
ON THE RATIONAL COHOMOLOGY OF THE TOTAL SPACE
OF THE UNIVERSAL FIBRATION WITH AN ELLIPTIC FIBRE

KATSUHIKO KURIBAYASHI

Abstract. Let FM be the universal fibration having fibre M an elliptic space
with vanishing odd rational cohomology. We consider the rational cohomology
of the total space of FM by using a function space model due to Haefliger,

Brown and Szczarba when Halperin’s conjecture is affirmatively solved for
the fibre. The calculation enables one to deduce that the cohomology of the
classifying space of the self-homotopy equivalences of a c-symplectic space M

is generated only by the Kedra-McDuff µ-classes if the cohomology of M is
generated by a single element.

1. Introduction

Let M be an elliptic space, namely a simply-connected space whose rational
homotopy and cohomology are finite-dimensional. Suppose further that the Euler
characteristic

∑
i(−1)i dimH∗(M ; Q) is positive. Following Lupton [19], we call

such a space positively elliptic. Then Halperin’s conjecture states that for any
positively elliptic space M , each fibration M → E

p→ B with a simply-connected
base is TNCZ; that is, the Leray-Serre spectral sequence with coefficients in the
rational field for the fibration collapses at the E2-term. In this case the coho-
mology H∗(E; Q) is isomorphic to the tensor product H∗(B; Q) ⊗ H∗(M ; Q) as
an H∗(B; Q)-module, where the module structure is defined by the induced map
p∗ : H∗(B; Q) → H∗(E; Q). We observe that, as an algebra, H∗(E; Q) is not
isomorphic in general to the tensor product with the natural algebraic structure
induced by the products on the factors.

We mention that the conjecture has been affirmatively solved in some cases; see
[35], [27], [31], [20] and [22]. Our interest here lies in investigating the algebra
structure of the rational cohomology of the total space of a fibration with a fibre
for which Halperin’s conjecture is affirmatively solved.

In the rest of this section, we describe our results. Let aut1(M) be the component
of the monoid of the self-homotopy equivalences of a space M containing the identity
and M

ι→ Maut1(M)
π→ Baut1(M) the universal M -fibration [24]. Suppose that M

is a simply-connected space whose rational cohomology is isomorphic to an algebra
of the form

(1.1) Q[x1, ...., xq]/(u1, ..., uq),
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where {u1, ..., uq} is a regular sequence. Observe that the cohomology of every
positively elliptic space is of the form (1.1) for some q and conversely, a simply
connected space whose cohomology has the form (1.1) is positively elliptic; see [9]
and [4].

In what follows, for an augmented algebra A, we denote by A+ the augmentation
ideal. Let {mj}j∈J be an arbitrary basis of the cohomology H∗(M ; Q) with J =
J ′ ∐{0} and m0 = 1. By using a minimal model for M and the basis {mj}j∈J , we
can construct a model for aut1(M) due to Haefliger [8], Brown and Szczarba [1],
which is called the HBS model. Let ev : aut1(M)×M → M be the evaluation map
defined by ev(γ, x) = γ(x) for γ ∈ aut1(M) and x ∈ M . Then an explicit model for
the evaluation map is constructed with the HBS model for aut1(M); see [2], [16]
and [17]. Such the models enable one to determine H∗(Baut1(M); Q)-linear parts
of the relations in the algebra H∗(Maut1(M); Q). More precisely we establish

Theorem 1.1. Let M be a simply-connected space whose rational cohomology is of
the form (1.1). Suppose that all derivations of negative degree of H∗(M ; Q) vanish.
Then there exist a subset S of the set {1, ..., q}×J containing S0 := {(i, 0)|1 ≤ i ≤ q}
and indecomposable elements νs of H∗(Baut1(M); Q) indexed by S such that

H∗(Baut1(M); Q) ∼= Q[νs| s ∈ S]

as an algebra and

H∗(Maut1(M); Q) ∼= Q[νs| s ∈ S] ⊗ Q[x1, ...., xq]

/
ui −

∑

s=(i,j)∈S

νsmj + Di




as an H∗(Baut1(M); Q)-algebra, where each Di is an appropriate decomposable
element in the ideal generated by π∗(H∗(Baut1(M); Q)+ · H∗(Baut1(M); Q)+),
ι∗(xi) = xi for i = 1, ..., q and deg ν(i,j) = deg ui − deg mj for (i, j) ∈ S. Moreover
one has

]{νs|deg νs = 2k, s ∈ S} = rank ⊕a−b=2k−1 πa(M) ⊗ Hb(X; Q)

−rank ⊕a−b=2k πa(M) ⊗ Hb(X; Q).

For any s ∈ S0, the element νs is decomposable in H∗(Maut1(M); Q). Thus we
have

Corollary 1.2. As an algebra,

H∗(Maut1(M); Q) ∼= Q[νs| s ∈ S − S0] ⊗ Q[x1, ...., xq].

The derivations of H∗(M ; Q) are closely related with the Halperin conjecture.
Indeed, the result [27, Theorem A] due to Meier asserts that the conjecture is true
for a positively elliptic fibre M if and only if all derivations of negative degree of
H∗(M ; Q) vanish. Thus Theorem 1.1 is applicable to spaces satisfying Halperin’s
conjecture, for example, the homogeneous space G/H for which G is a Lie group
and H is a subgroup with rank G = rank H; see [31].

We mention that Lemma 3.1 below describes a necessary and sufficient condition
for the vector space of negative derivations of H∗(M ; Q) to be trivial in terms of
the differential δ of the HBS model for aut1(M). We also observe that the subset
S in Theorem 1.1 is determined when choosing a basis for the image of the linear
part of δ; see Section 3 for more details.
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We can arrange the given basis {mj}j∈J of H∗(M ; Q) so that Di = 0 for any i.
This follows from deformation theory as we see in [10, Section 3]. It is mentioned
that the suitable basis of H∗(M ; Q) are chosen by considering the vector space of
infinitesimal deformations T 1

Q(H∗(M ; Q)) of H∗(M ; Q). By virtue of [10, Theorem
3.1], the cohomology ring H∗(Maut1(M); Q) is viewed as an equivariant versal defor-
mation of H∗(M ; Q) along the ring H∗(Baut1(M); Q). Moreover a formula of the
rational homotopy group of Maut1(M) is described in [10, Theorem D] in terms of
the infinitesimal deformations. The proof of [10, Theorem D] then yields Corollary
1.2.

The novelty here is that the generators νs of H∗(Baut1(M); Q) are related to
those of the HBS model for aut1(M) via the Eilenberg-Moore spectral sequence
converging to H∗(Maut1(M); Q); see Section 5. We also stress that our computation
of H∗(Maut1(M); Q) is started with an arbitrary basis of H∗(M ; Q). In addition, we
obtain the algebra structure of H∗(Maut1(M); Q) without depending on deformation
theory.

We refer the reader to [5, Theorems 1, 2 and 3], [27, Proposition 1] and [33,
Theorem 3.1] for the rational homotopy group of aut1(M) for an elliptic space M
and a more general two-stage space.

Let M → E → B be a fibration over a simply-connected space B. Assume that
the cohomology of M is of the form (1.1) and that all derivations of negative degree
of H∗(M ; Q) vanish. As mentioned in [27, (2.12)], the Eilenberg-Moore spectral
sequence argument enables us to conclude that, as an H∗(B; Q)-algebra,

H∗(E; Q) ∼= H∗(B; Q) ⊗H∗(Baut1(M);Q) H∗(Maut1(M); Q)

∼= H∗(B; Q) ⊗ Q[x1, ...., xq]

/
ui −

∑

s=(i,j)∈S

f∗(νs)mj + f∗(Di)


 ,

where f : B → Baut1(M) is the classifying map of the given fibration. In particular,
one can obtain the algebra structure of H∗(E; Q) if B is a suspension space because
f∗(Di) = 0 for i = 1, ..., q.

In a particular case, the H∗(Baut1(M); Q)-algebra structure of H∗(Maut1(M); Q)
is determined explicitly.

Proposition 1.3. Let M be a simply-connected space such that H∗(M ; Q) ∼=
Q[a]/(am+1). Then

H∗(Baut1(M); Q) ∼= Q[ν2, ..., νm+1]

as an algebra and

H∗(Maut1(M); Q) ∼= Q[ν2, ..., νm+1] ⊗ Q[a]

/(
am+1 −

m+1∑

s=2

νsa
m−s+1

)

as an H∗(Baut1(M); Q)-algebra, where deg νk = 2k.

This result also follows from the computation in [6, Section 3] due to Gatsinzi.
The following subject is characterization of the indecomposable elements of

H∗(Baut1(M); Q) mentioned in Theorem 1.1. Following Kedra and McDuff [13],
we introduce characteristic classes of Baut1(M) with fibre integration of the uni-
versal M -fibration. The calculation of H∗(Maut1(M); Q) in Theorem 1.1 allows us
to conclude that the characteristic classes coincide with the indecomposable ele-
ments νs of H∗(Baut1(M); Q) modulo decomposable elements. To see this more
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precisely, we recall that (M,a) is a cohomologically symplectic (c-symplectic) space
with formal dimension 2m if M satisfies Poincaré duality over Q and a is a class in
H2(M ; Q) such that am 6= 0; see [21].

Assume further that M is a closed manifold and let Ha denote the group of
diffeomorphisms of M that fix a. Kedra and McDuff defined in [13, Section 3]
cohomology classes, which are called the µ-classes, of the classifying space BHa

provided H1(M ; Q) = 0. These classes are generalization of the characteristic
classes of the classifying space of the group of Hamiltonian symplectomorphisms
due to Reznikov [30] and Januszkiewicz and Kedra [12]. By the same way, for a
symplectic space (M, a) mentioned above, we can define characteristic classes µk of
the classifying space Baut1(M) with degree 2k for 2 ≤ k ≤ m + 1. The class µk is
also called the kth µ-class; see Section 6 for more details.

We can characterize the generators of H∗(Baut1(M); Q) in Proposition 1.3 by
µ-classes if M is a c-symplectic space.

Proposition 1.4. Let M be a simply-connected c-symplectic space whose rational
cohomology M is of the form Q[a]/(am+1). Then H∗(Baut1(M); Q) is generated
by Kedra-McDuff µ-classes:

H∗(Baut1(M); Q) ∼= Q[µ2, µ3, ..., µm+1].

We give a computational example. Let G be a Lie group, K and H subgroups
of G. We define a map

λK,G/H : K → aut1(G/H)
by λK,G/H(g)(m) = gm with the left translation of K on G/H, where g ∈ K and
m ∈ G/H. We observe that λK,G/H is a monoid map and hence it induces the
map BλK,G/H : BK → Baut1(G/H) between classifying spaces. Consider the
real Grassmann manifold M of the form SO(2m + 1)/SO(2) × SO(2m − 1). Since
H∗(M) ∼= Q[χ]/(χ2m) as an algebra, it follows from Proposition 1.4 that

H∗(Baut1(M); Q) ∼= Q[µ2, µ3, ..., µ2m].

Observe that χ ∈ H2(M ; Q) is the element which comes from the Euler class
χ ∈ H2(BSO(2); Q) via the map

j∗ : H∗(B(SO(2) × SO(2m − 1); Q) ∼= Q[χ, p′1, ..., p
′
m−1] → H∗(M ; Q),

where j is the fibre inclusion of the fibration

M
j→ B(SO(2) × SO(2m − 1)) Bi→ BSO(2m + 1).

Recall that the rational cohomology of BSO(2m + 1) is a polynomial algebra gen-
erated by Pontrjagin classes; that is, H∗(BSO(2m + 1); Q) ∼= Q[p1, ..., pm], where
deg pi = 4i. We relate the Pontrjagin classes to the µ-classes with the map induced
by λSO(2m+1),M . More precisely, we have

Proposition 1.5. (BλSO(2m+1),M )∗(µ2i) ≡ pi modulo decomposable elements.

Let Diff1(M) be the identity component of the group of diffeomorphisms of
a manifold M and (Ha)1 the subgroup of Diff1(M) which fix the class a. Let
Homeo1(M) denote the identity component of the group of homeomorphisms of
M . The naturality of the integration along the fibre implies that the kth Kedra-
McDuff µ-classes of BDiff1(M), B(Ha)1 and of BHomeo1(M) are extendable to the
class µk in H2k(Baut1(M); Q). Thus an algebraic property of µ-classes is deduced
as a corollary to Proposition 1.5.
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Corollary 1.6. Let M be the Grassmann manifold of the form SO(2m+1)/SO(2)×
SO(2m−1). Then the µ-classes µ2, µ4,.., µ2m in the cohomology H∗(BDiff1(M); Q),
H∗(B(Ha)1; Q) and H∗(BHomeo1(M); Q) are algebraically independent.

The proof of Proposition 1.5 also allows us to conclude that the image of the kth
µ-class by the induced map

(BλSU(m+1),CP m)∗ : H∗(Baut1(CPm); Q) → H∗(BSU(m + 1); Q)

coincides with the kth Chern class up to sign modulo decomposable elements; see
the proof of [13, Proposition 1.7]. Observe that CPm ∼= U(m + 1)/U(1) × U(m).
In order to prove Proposition 1.5, we will heavily rely on an explicit model for the
left translation by a Lie group on a homogeneous space, which is investigated in
[17, Sections 3 and 4]. This also illustrates usefulness of such an algebraic model.

The rest of this manuscript is set out as follows. In Section 2, we recall briefly
the HBS model for aut1(M) and a model for the evaluation map. A minimal model
for the monoid is constructed in Section 3. Section 4 is devoted to constructing an
approximation to the Eilenberg-Moore spectral sequence. In Section 5, we prove
Theorem 1.1. After recalling µ-classes, we prove Propositions 1.4 and 1.5 in Section
6.

2. Models for the monoid aut1(M) and for the evaluation map

In what follows, H∗(−) and H∗(−) denote the cohomology and homology with
coefficients in the rational field, respectively.

Let M be a formal space with dimH∗(M) < ∞. We recall a Sullivan model for
aut1(M) and a model for the evaluation map ev : aut1(M) × M → M ; see [8], [1],
[5], [2] and [17] for more general function space models.

Let α : (∧V, d) '→ APL(M) be a minimal model for M , where APL(M) denotes
the commutative differential graded algebra of differential polynomial forms on M .
Since M is formal by assumption, there exists a quasi-isomorphism η : (∧V, d) '→
H∗(M).

Consider a differential graded algebra of the form (∧(∧V ⊗ B∗), D = d ⊗ 1),
where B∗ = H−∗(M). Let ∆ be the coproduct of H∗(M). We denote by I the ideal
of ∧(∧V ⊗ H∗(M)) generated by 1 ⊗ 1∗ − 1 and all elements of the form

a1a2 ⊗ β −
∑

i

(−1)|a2||β′
i|(a1 ⊗ β′

i)(a2 ⊗ β′′
i ),

where a1, a2 ∈ ∧V , β ∈ B∗ and ∆(β) =
∑

i β′
i ⊗ β′′

i . The result [1, Theorem 3.5]
implies that the composite ρ : ∧(V ⊗ B∗) ↪→ ∧(∧V ⊗ B∗) → ∧(∧V ⊗ B∗)/I is an
isomorphism of graded algebras. Moreover, it follows from [1, Theorem 3.3] that
DI ⊂ I. Thus we have a DGA (E, δ) of the form

E = ∧(V ⊗ B∗) and δ = ρ−1Dρ.

Observe that, for elements v ∈ V and e ∈ B∗, if d(v) = v1 · · · vm with vi ∈ V and
D(m−1)(e) =

∑
j ej1 ⊗ · · · ⊗ ejm

, then

(2.1) δ(v ⊗ e) =
∑

j ±(v1 ⊗ ej1) · · · (vm ⊗ ejm).

Here the sign is determined by the Koszul rule; that is, ab = (−1)deg a deg bba in a
graded algebra.
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We define a DGA map u : ∧(∧V ⊗ B∗)/I) → Q by

u(a ⊗ b) = (−1)τ(|a|)b(η(a)),

where τ(n) = [(n + 1)/2], a ∈ ∧V and b ∈ B∗. Let Mu be the ideal of E generated
by the set

{ω | deg ω < 0} ∪ {δω | deg ω = 0} ∪ {ω − u(ω) | deg ω = 0}.

Then the result [1, Theorem 6.1] asserts that (E/Mu, δ) is a model for aut1(M).
This means that there exists a quasi-isomorphism ξ : (E/Mu, δ) → APL(aut1(M)).
We call the DGA (E/Mu, δ) the HBS model for aut1(M).

The proof of [16, Theorem 4.5] and [11, Remark 3.4] enable us to construct a
model for the evaluation map ev : aut1(M) × M → M ; see also [2]. The explicit
form of the model is described in Proposition 2.1 below.

Let {mj}j∈J be a basis of H∗(M) and {(mj)∗}j∈J the dual basis to {mj}j∈J .
Then there exists a set {m′

j}j∈J of linearly independent elements in ∧V such that
η(m′

j) = mj .

Proposition 2.1. [17, Proposition 2.3, Remark 2.5(ii)] With the same notation as
above, we define a map m(ev) : (∧V, d) → (E/Mu, δ) ⊗ ∧V by

m(ev)(x) =
∑

j

(−1)τ(|mj |)π(x ⊗ (mj)∗) ⊗ m′
j ,

for x ∈ A, where π : E → E/Mu denotes the natural projection. Then m(ev) is
a Sullivan representative for the evaluation map ev : aut1(M) × M → M ; that is,
there exists a homotopy commutative diagram

APL(M) ev∗
// APL(aut1(M) × M)

APL(aut1(M)) ⊗ APL(M)

'
OO

∧V

'α

OO

m(ev)
// (E/Mu, δ) ⊗ ∧V,

' ξ⊗α

OO

in which ξ : (E/Mu, δ) '→ APL(aut1(M)) is the Sullivan model for aut1(M) men-
tioned above.

Example 2.2. Let M be a space whose rational cohomology is isomorphic to the
truncated algebra Q[x]/(xm), where deg x = l. Recall the model (E/Mu, δ) for
aut1(M) mentioned in [11, Example 3.6]. Since the minimal model for M has the
form (∧(x, y), d) with dy = xm, it follows that

E/Mu = ∧(x ⊗ 1∗, y ⊗ (xs)∗; 0 ≤ s ≤ m − 1)

with δ(x⊗1∗) = 0 and δ(y⊗(xs)∗) = (−1)s

(
m
s

)
(x⊗1∗)m−s, where deg x⊗1∗ = l

and deg(y⊗ (xs)∗) = lm− ls−1. Then the rational model m(ev) for the evaluation
map ev : aut1(M) × M → M is given by m(ev)(x) = (x ⊗ 1∗) ⊗ 1 + 1 ⊗ x and

m(ev)(y) =
m−1∑

s=0

(−1)s(y ⊗ (xs)∗) ⊗ xs + 1 ⊗ y.
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3. A minimal model for aut1(M)

Let M be a space whose rational cohomology is isomorphic to an algebra of the
form (1.1). Observe that M is a formal space with dim H∗(M) < ∞. Thus the
construction in Section 2 of the HBS model for aut1(M) is applicable. We here
construct a relevant minimal model for aut1(M) with the HBS model.

We first take a minimal model (∧V, d) for M for which ∧V = ∧(x1, ..., xq, ρ1, ..., ρq)
and d(ρi) = ui for i = 1, ..., q. Let {mj}j∈J be a basis of H∗(M) and T the set
{1, ..., q}×J and {mj}j∈J . Consider the HBS model E/Mu for aut1(M) mentioned
in Section 2. It is readily seen that the model has the form

E/Mu = (∧(ρi ⊗ (mj)∗; (i, j) ∈ T1, xi ⊗ (mj)∗; (i, j) ∈ T2), δ),

where T1 = {(i, j) ∈ T |deg ρi ⊗ (mj)∗ ≥ 1} and T2 = {(i, j) ∈ T |deg xi ⊗ (mj)∗ ≥
1}. We define the linear part δ0 of the differential δ by δ(x) − δ0(x) ∈ (E/Mu)+ ·
(E/Mu)+. Then the part δ0 defines a linear map

δ0,res : Q{ρi ⊗ (mj)∗; (i, j) ∈ T1} → Q{xi ⊗ (mj)∗; (i, j) ∈ T2},

where Q{U} denotes the vector space generated by a set U .
As mentioned in Introduction, we are able to relate Halperin’s conjecture with

a property of the linear part δ0,res. Let DerQ(H∗(M))− be the vector space of all
derivations of negative degree of H∗(M).

Lemma 3.1. The vector space DerQ(H∗(M ; Q))− vanishes if and only if δ0,res is
surjective.

Proof. It follows from [27, (2.6) Proposition (ii)] that the vector space of all deriva-
tions of negative degree of H∗(M) is isomorphic to πeven(aut1(MQ)). Moreover the
result [4, Theorem 15.11] enables us to conclude that Cokerδ0,res

∼= πeven(aut1(MQ)).
This completes the proof. ¤

In order to construct a minimal model for E/Mu, we arrange bases ρi ⊗ (mj)∗
and xi ⊗ (mj)∗ as follows. Fix total orders on the sets T1 and T2, respectively.
Using the orders, we define column vectors (δ0,res(ρi ⊗ (mj)∗)) and (xi ⊗ (mj)∗).

Suppose that DerQ(H∗(M ; Q))− = 0. Then it follows from Lemma 3.1 that there
exists a (k, l)-matrix A with full rank such that

A(δ0,res(ρi ⊗ (mj)∗)) = (xi ⊗ (mj)∗),

where k = ]T2 and l = ]T1. Thus, changing the order on T1 if necessary, we
can find a regular (k, k)-matrix B such that BA = (E, ∗), where E is the identity
matrix. Put B(xi ⊗ (mj)∗) = (vl). We choose the pair (s, t) ∈ T1 which satisfies
the condition that

]{(i, j) ∈ T1|(i, j) ≤ (s, t)} = k.
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We have




1 0 · · · 0

1
...

...
. . .

...
...

1 0 · · · 0







...
(δ0,res(ρi′ ⊗ (mj′)∗) + δ0,reswi′,j′

...

(δ0,res(ρs ⊗ (mt)∗) + δ0,resws,t

...
δ0,res(ρi ⊗ (mj)∗)

...




=




v1

...

...

...
vk




for which each wi′,j′ is a linear combination of elements ρi ⊗ (mj)∗ with (i, j) >
(s, t). Without loss of generality, we can assume that (i, 0) > (s, t) for i = 1, ..., q
because δ0,res(ρi ⊗ 1∗) = 0 for any i. We write (b1, ..., bk) = (· · · , ρi′ ⊗ (mj′)∗ +
wi′,j′ , · · · , ρs ⊗ (mt)∗ + ws,t). Observe that b1, ..., bk, ρi ⊗ (mj)∗ ; (i, j) > (s, t) are
linearly independent. Since v1, ..., vk generate the image of δ0,res, it follows that for
any (i, j) greater than (s, t),

δ0,res(ρi ⊗ (mj)∗) − δ0,res(
∑

l

αilbl) = 0

for some αil ∈ Q. Thus we have

E/Mu
∼= ∧(b1, ..., bk, ..., ρi ⊗ (mj)∗ +

∑

l

αilbl, ..., v1, ..., vk), δ)

for which δbi ≡ vi and δ(ρi⊗(mj)∗+
∑

l αilbl) ≡ 0 modulo decomposable elements.
Put S := {(i, j) ∈ T1|(i, j) > (s, t)}. It is immediate that S0 ⊂ S. We then have a
retraction

r : E/Mu → ∧Z := (∧(ρi ⊗ (mj)∗; (i, j) ∈ S), 0)

defined by r((ρi ⊗ (mj)∗) = 0 if (i, j) /∈ S, r(vi) = 0 and r((ρi ⊗ (mj)∗) = ρi ⊗
(mj)∗ if (i, j) ∈ S. Since each term of the decomposable elements δbi − vi and
δ(ρi ⊗ (mj)∗ +

∑
l αilbl) contain vl for some l as a factor, we see that γ is a well-

defined DGA map.
The fact that r is a quasi-isomorphism follows from the usual spectral sequence

argument.

4. An approximation to the Eilenberg-Moore spectral sequence

In order to prove Theorem 1.1, we introduce a spectral sequence. Let C∗(X)
denote the normalized chain complex of a space X with coefficients in the ra-
tional field. By definition, the total space Maut1(M) of the universal M -fibration
is regarded as the realization |B∗(∗, aut1(M),M)| of the geometric bar construction
B∗(∗, aut1(M),M), which is a simplicial topological space with Bi(∗, aut1(M),M) =
∗×aut1(M)×i×M ; see [24, Proposition 7.9]. The result [24, Theorem 13.9] allows
us to obtain natural quasi-isomorphisms which connect with C∗(|B(∗, aut1(M),M)|)
and the algebraic bar construction of the form B(C∗(∗), C∗(aut1(M)), C∗(M)) for
which

B(C∗(∗), C∗(aut1(M)), C∗(M))k = ⊕i+j=k(C∗(∗) ⊗ C∗(aut1(M))⊗i ⊗ C∗(M))j .
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Moreover the Eilenberg-Zilber map gives rise to a quasi-isomorphism from the bar
complex to the total complex TotalC∗(B∗(∗, aut1(M),M)). Observe that

TotalC∗(B∗(∗, aut1(M),M))k = ⊕i+j=kCjBi(∗, aut1(M),M).

In consequence, by virtue of [4, Corollary 10.10], we have natural quasi-isomorphisms
which connect C∗(Maut1(M)) = C∗(|B∗(∗, aut1(M),M)|) with the total complex of
a double complex B = {Bi,j , di, δj} of the form

Bi,j =
(
APL(aut1(M)×i × M)

)j
.

In particular, d0 : B0,∗ → B1,∗ is regarded as the map

(pr2)∗ − ev∗ : APL(M) → APL(aut1(M) × M),

where the maps pr2 and ev from aut1(M) × M → M to M denote the second
projection and the evaluation map, respectively.

We define a double complex C = {Ci,j , di, δj} by truncating the double complex
{Bi,j} for i ≥ 2; that is, Ci,j = Bi,j for i ≤ 0, 1 and Ci,j = 0 for i ≥ 2.

Let {Er, dr} be the Eilenberg-Moore spectral sequence converging to the rational
cohomology H∗(Maut1(M)) with

E∗,∗
2

∼= Cotor∗,∗
H∗(aut1(M))(Q,H∗(M))

as an algebra. Observe that this spectral sequence is constructed with the double
complex B. The double complex C gives rise to a spectral sequence {Ẽr, d̃r} con-
verging to H∗(Total(C)) . Moreover, we see that the projection q : B → C induces
the morphism of the spectral sequences

{qr} : {Er, dr} → {Ẽr, d̃r}

and the morphism q̂ : H∗(Maut1(M)) → H∗(Total(C)) of algebras.

Lemma 4.1. For any α ∈ H∗(Maut1(M)), q̂(α) = 0 if and only if α ∈ F 2H∗.
Here {F pH∗}p≥0 denotes the filtration of H∗(Maut1(M)) associated with the spectral
sequence {Er, dr}.

Proof. By construction, we see that q2 : Ep,∗
2 → Ẽp,∗

2 is bijective for p = 0 and
injective for p = 1. Since the spectral sequence {Ẽr, d̃r} collapses at the E1-term,
it follows that the map qp,∗

r for 3 ≤ r ≤ ∞ and p ≤ 1 is injective. This completes
the proof. ¤

Let M be a space as in Theorem 1.1 and E/Mu the HBS model for the monoid
aut1(M) mentioned in Section 2. Since M is formal, we can take a quasi-isomorphism
η : (∧V, d) '→ H∗(M ; Q). Moreover let m(ev) : ∧V → E/Mu ⊗ ∧V denote the
model for the evaluation map ev : aut1(M) × M → M described in Proposition
2.1. Recall the retraction r : E/Mu → ∧Z mentioned in Section 3. We then have



10 KATSUHIKO KURIBAYASHI

a commutative diagram

APL(M) d0
// APL(aut1(M) × M)

APL(aut1(M) × M) ⊗ ∧(t, dt)

ε0 '
OO

ε1 '
²²

APL(aut1(M) × M)

∧V

'α

OO

(pr2)
∗◦α−H

88qqqqqqqqqqqqqqqqqqqq

s−m(ev)
//

η◦s−(r⊗η)◦m(ev) ++VVVVVVVVVVVVVVV E/Mu ⊗ ∧V

'
OO

r⊗η '
²²

∧Z ⊗ H∗(M ; Q),

where H : ∧V → APL(aut1(M) × M) ⊗ ∧(t, dt) denotes the homotopy between
the model m(ev) for the evaluation map ev and the induced map APL(ev) up to
quasi-isomorphisms and s stands for the inclusion into the second factor.

Let D be the double complex associated with the differential graded Q-module
map

η ◦ s − (r ⊗ η) ◦ m(ev) : (∧V, d∧V ) → ∧Z ⊗ H∗(M ; Q).
Observe that Di,j = 0 for i ≥ 2. The usual spectral sequence argument allows
us to conclude that H∗(totalC) ∼= H∗(totalD) as a vector pace. By using this
identification, we shall prove Theorem 1.1.

5. Proof of Theorem 1.1

We use the same notation as in Sections 3 and 4 throughout this section.
Proof of Theorem 1.1. Recall from Section 3 the minimal model ∧Z for the monoid
aut1(M); that is,

∧Z = (∧(ρi ⊗ (mj)∗, (i, j) ∈ S), 0),
where {(mj)∗}j∈J denotes the dual basis of H∗(M ; Q) and deg ρi⊗(mj)∗ = deg ui−
1− deg mj . We observe that DerQ(H∗(M ; Q))− = 0 by assumption. Thus we have

H∗(aut1(M)) ∼= ∧(ρi ⊗ (mj)∗, (i, j) ∈ S),

This yields that, in the Leray-Serre spectral sequence for the universal fibration

aut1(M) → Eaut1(M) π′

→ Baut1(M), the element ρi ⊗ (mj)∗ is transgressive for
any (i, j) ∈ S. In fact we have a commutative diagram

π∗(aut1(M))] δ]

∼=
// π∗+1(Eaut1(M), aut1(M))] π∗+1(Baut1(M))]

π′
∗

]

∼=
oo

H∗(aut1(M)) δ
∼=

//

h]
G

OO

H∗+1(Eaut1(M), aut1(M))

(−1)∗+1h]

OO

H∗+1(Baut1(M)),

(−1)∗+1h]
BG

OO

π′∗
oo

where hG, h and hBG denote the duals to Hurewicz maps. Since H∗(aut1(M))
and H∗(Baut1(M)) are exterior algebra and a polynomial algebra, respectively, it
follows that hG and hBG are isomorphisms on vector subspaces of indecomposable
elements. Thus we see that the element ρi ⊗ (mj)∗ is transgressive because the
map δ−1π′∗ is the transgression by definition. Thus the result [29, Section 7 (2.27)]
implies that the element ρi ⊗ (mj)∗is primitive for (i, j) ∈ S.
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Let {Êr, d̂r} be the Eilenberg-Moore spectral sequence converging to the coho-
mology H∗(Baut1(M)) with Ê∗,∗

2
∼= Cotor∗,∗

H∗(aut1(M))(Q, Q). Since the element
ρi ⊗ (mj)∗ is primitive for 1 ≤ i ≤ m, it follows that

Ê∗,∗
2 = Q

[
[ρi ⊗ (mj)∗], (i, j) ∈ S

]
,

where bideg [ρi ⊗ (mj)∗] = (1, deg ρi −deg mj). This allows us to conclude that, as
algebras,

H∗(Baut1(M)) ∼= Total(Ê∗,∗
2 ) ∼= Q

[
[ρi ⊗ (mj)∗], (i, j) ∈ S

]
.

Recall the Eilenberg-Moore spectral sequence {Er, dr} converging to the coho-
mology ring H∗(Maut1(M)). We see that

E∗,∗
2

∼= Cotor∗,∗
H∗(aut1(M))(Q,H∗(M))

∼= Q
[
[ρi ⊗ (mj)∗], (i, j) ∈ S

]
⊗ H∗(M)

as bigraded algebras. For dimensional reasons, we see that the spectral sequence
{Er, dr} collapses at the E2-term. Let M

ι→ Maut1(M)
π→ Baut1(M) be the uni-

versal M -fibration. The naturality of the spectral sequence enables us to deduce
that π∗([ρi ⊗ (mj)∗]) = [ρi ⊗ (mj)∗] in H∗(Maut1(M)). In the total complex of the
double complex D, we have

(d∧V ± (ηs − (r ⊗ η) ◦ m(ev)))ρi = d∧V (ρi) + (−1)deg ρi(ηs − (r ⊗ η) ◦ m(ev))(ρi)

= ([ ]ui) +
∑

(i,j)∈S

(−1)deg mj/2[ρi ⊗ (mj)∗] ⊗ mj .

This implies that q̂
(
([ ]ui) +

∑
(i,j)∈S(−1)deg mj/2[ρi ⊗ (mj)∗] ⊗ ([ ]mj)

)
= 0 in

H∗(Total(C)). Therefore it follows from Lemma 4.1 that

([ ]ui) ≡
∑

(i,j)∈S

ν(i,j) ⊗ mj

modulo the ideal generated by π∗(H∗(Baut1(M))+·H∗(Baut1(M))+) in H∗(Maut1(M)),
where ν(i,j) = (−1)(deg mj/2)+1[ρi ⊗ (mj)∗].

The latter half of Theorem 1.1 follows from the equalities

]{νs|deg νs = 2k, s ∈ S} = dim π2k(Baut1(MQ))
= dimπ2k−1(aut1(MQ))
= ]{ρi ⊗ (mj)∗|deg ρi ⊗ (mj)∗ = 2k − 1, (i, j) ∈ S}
= rank ⊕a−b=2k−1 πa(M) ⊗ Hb(X; Q)

−rank ⊕a−b=2k πa(M) ⊗ Hb(X; Q).

This completes the proof. ¤
Proof of Proposition 1.3. As is well-known, Halperin’s conjecture is affirmatively
solved for the given space M . Then Theorem 1.1 is applicable. We choose a basis of
the form {ai}0≤i≤m of H∗(M ; Q). There is no element w in π∗(H∗(Baut1(M); Q)+ ·
H∗(Baut1(M); Q)+) such that deg am+1 = deg wam. This yields that each term
of D1 does not have am as a factor. Replace the indecomposable element ν(1,j)

in Theorem 1.1 with µj = ν(1,j) + ξj for any j ≥ 2, where ξj is the coefficient of
am−j+1 in D1. We have the result. ¤
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Remark 5.1. Let M be a space as in Theorem 1.1. Recall the subset S of {1, ..., q}×J
mentioned in the construction of the minimal model for aut1(M) in Section 3. Let
ρ : {1, ..., q} × J → J be the projection. Suppose that deg ui 6= deg wmj for any
(i, j) ∈ {1, ..., q}×(J \ρ(S)) and w ∈ π∗(H∗(Baut1(M); Q)+ ·H∗(Baut1(M); Q)+).
As in the proof of Proposition 1.3, we can arrange the indecomposable elements νs

so that each Di in Theorem 1.1 is trivial.

6. µ-classes

In order to define µ-classes due to Kedra and McDuff, we first recall the cou-
pling class. Let (M, a) be a c-symplectic space with formal dimension k = 2m.
Consider the Leray-Serre spectral sequence {Er, dr} for a fibration M

i→ E
π→ B

for which π1(B) act trivially on Hk(M) = Q. Let {F pH∗}p≥0 denote the filtration
of {Er, dr}. Then the integration along the fibre (the cohomology push forward)
π! : Hp+k(E) → Hp(B) is defined by the composite

Hp+k(E) = F 0Hp+k = F pHp+k ³ Ep,q
∞ ½ ·· ½ Ep,q

2
∼= Hp(B; Hk(M)) ∼= Hp(B).

Let G denote the group Ha or the monoid aut1(M). Let M
ι→ MG

π→ BG be
the universal M -fibration; see [24, Proposition 7.9]. Proposition 6.1 below follows
from the proofs of [12, Proposition 2.4.2] and [13, Proposition 3.1].

Proposition 6.1. Suppose that H1(M) = 0, then the element a ∈ H2(M) is
extendable to an element a ∈ H2(MG). Moreover, there exists a unique element
ã ∈ H2(MG) that restricts to a ∈ H2(M) and such that π!(ãm+1) = 0. In fact the
element ã has the form

ã = a − 1
n + 1

π∗π!(am+1).

The class ω̃ in Proposition 6.1 is called the coupling class.

Definition 6.2. [13, Section 3.1] [12, Section 2.4] [30] We define µk ∈ H2k(BG),
which is called kth µ-class, by

µk := π!(ãm+k),

where ã is the coupling class.

Proof of Proposition 1.4. We use the same notation as in the previous sections. It
follows from Lemma 4.1 that

([ ]a)m+1 ≡
m∑

i=1

(−1)m−i+1[y ⊗ (am−i)∗] ⊗ ([ ]a)m−i

modulo the ideal generated by π∗(H∗(Baut1(M))+·H∗(Baut1(M))+) in H∗(Maut1(M)).
Since H2(Baut1(M)) = 0, the definition of the integration π! enables us to deduce
that π!(([ ]a)m+1) = 0. We can choose the element ([ ]a) as the coupling class ã
mentioned in Proposition 6.1. By definition, for 2 ≤ k ≤ m + 1, we see that

µk = π!(ãm+k) = π!(ãm+1 · ãk−1)

= π!
(
(

m∑

i=1

(−1)m−i+1[y ⊗ (am−i)∗] ãm−i) · ãk−1
)

= π!(· · · + (−1)m−k[y ⊗ (am−k+1)∗] ãm + · · · )
= (−1)m−k[y ⊗ (am−k+1)∗]



A FUNCTION SPACE MODEL CALCULATION 13

modulo decomposable elements. We have the result. ¤

Remark 6.3. Let M be a c-symplectic space of the form (CPm×CPn, a1+a2). Then
it follows that µ-classes do not generate the whole algebra H∗(Baut1(M)). To see
this, we choose minimal models (∧(y1, a1), dy1 = am+1

1 ) and (∧(y2, a2), dy2 = an+1
1 )

for the projective spaces CPm and CPn, respectively. Suppose that m ≥ n. Then
the same argument as in [11, Example 3.6] allows us to conclude that aut1(M)
admits a minimal model of the form

∧(y1 ⊗ 1∗, y1 ⊗ (a1)∗, ..., y1 ⊗ (am−1
1 )∗, y2 ⊗ 1∗, y2 ⊗ (a2)∗, ..., y2 ⊗ (an−1

2 )∗,

y1 ⊗ (ak1
1 al1

2 )∗, y2 ⊗ (ak2
1 al2

2 )∗; 1 ≤ k1 + l1 ≤ m, 0 < l1 ≤ n, 1 ≤ k2 + l2 ≤ n, k2 6= 0)

with the trivial differential. This yields that H2(Baut1(M)) is isomorphic to

Q{[y1 ⊗ (ak1
1 al1

2 )∗], [y2 ⊗ (ak2
1 al2

2 )∗]; k1 + l1 = m, 0 < l1 ≤ n, k2 + l2 = n, k2 6= 0}

as a vector space. Thus any of µ-classes does not detect an element in H2(Baut1(M))
since the degrees of the µ-classes are greater than 4.

We also determine the H∗(Baut1(M); Q)-algebra structure of H∗(Maut1(M); Q).
It follows from Remark 5.1 that

H∗(Baut1(M); Q) ∼=

Q
[

ν(k′
1, 0), ν(k1, l1) ; 0 ≤ k′

1 ≤ m − 1, 1 ≤ k1 + l1 ≤ m, 1 ≤ l1 ≤ n
η(0, l′1), η(k2, l2) ; 0 ≤ l′1 ≤ n − 1, 1 ≤ k2 + l2 ≤ n, k2 6= 0

]

and, as an H∗(Baut1(M); Q)-algebra,

H∗(Maut1(M); Q) ∼= H∗(Baut1(M); Q) ⊗ Q[a1, a2] /(ρ1, ρ2),

where

ρ1 = am+1
1 −

m−1∑

k′
1=0

ν(k′
1, 0)ak′

1
1 −

∑

1≤k1+l1≤m,1≤l1≤n

ν(k1, l1)ak1
1 al1

2

ρ1 = an+1
2 −

n−1∑

l′1=0

η(0, l′1)a
l′1
2 −

∑

1≤k2+l2≤n,k2 6=0

η(k2, l2)ak2
1 al2

2 ,

deg ν(k′
1, 0) = 2(m + 1) − 2k′

1, deg ν(k1, l1) = 2(m + 1) − 2(k1 + l1), deg η(0, l′1) =
2(n + 1) − 2l′1 and deg η(k2, l2) = 2(n + 1) − 2(k2 + l2).

Proof of Proposition 1.5. We can take a Sullivan model (∧V, d) for M such that
∧V = ∧(χ, p′1, ..., p

′
m−1, τ2, τ4, ..., τ2m) and d(τ2i) = (−1)i(χ2p′i−1 + p′i) for 1 ≤ i ≤

m. In view of the rational model for λG,M : SO(2m + 1) → aut1(M) mentioned in
[17, Theorem 3.3], we have (λSO(2m+1),M )∗(τ2m⊗(χ2l)∗) = τ2(m−l) in the cohomol-
ogy; see also [17, Section 8 (1)]. Thus the naturality of the Eilenberg-Moore spectral
sequence allows us to deduce that (BλSO(2m+1),M )∗([τ2m⊗(χ2l)∗]) = [τ2(m−l)]. The
description of the µ-classes in the proof of Theorem 1.4 yields that

(BλSO(2m+1),M )∗(µ2(m−l)) ≡ (BλSO(2m+1),M )∗([τ2m ⊗ (χ2l)∗])

modulo decomposable elements. Let σ∗ : H∗(BSO(2m+1)) → H∗−1(SO(2m+1))
be the cohomology suspension. Without loss of generality, we can assume that
σ∗(pm−l) = τ2(m−l); see [4, Proposition 15.13]. By virtue of [7, Corollary 3.12],
we have σ∗([τ2(m−l)]) = τ2(m−l). In our case, the cohomology suspension σ∗ is
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injective on the vector subspace of indecomposable elements. This implies that
[τ2(m−l)] = pm−l. We have the result. ¤

Acknowledgments. The author thanks Toshihiro Yamaguchi for several helpful con-
versations during the early stages of this work.
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