+1} \circ (F_{0,1+1} \prod F_{0,2+1})).
\]
The cobordisms \( F_{0,2+1} \circ (F_{0,2+1} \prod F_{0,1+1}) \) and \( F_{0,2+1} \circ (F_{0,1+1} \prod F_{0,2+1}) \) are equivalent. When you identified them, \( \iota \circ (\iota \otimes id_1) = \iota \circ (id_1 \otimes \iota) \). Also \( F_{0,2+1} \circ C_\phi = F_{0,2+1} \) and \( \iota \circ \iota = \iota \).

Let \( \beta \in \det H_1(F_{0,2+1}, \partial_{out}; \mathbb{Z}) \) be the generator such that \( \beta \otimes s = s \). The compositions of the \( \mathbb{Z} \)-linear prop \( \det H_1(F, \partial_{out}; \mathbb{Z}) \) are isomorphisms. Therefore, they send generators to generators. Moreover \( \det H_1(F, \partial_{out}; \mathbb{Z}) := \Lambda^{-\chi(F)}H_1(F, \partial_{out}; \mathbb{Z}) \) is an abelian group on a single generator of lower degree \( -\chi(F) \). So \( \beta \circ (\beta \otimes id_1) = \varepsilon_{ass} \beta \circ (id_1 \otimes \beta) \) and \( \beta \circ \tau = \varepsilon_{corm} \beta \) for given signs \( \varepsilon_{ass} \) and \( \varepsilon_{corm} \in \{-1, 1\} \). Therefore
\[
s \circ (s \otimes id_1) = \beta \otimes s \circ (\beta \otimes id_1) \otimes d = (-1)^{\varepsilon_{ass} \varepsilon_{corm}} \beta \otimes (\beta \otimes id_1) \otimes d = \varepsilon_{ass} \varepsilon_{corm} \beta \otimes (id_1 \otimes s)
\]
and
\[
s \circ \tau = \beta \otimes \tau \circ (\beta \otimes id_1) \otimes d = (\beta \otimes \tau) \otimes d = (\varepsilon_{corm} \beta) \otimes d = \varepsilon_{corm} \beta \otimes d = \varepsilon_{corm} s.
\]
Therefore, by proposition 7.1

\[ Dlcop \circ (Dlcop \otimes 1) = \varepsilon_{ass}^d Dlcop \circ (1 \otimes Dlcop) \]

and \( Dlcop \circ \tau = \varepsilon_{com}^d Dlcop \). This means that for \( a, b, c \in H^*(LX) \),

\[ m(m(a \otimes b) \otimes c) = \varepsilon_{ass}^d (-1)^d m(a \otimes m(b \otimes c)) \]

and \( m(b \otimes a) = \varepsilon_{com}^d (-1)^{|a| - d} (|b| - d)^d m(a \otimes b) \) since

\[ m(m(a \otimes b) \otimes c) = (-1)^{|b| + d} Dlcop \circ (Dlcop \otimes 1)(a \otimes b \otimes c) \]

and

\[ m(a \otimes m(b \otimes c)) = (-1)^{|a| + |b|} Dlcop(a \otimes Dlcop(b \otimes c)) = (-1)^{|b|} Dlcop \circ (1 \otimes Dlcop)(a \otimes b \otimes c). \]

In [14, Proof of Proposition 21], Godin has shown geometrically that \( \varepsilon_{ass} = -1 \) for the prop \( \det H_1(F, \partial_m; \mathbb{Z}) \). To determine the signs \( \varepsilon_{ass} \) and \( \varepsilon_{com} \) for the prop \( \det H_1(F, \partial_{out}; \mathbb{Z}) \), we prefer to use our computations of \( m \).

Consider a particular connected compact Lie group \( G \) of a particular dimension \( d \) and a particular field \( \mathbb{k} \) of characteristic different from 2 such that \( H^*(BG; \mathbb{k}) \) is polynomial, for example \( G = (S^1)^d \) or \( \mathbb{k} = \mathbb{Q} \). Then \( H^*(LBG; \mathbb{Q}) \) is an algebra over our prop and we can apply (2) of Theorem 3.1 or Corollary 4.2. Taking \( a = x_1 \ldots x_N, b = 1 \) and \( c = x_1 \ldots x_N \), we obtain \( 1 = \varepsilon_{ass}^d (-1)^d \) and \( 1 = \varepsilon_{com}^d (-1)^d \).

So if we have chosen \( d \) odd, \( \varepsilon_{ass} = \varepsilon_{com} = -1 \) and \( m \) is associative and graded commutative.

**Remark 8.2.** When \( d \) is even, the \( d \)-th power of the prop \( \det H_1(F, \partial_m; \mathbb{Z}) \) is isomorphic to the \( d \)-th power of the trivial prop with a degree shift \( \chi(F) \).

More precisely, let \( \mathcal{P} \) the prop such that

\[ \mathcal{P}(p, q) := \bigoplus_{F_{p+q}} s^{-\chi(F_{p+q})} \mathbb{Z}, \]

\( s^{-\chi(F')1} \circ s^{-\chi(F)1} = s^{-\chi(F' \circ F)1} \) and \( s^{-\chi(F)1} \oplus s^{-\chi(F')1} = s^{-\chi(F')1} \). This prop \( \mathcal{P} \) is the the trivial prop with a degree shift \( \chi(F) \).

For any cobordism \( F \), let \( \Theta_F : s^{-\chi(F)} \mathbb{Z} \to \det H_1(F, \partial_m; \mathbb{Z}) \) be an chosen isomorphism. Then \( \Theta_F^{\otimes d} : \mathcal{P}^{\otimes d} \to \det H_1(F, \partial_m; \mathbb{Z})^{\otimes d} \) is an isomorphism of props if \( d \) is even. This prop \( \mathcal{P}^{\otimes d} \) is the \( d \)-th power of the trivial prop with a degree shift \( \chi(F) \) and is not isomorphic to the trivial prop with a degree shift \( -d\chi(F) \).

**Proof.** The following upper square commutes always, while the following lower square commutes if \( d \) is even.

\[
\begin{array}{ccc}
(s^{-\chi(F')1} \otimes s^{-\chi(F)1})^{\otimes d} & \xrightarrow{\Theta_F^{\otimes d} \otimes \Theta_F^{\otimes d}} & \det H_1(F', \partial_m; \mathbb{Z})^{\otimes d} \otimes \det H_1(F, \partial_m; \mathbb{Z})^{\otimes d} \\
\tau \downarrow & & \tau \downarrow \\
(s^{-\chi(F')1} \otimes s^{-\chi(F)1})^{\otimes d} & \xrightarrow{(\Theta_F^{\otimes d} \otimes \Theta_F^{\otimes d})} & (\det H_1(F', \partial_m; \mathbb{Z}) \otimes \det H_1(F, \partial_m; \mathbb{Z}))^{\otimes d} \\
\circ^{\otimes d} \downarrow & & \circ^{\otimes d} \downarrow \\
(s^{-\chi(F' \circ F)1})^{\otimes d} & \xrightarrow{(\Theta_F^{\otimes d} \otimes \Theta_F^{\otimes d})} & \det H_1(F' \circ F, \partial_m; \mathbb{Z})^{\otimes d}
\end{array}
\]

Replacing \( \circ \) by the tensor product \( \otimes \) of props, we have proved that \( \Theta_F^{\otimes d} \) is an isomorphism of props if \( d \) is even. \( \square \)
Observe that the dual of the loop coproduct $\text{Dicop}$ on $H^*(LX)$ satisfies the same commutative and associative formulae as those of the Chas-Sullivan loop product on the loop homology of $M$. See [41, Remark 3.6] or [28, Proposition 2.7]. So we wonder if the prop det $H_1(F, \partial_{out}; \mathbb{Z})$ is isomorphic to the prop det $H_1(F, \partial_{in}; \mathbb{Z})$.

**Corollary 8.3.** Let $X$ be a simply connected space such that $H_*(\Omega X; \mathbb{K})$ is finite dimensional. The shifted cohomology $\mathbb{H}^*(LX) := H^{*+d}(LX)$ is a graded commutative, associative algebra endowed with the product $m$ defined by

$$m(a \otimes b) = (-1)^{(i-d)} \text{Dicop}(a \otimes b)$$

for $a \otimes b \in H^*(LX) \otimes H^*(LX)$.

9. The Batalin-Vilkovisky identity

For any simple closed curve $\gamma$ in a cobordism $F$, let us denote by $\gamma$ the image of the Dehn twist $T_{\gamma}$ by the hurewicz map $\Theta$

$$\pi_0(\text{Diff}(F, \partial)) \xrightarrow{\partial^{-1}} \pi_1(\text{BDiff}(F, \partial)) \xrightarrow{\Theta} H_1(\text{BDiff}(F, \partial)).$$

In this section, we prove the following theorem.

**Theorem 9.1.** Let $H^*$ be an algebra over the prop

$$\text{det}H_1(F, \partial_{out}; \mathbb{Z}) \otimes_d H_*(\text{BDiff}(F, \partial)).$$

Consider the the graded associative and commutative algebra $(\mathbb{H}^*, m)$ given by Theorem 8.1. Let $\alpha$ be a closed curve in the cylinder $F_{0,1+1}$ parallel to one of the boundary components. Let

$$\Delta = \nu^{\text{id}} \otimes \pi(F_{0,1+1}).$$

Then $(\mathbb{H}^*, m, \Delta)$ is a Batalin-Vilkovisky algebra.

In the case $d = 0$, Wahl [44, Rem 2.2.4] or Kupers [26, 4.1, page 158] give an incomplete proof that we complete. Moreover, we pay attention to signs.

The shifted cohomology algebra $(\mathbb{H}^*, m)$ equipped with the operator $\Delta$ is a BV-algebra if and only if $\Delta \circ \Delta = 0$ and if the Batalin-Vilkovisky identity holds; that is, for any elements $a$, $b$ and $c$ in $\mathbb{H}^*$,

$$\Delta(a \cdot b \cdot c) = \Delta(a \cdot b) \cdot c + (-1)^{|a||b|} a \cdot \Delta(b \cdot c) + (-1)^{|b||c|+|b|} b \cdot \Delta(a \cdot c) - \Delta(a) \cdot b \cdot c - (-1)^{|a||b|+|b|} a \cdot \Delta(b \cdot c) - (-1)^{|a||c|+|c|} a \cdot b \cdot \Delta(c),$$

where $\alpha \cdot \beta = m(\alpha \otimes \beta)$ and $\| \alpha \|$ stands for the degree of an element $\alpha$ in $\mathbb{H}^*$, namely $\| \alpha \| = |\alpha| - d$.

Since $\text{BDiff}^+(F_{0,1+1})$ is $B\mathbb{Z}$, $\pi \circ \pi \in H_2(\text{BDiff}^+(F_{0,1+1})) = \{0\}$. Therefore $\Delta \circ \Delta = \pm \nu^{\text{id}} \otimes \pi(F_{0,1+1}) = 0$

The BV-identity will arise up to signs from the lantern relation ([44, Rem 2.2.4] or [26, 4.1, page 158]):

**Proposition 9.2.** [21][8, Section 5.1] Let $a_1, \ldots, a_4$ and $x, y, z$ be the simple closed curves described in [26, Figure 6.89, page 161]. Then one has

$$T_{a_1}T_{a_2}T_{a_3}T_{a_4} = T_zT_T$$

in the mapping class group of $F_{0,4}$, where $T_{\gamma}$ denotes the Dehn twist around a simple closed curve $\gamma$ in the surface.
In order to prove Theorem 9.3, we represent each term of the B-V identity in terms of elements of the prop with a HCF theoretical way: this means using the horizontal (coproduct) composition \(\otimes\) and the vertical composition \(\circ\) on the prop. We start by the most complicated element \(b \cdot \Delta(a \cdot c)\).

By Propositions 7.3, 7.4, 7.5 and 7.6,

\[
Dlcop \circ [Id \otimes (\Delta \circ Dlcop)] \circ (\tau \otimes Id) = \\
\nu^{s \otimes l}(F_{0,2+1}) \circ [\nu^{s^l \otimes id_1}(F_{0,1+1}) \otimes (\nu^{s^l \otimes \pi}(F_{0,1+1}) \circ \nu^{s \otimes l}(F_{0,2+1}))]
\]

\[
(\nu^{s \otimes \pi}(C \circ \nu^{s^l \otimes id_1}(F_{0,1+1})) = \\
\pm \nu^{s \otimes (s \circ \pi \otimes id_1)}(\nu^{\pi \otimes id_1} \circ \nu^{s^l \otimes \pi}(\nu^{\pi \otimes id_1}(F_{0,2+1} \circ (F_{0,1+1} \prod F_{0,2+1}) \circ (C \prod F_{0,1+1})))
\]

Here \(\pm\) is the Koszul sign \((-1)^{|s|\cdot|\pi|} = (-1)^d\), since only \(s\) and \(\pi\) have positive degrees.

We choose \(s' = s \circ (s \otimes id_1)\). In the proof of Theorem 8.1, we saw \(s \circ (s \otimes id_1) = (-1)^d s \circ (id_1 \otimes s)\) and \(s \circ \tau = (-1)^d s\). Therefore

\[
s \circ (id_1 \otimes s) \circ (\tau \otimes id_1) = (-1)^d s \circ (s \otimes id_1) \circ (\tau \otimes id_1) = (-1)^d s \circ [s \circ (s \otimes id_1 \circ id_1)] = s'.
\]

Since \(\tau \circ [id_1 \otimes (\pi \circ id)] \circ (\tau \otimes id_1)\) coincides with \(\pi\) by Proposition 10.1, we have proved that

\[
Dlcop \circ (Id \otimes (\Delta \circ Dlcop)) \circ (\tau \otimes Id) = (-1)^d \nu^{s' \otimes \pi}(F_{0,3+1}).
\]

Similar computations show that

\[
Dlcop \circ (Id \otimes (\Delta \circ Dlcop)) = \\
\pm \nu^{s \otimes (s \circ id_1 \circ \pi \circ id_1)}(F_{0,2+1} \circ (F_{0,1+1} \prod F_{0,2+1})) = \nu^{s' \otimes \pi}(F_{0,3+1}).
\]

\[
Dlcop \circ ((\Delta \circ Dlcop) \otimes Id) = \\
\pm \nu^{s \otimes (s \circ id_1)}(F_{0,2+1} \circ (F_{0,1+1} \prod F_{0,1+1})) = (-1)^d \nu^{s' \otimes \pi}(F_{0,3+1}).
\]

\[
(\Delta \circ Dlcop) \circ (\Delta \circ Dlcop) = \\
\nu^{s \otimes (s \circ id_1 \circ \pi \circ id_1)}(F_{0,2+1} \circ (F_{0,1+1} \prod F_{0,1+1})) = \nu^{s' \otimes \pi}(F_{0,3+1}).
\]

\[
Dlcop \circ (Id \otimes Dlcop) \circ (Id \otimes \Delta \otimes Id) = \\
\pm \nu^{s \otimes (s \circ id_1 \circ \pi \circ id_1)}(F_{0,2+1} \circ (F_{0,1+1} \prod F_{0,2+1})) = \nu^{s' \otimes \pi}(F_{0,3+1}).
\]

and

\[
Dlcop \circ (Dlcop \circ \Delta) = \\
\nu^{s \otimes (s \circ id_1 \circ \pi \circ id_1)}(F_{0,2+1} \circ (F_{0,1+1} \prod F_{0,2+1})) = \nu^{s' \otimes \pi}(F_{0,3+1}).
\]
Therefore using the definition of the product \( m \), straightforward computations show that
\[
\Delta((a \cdot b) \cdot c) = (-1)^{|b| + |a|} \nu^{s'} \circ \pi(F_{0,3+1})(a \otimes b \otimes c)
\]
\[
\Delta(a) \cdot b \cdot c = (-1)^{|b| + |a|} \nu^{s'} \circ \pi(F_{0,3+1})(a \otimes b \otimes c)
\]
\[
(-1)^{|a|} a \cdot \Delta(b) \cdot c = (-1)^{|b| + |a|} \nu^{s'} \circ \pi(F_{0,3+1})(a \otimes b \otimes c)
\]
\[
(-1)^{|a|} a \cdot b \cdot \Delta(c) = (-1)^{|b| + |a|} \nu^{s'} \circ \pi(F_{0,3+1})(a \otimes b \otimes c)
\]
\[
\Delta(a \cdot b) \cdot c = (-1)^{|b| + |a|} \nu^{s'} \circ \pi(F_{0,3+1})(a \otimes b \otimes c)
\]
\[
(-1)^{|a|} a \cdot \Delta(b \cdot c) = (-1)^{|b| + |a|} \nu^{s'} \circ \pi(F_{0,3+1})(a \otimes b \otimes c)
\]
\[
(-1)^{|b| + |a|} b \cdot \Delta(a \cdot c) = (-1)^{|b| + |a|} \nu^{s'} \circ \pi(F_{0,3+1})(a \otimes b \otimes c).
\]

The lantern relation gives rise to the equality
\[
\nu^{s'} \circ \pi(F_{0,3+1}) + \nu^{s'} \circ \pi(F_{0,3+1}) + \nu^{s'} \circ \pi(F_{0,3+1}) + \nu^{s'} \circ \pi(F_{0,3+1}) = \nu^{s'} \circ \pi(F_{0,3+1}) + \nu^{s'} \circ \pi(F_{0,3+1}) + \nu^{s'} \circ \pi(F_{0,3+1}) + \nu^{s'} \circ \pi(F_{0,3+1})
\]
since the hurewicz map is a morphism of groups. Thus
\[
\Delta((a \cdot b) \cdot c) + \Delta(a) \cdot b \cdot c + (-1)^{|a|} a \cdot \Delta(b) \cdot c + (-1)^{|a| + |b|} a \cdot b \cdot \Delta(c)
\]
\[
= \Delta((a \cdot b) \cdot c) + (-1)^{|a|} a \cdot \Delta(b \cdot c) + (-1)^{|b| + |a|} b \cdot \Delta(a \cdot c).
\]

**Corollary 9.3.** Let \( G \) be a connected compact Lie group of dimension \( d \). Consider the graded associative and commutative algebra \( \mathbb{H}^*(LBG, m) \) given by Corollary 8.3. Let \( \Delta \) be the operator induced by the action of the circle on \( LBG \) (See our definition in section 11). Then the shifted cohomology \( \mathbb{H}^{s'}(LBG) \) carries the structure of a Batalin-Vilkovisky algebra.

**Proof.** By Proposition 11.1 and by [6, Proposition 60]),
\[
\Delta = \nu^{s'} \circ \pi(F_{0,1+1}).
\]

\[\square\]

10. **Seven prop structure equalities on the homology of mapping class groups proving the BV identity**

Recall that for any simple closed curve \( \gamma \) in a cobordism \( F \), we write \( \pi \) for the image of the Dehn twist \( T_\gamma \) by the hurewicz map \( \Theta \)
\[
\pi_0(\text{Diff}^+(F, \partial)) \xrightarrow{\Theta^{-1}} \pi_1(\text{Diff}^+(F, \partial)) \xrightarrow{\Theta} H_1(\text{Diff}^+(F, \partial)).
\]

Here \( \partial \) is the connecting homomorphism associated to the universal principal fibration.

Let \( \alpha \) be a closed curve in the cylinder \( F_{0,1+1} \) parallel to one of the boundary components. Let \( a_1, \ldots, a_4 \) and \( x, y, z \) be the simple closed curves in \( F_{0,3+1} \) described in [26, Figure 6.89, page 161]. In what follows, we denote by \( \circ \) the vertical product in the prop
\[
\bigoplus_{F} H_*(\text{Diff}^+(F, \partial); \mathbb{K})
\]
which acts (up to signs) on \( H^{s+\text{dim} G}(LBG; \mathbb{K}) \). The goal of this section is to show the following equalities needed in the proof of the BV-identity, given in section 9.
Proposition 10.1. \( \varphi = \iota \circ [id_1 \otimes \Theta] \circ [\tau \otimes id_1], \ \varphi' = \iota \circ [id_1 \otimes (\varpi \circ \iota)], \ \varphi = \iota \circ [(\varpi \circ \iota) \otimes id_1], \ \varphi'' = \iota \circ [\varpi \circ (\iota \otimes id_1)], \ \varphi_3 = \varrho \circ \iota \circ \varpi \circ \Theta \).

Let \( \tilde{F} \) denote the group \( Diff^+(F, \partial) \) (or the mapping class group of a surface \( F \) with boundary \( \partial \)). Recall that \( i_F \) or simply \( \iota \) denote the generator of \( H_0(B\tilde{F}) \) which is represented by the connected component of \( B\tilde{F} \).

Proposition 10.2. Let \( F \) and \( F' \) be two cobordisms. In i) and ii), suppose that \( F \) and \( F' \) are gluable. Let \( \circ : \tilde{F} \times \tilde{F}' \to F \circ F' \) be the map induced by gluing on diffeomorphisms. Let \( id_F \in \tilde{F} \) be the identity map of \( F \). For \( D \) in \( \pi_0(\tilde{F}) \) and \( D' \) in \( \pi_0(\tilde{F}') \),

i) \( \Theta \partial^{-1}(id_F \circ D') = i_F \circ \Theta \partial^{-1}D' \)

ii) \( \Theta \partial^{-1}(D \circ id_{F'}) = \Theta \partial^{-1}D \circ i_{F'} \).

iii) \( \Theta \partial^{-1}(id_F \cup D') = i_F \otimes \Theta \partial^{-1}D' \).

Proof. We consider the diagram:

\[
\begin{array}{c}
\pi_0(\tilde{F}) \ar[r]^-{\iota_2} \ar[d]_-{\sim} & \pi_0(\tilde{F} \times \tilde{F}') \ar[r]^-{\pi_0(\circ)} \ar[d]_-{\sim} & \pi_0(F \circ F') \ar[d]_-{\sim} \\
\pi_0(\tilde{F}) \ar[r]^-{\iota} & \pi_0(\tilde{F} \times \tilde{F}') \ar[r]^-{\pi_0(\circ)} & \pi_0(F \circ F') \\
\pi_1(B(\tilde{F}')) \ar[r]^-{\pi_1(B(\iota_2))} \ar[d]_-{\sim} & \pi_1(B(\tilde{F} \times \tilde{F}')) \ar[r]^-{\pi_1(\circ)} \ar[d]_-{\sim} & \pi_1(BF \circ F') \\
H_1(B\tilde{F}') \ar[r]^-{\pi_1(\iota_2)} \ar[d]_-{\sim} & H_1(B(\tilde{F} \times \tilde{F}')) \ar[r]^-{\sim} \ar[d]_-{\sim} & H_1(BF \circ F') \\
H_0(B\tilde{F}) \otimes H_1(B\tilde{F}') \ar[r]^-{\kappa} \ar[d]_-{\sim} & H_1(B(\tilde{F} \times \tilde{F}')) \ar[r]^-{\sim} \ar[d]_-{\sim} & H_1(BF \circ F') \ar[d]_-{\sim} \\
H_0(B\tilde{F}) \otimes H_1(B\tilde{F}') \ar[r]^-{\kappa} & H_1(B(\tilde{F} \times \tilde{F}')) \ar[r]^-{\sim} & H_1(BF \circ F')
\end{array}
\]

Here \( \varphi \) is the natural isomorphism, \( \kappa \) is the K"unneth map, \( \xi : B(\tilde{F} \times \tilde{F}') \to B(\tilde{F}) \times B(\tilde{F}') \) is the canonical homotopy equivalence, \( k_2 \) is the isomorphism defined by \( k_2(x) = i_F \otimes x \) and \( i_2 \) denotes various inclusions on the second factor. Note that by the definition of the prop structure, the bottom line coincides with \( \circ \circ H_0(B\tilde{F}) \otimes H_1(B\tilde{F}') \to H_1(BF \circ F') \). The commutativity of the diagram shows i).

Replacing the \( i_2 \)'s and \( k_2 \) by inclusions on the first factor, we obtain ii). Replacing \( \circ : \tilde{F} \times \tilde{F}' \to F \circ F' \) by the map \( \tilde{F} \times \tilde{F}' \to \tilde{F} \coprod \tilde{F}' \) we obtain iii).

Proof of Proposition 10.1. Let \( F = (F_{0,1,1}\coprod F_{0,2,1}) \circ (C_\alpha \coprod F_{0,1,1}) \). We can identify \( F_{0,3,1} \) with \( F_{0,2,1} \circ (F_{0,1,1}\coprod F_{0,1,1}) \circ F \). Let \( \text{emb}_2 : F_{0,1,1} \hookrightarrow F_{0,3,1} \) be the second embedding due to this identification. The composite of the curve \( \alpha \) and of \( \text{emb}_2, S^1 \xrightarrow{\alpha} F_{0,1,1} \xrightarrow{\text{emb}_2} F_{0,3,1} \), coincides with the curve \( z \). Taking the same tubular neighborhood around \( \alpha \) and \( z \), the Dehn twists of \( \alpha \) and \( z \), \( T_\alpha \) and \( T_z \), coincide on this tubular neighborhood. Outside of this tubular neighborhood, \( T_\alpha \) and
By virtue of Proposition 10.2 i), ii) and then iii), we have

\[ T_{z} = \text{id}_{F_{0,2+1}} \circ (\text{id}_{F_{0,1+1}} \sqcup T_{\alpha}) \circ \text{id}_{F}. \]

Therefore

\[ T_{z} = \text{id}_{F_{0,2+1}} \circ (\text{id}_{F_{0,1+1}} \sqcup T_{\alpha}) \circ \text{id}_{F}. \]

By virtue of Proposition 10.2 i), ii) and then iii), we have

\[ \tau = \Theta \partial^{-1} T_{z} = \Theta \partial^{-1} (\text{id}_{F_{0,2+1}} \circ (\text{id}_{F_{0,1+1}} \sqcup T_{\alpha}) \circ \text{id}_{F}) \]

\[ = \tau_{F_{0,2+1}} \circ \Theta \partial^{-1} (\text{id}_{F_{0,1+1}} \sqcup T_{\alpha}) \circ \text{id}_{F} \]

\[ = \tau_{F_{0,2+1}} \circ (\tau_{F_{0,1+1}} \circ \Theta \partial^{-1} T_{\alpha}) \circ \text{id}_{F} = \tau_{F_{0,2+1}} \circ [\text{id}_{1} \circ \Theta] \circ \text{id}_{F} \]

The prop structure on the 0th homology gives \( \tau_{F} = [\text{id}_{1} \circ \tau_{F_{0,2+1}}] \circ [\tau \circ \text{id}_{1}] \). Finally, the prop structure on the homology of mapping class groups gives

\[ \tau = \tau_{F_{0,2+1}} \circ [\text{id}_{1} \circ \Theta] \circ [\text{id}_{1} \circ \tau_{F_{0,2+1}}] \circ [\tau \circ \text{id}_{1}] = \tau_{F_{0,2+1}} \circ [\text{id}_{1} \circ (\Theta \circ \tau_{F_{0,2+1}})] \circ [\tau \circ \text{id}_{1}] \]

By similar fashion, we have the other six equalities. \( \square \)

11. The cohomological BV-operator \( \Delta \)

The goal of this section is to give our definition of the BV-operator \( \Delta \) in cohomology and to compare it to others definitions given in the literature.

Let \( \Gamma : S^{1} \times LX \to LX \) be the \( S^{1} \)-action map. Then in this paper the Batalin-Vilkovisky operator \( \Delta : H^{*}(LX) \to H^{*-1}(LX) \) is defined [27, Proposition 3.3] by \( \Delta := \int_{S^{1}} \circ \Gamma^{*} \), where \( \int_{S^{1}} : H^{*}(S^{1} \times LX) \to H^{*-1}(LX) \) denotes the integration along the fibre of the trivial fibration \( S^{1} \times LX \to LX \).

By our example in section 7 (see also up to the sign [27, Proof of Proposition 3.3]), \( \int_{S^{1}} f \times b = (-1)^{|f|} < f, [S^{1}] > b \). Up to some signs, this is the slant with \( [S^{1}] \) (Compare [23, Definition 1]).

Therefore for any \( \beta \in H^{*}(LX) \), the image of \( \beta \) by \( \Delta \), \( \Delta(\beta) \), is the unique element such that (see [41] up to the sign −)

\[ \Gamma^{*}(\beta) = 1 \times \beta - \{S^{1}\} \times \Delta(\beta) \]

where \( \{S^{1}\} \) is the fundamental class in cohomology defined by \( < \{S^{1}\}, [S^{1}] > = 1 \).

So finally, we have proved that with our definition of integration along the fibre, since we define the BV-operator \( \Delta \) using integration along the fibre as [27, Proposition 3.3], our \( \Delta \) is exactly the opposite of the one defined by [41] or [23, p. 648 line 4].

In particular, observe that \( \Delta \) satisfies \( \Delta^{2} = 0 \) and is a derivation on the cup product on \( H^{*}(LX) \) [41, Proposition 4.1].

In section 9, we will need another characterisation of our BV-operator \( \Delta \):

**Proposition 11.1.** The BV-operator \( \Delta := \int_{S^{1}} \circ \Gamma^{*} \) is the dual (=transposition) of the composite

\[ H_{*}(LX) \xrightarrow{[S^{1}] \times -} H_{*+1}(S^{1} \times LX) \xrightarrow{\Gamma} H_{*+1}(LX). \]

**Proof.** For any space \( X \), let \( \mu_{X} : H^{*}(X; \mathbb{K}) \to H_{*}(X; \mathbb{K})^{\vee} \) be the map sending \( \alpha \) to the form on \( H_{*}(X; \mathbb{K}) \), \( < \alpha, - > \). Here \( < - , - > \) is the Kronecker bracket. By the universal coefficient theorem for cohomology, \( \mu_{X} \) is an isomorphism. Consider the
two squares

\[
\begin{array}{c}
H^*(LX) \xrightarrow{\Gamma^*} H^*(S^1 \times LX) \xrightarrow{f_{S^1}} H^{*+1}(LX) \\
\mu_{LX} \downarrow \quad \mu_{S^1 \times LX} \downarrow \quad \mu_{LX} \\
H_*(LX)^\vee \xrightarrow{(\Gamma^*_s)} H_*(S^1 \times LX)^\vee \xrightarrow{(\langle S^1 \rangle \times -)^\vee} H_{*-1}(LX)^\vee.
\end{array}
\]

The left square commutes by naturality of \(\mu_X\). For any \(\alpha \in H^*(S^1)\) and \(\beta \in H^*(LX)\) and \(y \in H_*(LX)\),

\[
(\mu_{LX} \circ \int_{S^1})(\alpha \times \beta)(y) = \mu_{LX} \left( (-1)^{|\alpha||\langle S^1 \rangle|} < \alpha, [S^1] > \beta \right) (y) = (-1)^{|\alpha||\langle S^1 \rangle|} < \alpha, [S^1] > < \beta, y >
\]

and

\[
([S^1] \times -)^\vee (\mu_{S^1 \times LX} (\alpha \times \beta))(y) = (-1)^{|\alpha \times \beta||\langle S^1 \rangle|} \mu_{S^1 \times LX} (\alpha \times \beta) \circ ([S^1] \times -)(y) = (-1)^{|\alpha||\langle S^1 \rangle| + |\beta||\langle S^1 \rangle|} < \alpha \times \beta, [S^1] \times y >.
\]

Since \(< \alpha \times \beta, [S^1] \times y > = (-1)^{|\beta||\langle S^1 \rangle|} < \alpha, [S^1] > < \beta, y >\), the right square commutes also. \(\square\)

12. Hochschild cohomology computations

**Proposition 12.1.** Let \(A\) be a graded (or ungraded) algebra equipped with an isomorphism of \(A\)-bimodules \(\Theta : A \xrightarrow{\cong} A^\vee\) between \(A\) and its dual of any degree \(|\Theta|\). Denote by \(\text{tr} := \Theta(1)\) the induced graded trace on \(A\). Let \(a \in Z(A)\) be an element of the center of \(A\). Let \(d : A \to A\) be a derivation of \(A\). Obviously \(\overline{\alpha} \in C^0(A, A) = \text{Hom}(\mathbb{K}, A)\) defined by \(\overline{\alpha}(1) = a\) and \(d \circ s^{-1} \in C^1(A, A) = \text{Hom}(sA, A)\) are two Hochschild cocycles. Then in the Batalin-Vilkovisky algebra \(HH^*(A, A) \cong HH^{*+|\Theta|}(A, A^\vee)\),

1) \(\Delta(\overline{\alpha}) = 0\),

2) \(\Delta([d \circ s^{-1}])\) is equal to \([\overline{\alpha}]\) the cohomology class of \(\overline{\alpha}\) if and only if for any \(a_0 \in A\),

\[
(-1)^{1+|d|}\text{tr} \circ d(a_0) = \text{tr}(a_0).
\]

3) In particular, the unit belongs to the image of \(\Delta\) if and only if there exists a derivation \(d : A \to A\) of degree 0 commuting with the trace: \(\text{tr} \circ d(a_0) = \text{tr}(a_0)\) for any element \(a_0\) in \(A\).

**Proof.** By definition of \(\Delta\), the following diagram commutes up to the sign \((-1)^{|\Theta|}\) for any \(p \geq 0\).

\[
\begin{array}{c}
C^p(A, A) \xrightarrow{C^p(A, \Theta)} C^p(A, A^\vee) \xrightarrow{Ad} C_p(A, A)^\vee \\
\Delta \downarrow \quad \Downarrow B^\vee \downarrow \quad \Downarrow \quad \downarrow B^\vee \\
C^{p-1}(A, A) \xrightarrow{C^{p-1}(A, \Theta)} C^{p-1}(A, A^\vee) \xrightarrow{Ad} C_{p-1}(A, A)^\vee.
\end{array}
\]

Taking \(p = 0\) we obtain 1).
The image of the cocycle \( d \circ s^{-1} \in C^1(A; A) \) by \( Ad \circ C^*(A; \Theta) \) is the form \( \hat{\Theta}(d) \) on \( C_1(A; A) = A \otimes sA \) defined by (Compare with [33, Proof of Proposition 20])

\[
\hat{\Theta}(d)(a_0|sa_1]) = (-1)^{|sa_1||a_0|} (\Theta \circ d)(a_1)(a_0) = (-1)^{|sa_1||a_0|} \text{tr}(d(a_1)a_0).
\]

For any \( a_0 \in A \),

\[
(-1)^{|\Theta|+1+|d|} B^\vee(\hat{\Theta}(d))(a_0) = (\hat{\Theta}(d) \circ B)(a_0[]) = \hat{\Theta}(d)(1|sa_0]) = \text{tr} \circ d(a_0).
\]

The image of the cocycle \( \pi \in C^0(A; A) \) by \( Ad \circ C^*(A; \Theta) \) is the form on \( A \), mapping \( a_0 \) to \( (\Theta \circ \pi)([])(a_0) = \Theta(a)(a_0) = \text{tr}(aa_0) \).

Therefore \( \Delta(d \circ s^{-1}) = a \) if and only if for any \( a_0 \in A \), \((-1)^{|\Theta|+1+|d|} \text{tr} \circ d(a_0) = (1)^{|\Theta|} \text{tr}(aa_0) \). Since there is no coboundary in \( C^0(A,A) \), this proves 2. \( \Box \)

**Example 12.2.** a) Let \( A = \Lambda x_d \) be the exterior algebra on a generator of lower degree \( -d \in \mathbb{Z} \). If \( d \geq 0 \) then \( A = H^*(S^d; \mathbb{F}) \). Denote by \( 1^\vee \) and \( x^\vee \) the dual basis of \( A^\vee \). The trace on \( A \) is \( x^\vee \cdot \). Let \( d : A \to A \) be the linear map such that \( d(1) = 0 \) and \( d(x) = x \). Since \( d(x \wedge x) = 0 \) and \( dx \wedge x + x \wedge dx = 2x \wedge x = 2 \times 0 = 0 \), even over a field of characteristic different from 2, \( d \) is a derivation commuting with the trace. Therefore by Theorem 12.1, \( 1 \in \text{Im} \Delta \) in \( HH^*(A; A) \). When \( F = \mathbb{F}_2 \), compare with [33, Proposition 20].

b) Let \( V \) be a graded vector space. Let \( A := \Lambda(V) \) be the graded exterior algebra on \( V \). If \( V \) is in non-positive degrees, then \( A \) is just the cohomology algebra of a product of spheres. Let \( x_1, \ldots, x_N \) be a basis of \( V \). The trace of \( A \) is \( (x_1 \ldots x_N)^\vee \). Let \( d_1 \) be the derivation on \( \Lambda x_1 \) considered in the previous example. Then \( d := d_1 \otimes id \) is a derivation on \( \Lambda x_1 \otimes \Lambda(x_2, \ldots, x_N) \cong \Lambda V \). Obviously \( d \) commutes with the trace. So \( 1 \in \text{Im} \Delta \).

c) Let \( A = F[x]/x^{n+1} \), \( n \geq 1 \) be the truncated polynomial algebra on a generator \( x \) of even degree different from 0. If \( x \) is of upper degree 2 then \( A = H^*(\mathbb{CP}^n; \mathbb{F}) \). The trace of \( A \) is \( (x^n)^\vee \). Let \( d : A \to A \) be the unique derivation of \( A \) such that \( d(x) = x \) (The case \( n = 1 \) was considered in example a)). Then \( d(x^i) = ix^i \). For degree reason, \( d \) is a basis of the derivations of degree 0 of \( A \). Then \( \lambda d \) commutes with the trace if and only if \( \lambda n = 1 \) in \( \mathbb{F} \). Therefore \( 1 \in \text{Im} \Delta \) in \( HH^*(A; A) \) if and only \( n \) is invertible in \( \mathbb{F} \) (Compare with [45] modulo 2 and with [46] otherwise).

**Theorem 12.3.** Let \( V \) be a graded vector space (non-negatively lower graded or concentrated in upper degree \( \geq 1 \)) such that in each degree, \( V \) is of finite dimension.

i) Let \( A = S(V), 0 \) be the free strictly commutative graded algebra on \( V \): \( A = \Lambda(V) \odot F[V^{even}] \) is the graded tensor product on the exterior algebra on \( V^{odd} \), the odd degree elements and on \( V^{even} \) the even degree elements [9, p. 46]. Then the Hochschild cohomology of \( A, HH^*(A,A) \), is isomorphic as Gerstenhaber algebras to \( A \otimes S(s^{-1}V^\vee) \). For \( \phi \) a linear form on \( V \) and \( v \in V \), \( (1 \otimes s^{-1}\phi, v \otimes 1) = (-1)^{|v|\phi(v)} \). The Lie bracket is trivial on \((A \otimes 1) \odot (A \otimes 1)\) and on \((1 \otimes S(s^{-1}V^\vee)) \odot (1 \otimes S(s^{-1}V^\vee)) \).

ii) Suppose that \( \mathbb{F} \) is a field of characteristic 2. Then we can extend i) in the following way: Let \( U \) and \( W \) are two graded vector spaces such that \( U \odot W = V \). (i. e. we don’t assume anymore that \( U = V^{odd} \) and \( W = V^{even} \)). Let \( A = MU \otimes F[W] \). Then \( HH^*(A,A) \) is isomorphic as Gerstenhaber algebras to \( A \otimes F(s^{-1}U^\vee) \otimes (s^{-1}W^\vee) \) and the Lie bracket is the same as in i).

iii) Suppose that \( V \) is concentrated in odd degrees or that \( \mathbb{K} \) is a field of characteristic 2. Let \( A = \Lambda U \) be the exterior algebra on \( V \). Then the BV-algebra extending the Gerstenhaber algebra \( HH^*(A,A) \cong A \otimes \mathbb{K}[s^{-1}V^\vee] \) has trivial BV-operator \( \Delta \) on \( A \) and on \( \mathbb{K}[s^{-1}V^\vee] \).
Proof. i) Recall that the Bar resolution \( B(A, A, A) = A \otimes T_s A \otimes A \xrightarrow{\simeq} A \) is a resolution of \( A \) as \( A \otimes A^\infty \)-modules. When \( A = S(V), 0 \), there is another smaller resolution \((A \otimes \Gamma(sV) \otimes A, D) \xrightarrow{\simeq} A\). Here \( \Gamma(sV) \) is the free divided power graded algebra on \( sV \) and \( D \) is the unique derivation such that \( D(\gamma^k(sv)) = v \otimes \gamma^{k-1}(sv) \otimes 1 - 1 \otimes \gamma^{k-1}(sv) \otimes v \) [31]. Since \( \Gamma(sV) \) is the invariants of \( T(sV) \) under the action of the permutation groups, there is a canonical inclusion of graded algebras [15, p. 278]

\[
i : \Gamma(sV) \hookrightarrow T(sV) \hookrightarrow T(sA).
\]

This map \( i \) maps \( \gamma^k(sv) \) to \( [sv] \ldots [sv] \). Since both \((A \otimes \Gamma(sV) \otimes A, D) \) and \( B(A, A, A) \) are \( A \otimes A \)-free resolutions of \( A \), the inclusion of differential graded algebras

\[
A \otimes i \otimes A : (A \otimes \Gamma(sV) \otimes A, D) \xrightarrow{\simeq} B(A, A, A)
\]

is a quasi-isomorphism. So by applying the functor \( \text{Hom}_{A \otimes A}(-, A) \), \( \text{Hom}(i, A) : \mathcal{C}^*(A, A) \xrightarrow{\simeq} (\text{Hom}(\Gamma(sV), A), 0) \) is a quasi-isomorphism of complexes. The differential on \( \text{Hom}_{A \otimes A}((A \otimes \Gamma(sV) \otimes A, D), (A, 0)) \) is zero since

\[
f \circ D(\gamma^k(sv_1) \ldots \gamma^k(sv_r)) = 0.
\]

The inclusion \( i : \Gamma(sV) \hookrightarrow T(sA) \) is a morphism of graded coalgebras with respect to the diagonal [15, p. 279]

\[
\Delta[s_{a_1}] \ldots [s_{a_r}] = \sum_{p=0}^r [s_{a_1}] \ldots [s_{a_p}] \otimes [s_{a_{p+1}}] \ldots [s_{a_r}].
\]

Therefore the quasi-isomorphism of complexes \( \text{Hom}(i, A) : \mathcal{C}^*(A, A) \xrightarrow{\simeq} (\text{Hom}(\Gamma(sV), A), 0) \) is also a morphism of graded algebras with respect to the cup product on the Hochschild cochain complex \( \mathcal{C}^*(A, A) \) and the convolution product on \( \text{Hom}(\Gamma(sV), A) \).

The morphism of commutative graded algebras \( j : A \otimes \Gamma(sV)^\vee \to \text{Hom}(\Gamma(sV), A) \) mapping \( a \otimes \phi \to (\text{map } a \otimes \phi) \) from \( \Gamma(sV) \) to \( A \) defined by \( j(a \otimes \phi) = \phi(\gamma)a \) is an isomorphism. By [15, (A.7)], the canonical map \( (sV)^\vee \to \Gamma(sV)^\vee \) extends to an isomorphism of graded algebras \( k : S(sV)^\vee \xrightarrow{\simeq} \Gamma(sV)^\vee \). The composite \( \Theta : (sV)^\vee \xrightarrow{sV} V^\vee \xrightarrow{s^{-1}(V^\vee)} s^{-1}(V^\vee) \), mapping \( x \) to \( \Theta(x) = (-1)^{|x|}s^{-1}(x \circ s) \), is a chosen isomorphism between \((sV)^\vee \) and \( s^{-1}(V^\vee) \). Note that \( \Theta^{-1} \) is the opposite of the composite \((s^{-1})^\vee \circ s \). Finally, the composite

\[
A \otimes S(s^{-1}(V^\vee)) \xrightarrow{A \otimes k} A \otimes S((sV)^\vee) \xrightarrow{A \otimes \Theta} A \otimes (\Gamma(sV)^\vee) \xrightarrow{j} \text{Hom}(\Gamma(sV), A)
\]

is an isomorphism of graded algebras. So we have obtained an explicit isomorphism of graded algebras \( l : HH^*(A, A) \xrightarrow{\simeq} A \otimes S(s^{-1}(V^\vee)) \). To compute the bracket, it is sufficient to compute it on the generators on \( A \otimes S(s^{-1}(V^\vee)) \). For \( m \in A \), let \( \overline{m} \in C^0(A, A) = \text{Hom}(\langle sA \rangle \otimes^\mathbb{Z}, A) \) defined by \( \overline{m}([])=m \). Obviously, \( l^{-1}(m \otimes 1) \) is the cohomology class of the cocycle \( \overline{m} \). For any linear form \( \varphi \) on \( V \), let \( \overline{\varphi} \in C^1(A, A) = \text{Hom}(sA, A) \) be the map defined by

\[
\overline{\varphi}(sv_1v_2 \ldots v_n) = \sum_{i=1}^n (-1)^{|\varphi|}[sv_1v_2 \ldots v_{i-1}]\varphi(v_i)v_1 \ldots v_{i-1}v_{i+1} \ldots v_n.
\]

Since the composite \( \overline{\varphi} \circ s \) is a derivation of \( A \), \( \overline{\varphi} \) is a cocycle. Since \( \overline{\varphi}(sv_1) = (-1)^{|s|}\varphi(v_1) \), the composite \( \overline{\varphi} \circ i \) is the image of \( 1 \otimes s^{-1}\varphi \) by the composite
Let \( \varphi \) and \( \varphi' \) be two linear forms on \( V \). Then

\[
\overline{\varphi} \circ s \circ \overline{\varphi'} \circ s(\{v_1 \ldots v_n\}) = \sum_{1 \leq j_1 < \cdots < j_n} \left( -1 \right)^{|\varphi'|} \varepsilon_{ij_1}(\varphi, \varphi') + \varepsilon_{ij}(\varphi, \varphi') v_1 \cdots \hat{v}_j \cdots v_n
\]

where \( \varepsilon_{ij}(\varphi, \varphi') = \left( -1 \right)^{|\varphi|} |v_{ij}| \cdots |v_{n-1}| |\varphi'| |v_{ij}| \cdots |v_{n-1}| v_i v_j \varphi(\varphi) \). Therefore \( \overline{\varphi} \circ s \circ \overline{\varphi'} \circ s = -\left( -1 \right)^{|\varphi|} |\varphi'| |\varphi'| \circ s \circ \overline{\varphi} \circ s = 0 \). So by c), the Lie bracket \( \{1 \otimes s^{-1} \varphi, 1 \otimes s^{-1} \varphi'\} = 0 \).

ii) By 1) of Proposition 12.1, \( \Delta(\overline{\varphi'}) = 0 \) and so \( \Delta \) is trivial on all \( m \otimes 1 \in A \otimes 1 \).

Let \( x_1, \ldots, x_N \) be a basis of \( V \). The trace of \( A \) is \( (x_1 \ldots x_N)^{\vee} \). Therefore the trace vanishes on elements of wordlength strictly less than \( N \). For any \( \varphi \in V^{\vee} \), the derivation \( \overline{\varphi} \circ s \) decreases wordlength by 1. So \( \text{tr} \circ \overline{\varphi} \circ s = 0 \). By 2) of Proposition 12.1, \( \Delta(1 \otimes s^{-1} \varphi) = 0 \). Since the Lie bracket is trivial on \( (1 \otimes k[s^{-1} V^{\vee}]) \otimes (1 \otimes k[s^{-1} V^{\vee}]) \), \( \Delta \) is trivial on \( 1 \otimes k[s^{-1} V^{\vee}] \).

The proof is the same as in i): for example, \( \Gamma(sV) \) is the graded tensor product of the free divided power algebra on \( sU \) and of the exterior algebra on \( sW \). \( \square \)

**Remark 12.4.** Suppose that \( V \) is concentrated in degree 0. We have obtained a quasi-isomorphism of differential graded algebras

\[
C^*(S(V), S(V)) \cong (S(V) \otimes \Lambda(s^{-1} V^{\vee}), 0).
\]

In particular, the differential graded algebra \( C^*(S(V), S(V)) \) is formal.

It is easy to see that if \( V \) is of dimension 1 then the inclusion

\[
(S(V) \otimes \Lambda(s^{-1} V^{\vee}), 0) \hookrightarrow C^*(S(V), S(V))
\]

is a quasi-isomorphism of differential graded Lie algebras. In particular, the differential graded Lie algebra \( C^*(S(V), S(V)) \) is formal. Kontsevich formality theorem says that over a field \( \mathbb{F} \) of characteristic zero, the differential graded Lie algebra \( C^*(S(V), S(V)) \) is formal even if \( V \) is not of dimension 1 [22, Theorem 2.4.2 (Tamarkin)].

**13. Triviality of the loop product when \( H^*(BG) \) is polynomial**

This section is independent of the rest of the paper. Recall the dual of the loop coproduct introduced by Sullivan for manifolds \( H^*(LM) \otimes H^*(LM) \to H^{*+d}(LM) \) is (almost) trivial [43]. In this section, we prove that the loop product for classifying spaces of Lie groups \( H_*(LBG) \otimes H_*(LBG) \to H_{*+d}(LBG) \) is trivial if the inclusion of the fibre in cohomology \( j^*: H^*(LBG; \mathbb{K}) \to H^*(G; \mathbb{K}) \) is surjective (Theorem 13.1). We also explain that this condition \( j^*: H^*(LBG; \mathbb{K}) \to H^*(G; \mathbb{K}) \) surjective is equivalent to our hypothesis \( H^*(BG) \) polynomial (Theorem 13.3).
Theorem 13.1. Let $BG$ be the classifying space of a connected Lie group $G$. Suppose that the map induced in cohomology $H^*(LBG;\mathbb{K}) \rightarrow H^*(G;\mathbb{K})$ is surjective. Then the loop product on $H_*(LBG;\mathbb{K})$ is trivial while the loop coproduct is injective.

This result is a generalization of [12, Theorem D] in which it is assumed that the underlying field is of characteristic zero. If $\text{Char} \mathbb{K} \neq 2$, the triviality of the loop product was first proved by Tamanoi [42, Theorem 4.7 (2)]. The second author and David Chataur conjecture that the loop coproduct on $H_*(LBG)$ has always a counit. Assuming that the loop coproduct on $H_*(LBG)$ has a counit, obviously the loop coproduct is injective and it follows from [42, Theorem 4.5 (i)] that the loop product on $H_*(LBG)$ is trivial.

The injectivity described in Theorem 13.1 follows from a consideration of the Eilenberg-Moore spectral sequences associated with appropriate pullback diagrams. In fact, the induced maps $\text{Comp}^!$ and $H^*(q)$ in the cohomology are epimorphisms; see Proposition 13.2.

Let $\Omega X \xrightarrow{i} LX \rightarrow X$ be the free loop fibration. The following proposition is a key to proving Theorem 13.1.

Proposition 13.2. Let $X$ be a simply-connected space. Suppose that $i^* : H^*(LX) \rightarrow H^*(\Omega X)$ induced by the inclusion is surjective. Then one has

1. the map $H^*(q)$ induced by the inclusion $q : LX \times_X LX \rightarrow LX \times LX$ is an epimorphism.
2. Suppose that $G$ is a connected Lie group. Then, for the map $\text{Comp} : LBG \times BG \xrightarrow{} LBG$, $\text{Comp}^!$ is an epimorphism.

Proof of Theorem 13.1. By Proposition 13.2 (1) and (2), we see that the dual to the loop coproduct $D_{\text{cop}} := \text{Comp}^! \circ H^*(q)$ on $H^*(LBG)$ is surjective. Since $q^!$ is $H^*(LBG \times LBG)$-linear and decreases the degrees, $q^! \circ H^*(q) = 0$. By Proposition 13.2 (1), $H^*(q)$ is an epimorphism. Therefore $q^!$ is trivial and the dual of the loop product $D_{\text{lp}} := H^*(q^!) \circ H^*(\text{Comp})$ on $H^*(LBG)$ is also trivial. \qed

Proof of Proposition 13.2. Consider the two Eilenberg-Moore spectral sequences associated to the free loop fibration mentioned above and to the pull-back diagram

$$
\begin{array}{ccc}
LX \times_X LX & \xrightarrow{q} & LX \times LX \\
p \downarrow & & \downarrow p \times p \\
X & \xrightarrow{\Delta} & X \times X
\end{array}
$$

Since $H^*(LX)$ is a free $H^*(X)$-module by Leray-Hirsch theorem, these two Eilenberg-Moore spectral sequences are concentrated on the 0-th column. So the two morphisms of graded algebras

$$H^*(i) \otimes_{H^*(X)} \eta : H^*(LX) \otimes_{H^*(X)} \mathbb{K} \xrightarrow{\cong} H^*(\Omega X)$$

and

$$H^*(q) \otimes_{H^*(X)} H^*(p) : (H^*(LX) \otimes H^*(LX)) \otimes_{H^*(X)} \cong H^*(LX \times_X LX) \xrightarrow{\cong} H^*(LX \times X LX)$$

are isomorphisms. In particular, $H^*(q)$ is an epimorphism and we have an isomorphism of graded vector spaces between $H^*(LX \times_X LX)$ and $H^*(LX) \otimes H^*(\Omega X)$.
Consider the Leray-Serre spectral sequence \( \{ \tilde{E}_{r}^{*}, \tilde{d}_{r} \} \) of the homotopy fibration \( \Omega X \rightarrow LX \times_X LX \xrightarrow{\text{Comp}} LX \). Since \( H^{*}(LX \times_X LX) \) is isomorphic to \( H^{*}(\Omega X) \otimes H^{*}(\Omega X) \), by \([37, \text{III.} \text{Lemma} 4.5 (2)]\), \( \{ \tilde{E}_{r}^{*}, \tilde{d}_{r} \} \) collapses at the \( E_{2} \)-term. Then for \( X = BG \), the integration along the fibre \( \text{Comp}^i : H^{*}(LBG \times BG LBG) \rightarrow H^{*} - \dim G(LBG) \) is surjective. 

Let \( G \) be a connected Lie group and \( \mathbb{K} \) a field of arbitrary characteristic. Let \( \mathcal{F} : G \rightarrow LBG \rightarrow BG \) be the free loop fibration.

**Theorem 13.3.** The induced map \( j^{*} : H^{*}(LBG; \mathbb{K}) \rightarrow H^{*}(G; \mathbb{K}) \) is surjective if and only if \( H^{*}(BG; \mathbb{K}) \) is a polynomial algebra.

**Proof.** The "if" part follows from the usual EMSS argument. In fact, suppose that \( H^{*}(BG; \mathbb{K}) \cong \mathbb{K}[V] \). Then the EMSS for the universal bundle \( \mathcal{F}' : G \rightarrow EG \rightarrow BG \) allows one to deduce that \( H^{*}(G; \mathbb{K}) \cong \Delta(sV) \). By using the EMSS for the fibre square \(( [25, \text{Proof of Theorem} 1.2] ) \text{ or } [27, \text{Proof of Theorem} 1.6] \)

\[
\begin{array}{ccc}
LBG & \rightarrow & BG^{l} \\
\downarrow & & \downarrow \\
BG & \rightarrow & BG \times BG,
\end{array}
\]

we see that \( H^{*}(LBG; \mathbb{K}) \cong H^{*}(BG; \mathbb{K}) \otimes \Delta(sV) \) as an \( H^{*}(BG) = \mathbb{K}[V] \)-algebra. This implies that the Leray-Serre spectral sequence (LSSS) for \( \mathcal{F} \) collapses at the \( E_{2} \)-term and hence \( j^{*} \) is surjective. See the beginning of section 3 for an alternative proof which uses module derivations.

Suppose that \( j^{*} \) is surjective. We further assume that \( \text{Char} \mathbb{K} = 2 \). By the argument in \([27, \text{Remark} 1.4] \) or \([20, \text{Proof of Theorem} 2.2] \), we see that the Hopf algebra \( A = H^{*}(G; \mathbb{K}) \) is cocommutative and so primitively generated; that is, the natural map \( \iota : P(A) \rightarrow Q(A) \) is surjective. By \([27, \text{Lemma} 4.3] \), this yields that \( H^{*}(G; \mathbb{K}) \cong \Delta(x_{1}, \ldots, x_{N}) \), where \( x_{i} \) is primitive for any \( 1 \leq i \leq N \). The same argument as in the proof of \([37, \text{Chapter} 7, \text{Theorem} 2.26(2)] \) allows us to deduce that each \( x_{i} \) is transgressive in the LSSS \( \{ E_{r}, d_{r} \} \) for \( \mathcal{F} \). To see this more precisely, we recall that the action of \( G \) on \( EG \) gives rise to a morphism of spectral sequence

\[ \{ \mu_{r}^{*} \} : \{ E_{r}, d_{r} \} \rightarrow \{ E_{r} \otimes H^{*}(G; \mathbb{K}), d_{r} \otimes 1 \} \]

for which \( \mu_{2}^{*} = 1 \otimes \mu^{*} : H^{*}(BG; \mathbb{K}) \otimes H^{*}(G; \mathbb{K}) \rightarrow H^{*}(BG; \mathbb{K}) \otimes H^{*}(G; \mathbb{K}) \otimes H^{*}(G; \mathbb{K}) \otimes H^{*}(G; \mathbb{K}) \), where \( \mu : G \times G \rightarrow G \) denotes the multiplication on \( G \); see \([37, \text{Chapter} 7, \text{Section} 2] \).

Suppose that there exists an integer \( i \) such that \( x_{j} \) is transgressive for \( j < i \) but not \( x_{i} \). Then we see that for some \( r < \deg x_{i} + 1 \), \( d_{r}(x_{i}) \neq 0 \) and \( d_{p}(x_{i}) = 0 \) if \( p < r \). We write

\[ d_{r}(x_{i}) = \sum_{l} b_{l} \otimes x_{i_{1}} \cdots x_{i_{l}} \]

where each \( b_{l} \) is a non-zero element of \( H^{*}(BG; \mathbb{K}) \) and \( 1 \leq l_{u} \leq N \) for any \( l \) and \( u \). The equality \( \mu_{r}^{*}d_{r}(x_{i}) = (d_{r} \otimes 1)\mu_{r}^{*}(x_{i}) \) implies that

\[ \sum_{l} b_{l} \otimes x_{i_{1}} \cdots x_{i_{l-1}} \otimes x_{i_{l}} + \cdots = d_{r} \otimes 1(1 \otimes x_{i} \otimes 1 + 1 \otimes 1 \otimes x_{i}) \]

\[ = \sum_{l} b_{l} \otimes x_{i_{1}} \cdots x_{i_{l}} \otimes 1, \]
which is a contradiction. Observe that $x_i$ and $x_{l_u}$ are primitive. Thus it follows that $x_i$ is transgressive for any $1 \leq i \leq N$.

In the case where $\text{Char} \mathbb{K} = p \neq 2$, since $j^*$ is surjective by assumption, it follows from the argument in [27, Remark 1.4] that $H^*(G; \mathbb{Z})$ has no $p$-torsion. Observe that to obtain the result, the connectedness of the loop space is assumed. By virtue of [37, Chapter 7, Theorem 2.12], we see that $H^*(BG; \mathbb{K})$ is a polynomial algebra. This completes the proof. □

The following theorem give another characterisation of our hypothesis $H^*(BG)$ polynomial.

**Theorem 13.4.** Let $G$ be a connected Lie group. Then the following three conditions are equivalent:

1) $H^*(BG; \mathbb{K})$ is a polynomial algebra on even degree generators.
2) $BG$ is $\mathbb{K}$-formal and $H^*(BG; \mathbb{K})$ is strictly commutative.
3) The singular cochain algebra $S^*(BG; \mathbb{K})$ is weakly equivalent as algebras to a strictly commutative differential graded algebra $A$.

Strictly commutative means that $a^2 = 0$ if $a \in A^{odd}$ ($\mathbb{K}$ can be a field of characteristics two).

**Proof.** $1 \Rightarrow 2$. Suppose that $H^*(BG; \mathbb{K})$ is a polynomial algebra. Then by the beginning of section 6, $BG$ is $\mathbb{K}$-formal.

$2 \Rightarrow 3$. Formality means that we can take $A = (H^*(BG; \mathbb{K}), 0)$ in 3).

$3 \Rightarrow 1$. Let $Y$ be a simply connected space such that $S^*(Y; \mathbb{K})$ is weakly equivalent as algebras to a strictly commutative differential graded algebra $A$. Let $(\Lambda V, d)$ be a minimal Sullivan model of $A$. Consider the semifree-$(\Lambda V, d)$ resolution of $(\mathbb{K}, 0)$, $(AV \otimes \Gamma sV, D)$ given in [15, Proposition 2.4] or [32, Lemma 7.2]. Then the tensor product of commutative differential graded algebras $(\mathbb{K}, 0) \otimes (AV, d)$ is $(\Gamma sV, \overline{D})$ has a trivial differential $\overline{D} = 0$ [15, Corollary 2.6]. Therefore we have the isomorphisms of graded vector spaces

$$H^*(\Omega Y) \cong \text{Tor}^S(Y, \mathbb{K})(\mathbb{K}, \mathbb{K}) \cong \text{Tor}^A(\Lambda V, d)(\mathbb{K}, \mathbb{K}) \cong H_*(\Gamma sV, \overline{D}) \cong \Gamma sV.$$

If $H^*(\Omega Y)$ is of finite dimension then the suspension of $V$, $sV$, must be concentrated in odd degree and so $V$ must be in even degree and $d = 0$, i. e. $Y$ is $\mathbb{K}$-formal and $H^*(Y)$ is polynomial in even degree. □

**References**


