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Abstract. Let G be a connected Lie group and M a homogeneous space ad-
mitting a left translation by G. Let aut1(M) denote the identity component
of the monoid of self-homotopy equivalences of M . Then the action of G on
M gives rise to a map λ : G → aut1(M). The purpose of this article is to in-

vestigate the injectivity of the homomorphism which λ induces on the rational
homotopy. In particular, the visible degrees are determined explicitly for all
the cases of simple Lie groups and their associated homogeneous spaces of rank
one which are classified by Oniscik. Moreover a function space model descrip-

tion of the Kedra-McDuff µ-classes is given. As a consequence, we see that
the rational cohomology of the classifying space of the monoid aut1(M) is a
polynomial algebra generated by µ-classes if M is a cohomologically symplectic
manifold whose rational cohomology is generated by a single element.

1. Introduction

Let f : X → Y be a map between connected spaces whose fundamental groups
are abelian. We say that X is rationally visible in Y with respect to the map f if
the induced map f∗ ⊗ 1 : πi(X) ⊗ Q → πi(Y ) ⊗ Q is injective for any i ≥ 1. Let
aut1(M) be the identity component of the monoid of self-homotopy equivalences of
a space M . Let G be a connected Lie group and M an appropriate homogeneous
space M admitting a left translation by G. We then define a map of monoids

λG,M : G→ aut1(M)

by λG,M (g)(x) = gx for g ∈ G and x ∈M . In this paper, we investigate the rational
visibility of G in aut1(M) with respect to the map λG,M .

The monoid map λG,M factors through the identity component Homeo1(M) of
the monoid of homeomorphisms of M as well as the identity component Diff1(M)
of the space of diffeomorphisms of M . Therefore the rational visibility of G in
aut1(M) implies that of G in Homeo1(M) and Diff1(M). We also expect that non-
trivial characteristic classes of the classifying spaces Baut1(M), BHomeo1(M) and
BDiff1(M) can be obtained through the study of rational visibility. Very little is
known about the (rational) homotopy of the groups Homeo1(M) and Diff1(M) for
a general manifold M ; see [6] for the calculation of πi(Diff1(S

n))⊗Q for i in some
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range. Then such implication and expectation inspire us to consider the visibility
problems of Lie groups. Furthermore this work is also motivated by various results
due to Kedra and McDuff [16], Notbohm and Smith [27], Sasao [30] and Yamaguchi
[35] as will be seen below. We refer the reader to papers [9] and [34] for the study
of rational homotopy types of aut1(M) itself and related function spaces.

In the rest of this section, we state our main results.

Theorem 1.1. Let G be a simply-connected Lie group and T a torus in G which
is not necessarily maximal. Then G is rationally visible in aut1(G/T ) with respect
to the map λG,G/T defined by the left translation of G/T by G.

Theorem 1.1 is a generalization of the result [27, Proposition 2.4], in which T is
assumed to be the maximal torus of G. We mention that the result due to Notbohm
and Smith plays an important role in the proof of the uniqueness of fake Lie groups
with a maximal torus; see [26, Section 1]. Theorem 1.1 is deduced from Theorem
1.2 below, which gives a tractable criterion for the rational visibility.

In order to describe Theorem 1.2, we fix notations. We write H∗(X) for the
cohomology of a space X with coefficients in the rational field Q. Let G be a
connected Lie group and U a closed connected subgroup of G. Let Bι : BU → BG
be the map induced by the inclusion ι : U → G. We assume that the rational
cohomology of BG is a polynomial algebra, say H∗(BG) ∼= Q[c1, ..., ck].

Consider the Lannes division functor (H∗(BU) : H∗(G/U)) in the category
of differential graded algebras (DGA’s). Then the functor is isomorphic to a
quotient of the free algebra ∧(H∗(BU) ⊗ H∗(G/U)); see Remark 2.1. Let π :
H∗(BU)⊗H∗(G/U) → (H∗(BU) :H∗(G/U)) denote the composite the projection
and the inclusion H∗(BU) ⊗H∗(G/U) → ∧(H∗(BU) ⊗H∗(G/U)). Observe that
(H∗(BU) : H∗(G/U)) is isomorphic to ∧(QH∗(BU) ⊗ H∗(G/U)) as an algebra,
where QH∗(BU) denotes the vector space of indecomposable elements. Under the
isomorphism, we can define an algebra map u : (H∗(BU) : H∗(G/U)) → Q by
u(h ⊗ b∗) = ⟨j∗(h), b∗⟩, where j : G/U → BU is the fibre inclusion of the fibra-

tion G/U
j→ BU

Bι→ BG. Moreover let Mu be the ideal of (H∗(BU) ⊗H∗(G/U))
generated by the set

{η|deg η < 0} ∪ {η − u(η)| deg η = 0}.

Theorem 1.2. With the above notation, assume that for ci1 , ..., cis ∈ {c1, ..., ck},
there are elements cj1 , ..., cjs ∈ H∗(BG) and u1∗, ..., us∗ ∈ H≥1(G/U) such that

π((Bι)∗(cit)⊗ 1∗) ≡ π((Bι)∗(cjt)⊗ ut∗)

for t = 1, ..., s modulo decomposable elements in (H∗(BG) :H∗(G/U))/Mu. Then

there exists a map ρ : ×sj=1S
deg cij−1 → G such that ×sj=1S

deg cij−1 is ratio-
nally visible in aut1(G/U) with respect to the map (λG,G/U ) ◦ ρ. In particular,
if (Bι)∗(ci1), ..., (Bι)

∗(cis) are decomposable elements, then π((Bι)∗(cit) ⊗ 1∗) ≡ 0
in (H∗(BG) :H∗(G/U))/Mu and hence one has the same conclusion.

We have an important corollary.

Corollary 1.3. There exist elements with infinite order in πl(Diff1(G/U)) and
πl(Homeo1(G/U)) for l = deg ci1 − 1, ..., deg cis − 1.

For a Lie group G and a homogeneous space M which admits a left translation
by G, put n(G) := {i ∈ N | πi(G)⊗Q ̸= 0} and define the set vd(G,M) of visible
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degrees by

vd(G,M) = {i ∈ n(G) | (λG,M )∗ : πi(G)⊗Q → πi(aut1(M))⊗Q is injective}.

Example 1.4. Since SO(d + 1)/SO(d) is homeomorphic to the sphere Sd, we can
define the maps λSO(d+1),Sd : SO(d + 1) → aut1(S

d) by left translations. The

Brown and Szczarba model for the function space aut1(S
d) allows us to deduce

that aut1(S
2m+1) ≃Q S2m+1 and aut1(S

2m) ≃Q S4m−1; see Example 2.4 below.
Therefore λSO(d+1),Sd is not injective on the rational homotopy in general. However
it follows that the induced maps

(λSO(2m+2),S2m+1)∗ : π2m+1(SO(2m+ 2))⊗Q → π2m+1(aut1(S
2m+1))⊗Q,

(λSO(2m+1),S2m)∗ : π4m−1(SO(2m+ 1))⊗Q → π4m−1(aut1(S
2m))⊗Q

are injective. In fact it is well known that, as algebras, H∗(BSO(2m + 1)) ∼=
Q[p1, ..., pm] and H∗(BSO(2m + 2)) ∼= Q[p1, ..., pm, χ], where deg pj = 4j and
degχ = 2m+ 2. Moreover we see that ι∗1(χ) = 0 and ι∗2(pm) = χ2 for which ι1 and
ι2 are inclusions ι1 : SO(2m+ 1) → SO(2m+ 2) and ι2 : SO(2m) → SO(2m+ 1),
respectively; see [25]. Thus Theorem 1.2 yields

vd(SO(2m+ 2), S2m+1) = {2m+ 1} and vd(SO(2m+ 1), S2m) = {4m− 1}.
The result [1, 1.1.5 Lemma] allows one to conclude that the map SO(d + 1) →
Diff1(S

d) induced by the left translations is injective on the homotopy group. This
implies that the inclusion Diff1(S

d) → aut1(S
d) is surjective on the rational homo-

topy group.

The key device for the study of rational visibility is the function space model
due to Brown and Szczarba [4] and Haefliger [12]. In particular, the rational model
for the evaluation map aut1(G/U) × G/U → G/U , constructed in [17] and [5],
plays a crucial role in constructing an explicit rational model for the map λG,M .
By analyzing such elaborate models, we obtain Theorem 3.1 which gives an exact
criterion for rational visibility. Applying the theorem, we have

Theorem 1.5. Let M be the flag manifold U(m) /U(m1)× · · · × U(ml) . Then
SU(m) is rationally visible in aut1(M) with respect to the map λSU(m),M given by
the left translations; that is, vd(SU(m),M) = n(SU(m)) = {3, 5, ..., 2m − 1}. In
particular, the localized map

(λSU(m),U(m)/U(m−1)×U(1))Q : SU(m)Q → aut1(CPm−1)Q

is a homotopy equivalence.

This result is not new because the first assertion follows from [16, Proposition
4.8] due to Kedra and McDuff. The latter half is a particular case of the main
theorem in [30]. We here emphasize that not only does our machinery developed in
this manuscript work well to prove Theorem 1.5 but also it leads us to an unifying
way of looking at the visibility problem explicitly as is seen in Tables 1 and 2
below. Furthermore, the same argument as in the proof of Theorem 1.5 enables us
to deduce the following result.

Theorem 1.6. Let M be the flag manifold Sp(m) /Sp(m1)× · · · × Sp(ml) . Then
vd(Sp(m),M) = {7, 11, ..., 4m− 1}. In particular, the 3-connected cover Sp(m)⟨3⟩
is rationally visible in aut1(M) with respect to λSp(m),M ◦π, where π : Sp(m)⟨3⟩ →
Sp(m) is the projection.
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Let G be a compact connected simple Lie group and U a closed connected sub-
group for which G/U is a simply-connected homogeneous space of rank one; that is,
its rational cohomology is generated by a single element. Such couples (G,U) are
classified by Oniscik; see [28, Theorems 2 and 4]. In order to illustrate usefulness
of Theorems 1.2 and 3.1, we determine visible degrees of G in aut1(G/U) for each
couple (G,U) classified in [28] by applying the theorems.

In the following table, we first list such homogeneous spaces of the form G/U
with a simple Lie group G and its subgroup U , which is not diffeomorphic to spheres
or projective spaces, together with the sets vd(G,G/U).

(G,U, index) (G/U)Q vd(G,G/U) n(G)

(1) (SO(2n+ 1), SO(2n− 1)×SO(2), 1) CP 2n−1 {3, ..., 4n− 1} {3, ..., 4n− 1}
(2) (SO(2n+ 1), SO(2n− 1), 1) S4n−1 {4n− 1} {3, ..., 4n− 1}
(3) (SU(3), SO(3), 4) S5 {5} {3, 5}
(4) (Sp(2), SU(2), 10) S7 {7} {3, 7}
(5) (G2, SO(4), (1, 3)) HP 2 {11} {3, 11}
(6) (G2, U(2), 3) CP 5 {3, 11} {3, 11}
(7) (G2, SU(2), 3) S11 {11} {3, 11}
(6)’ (G2, U(2), 1) CP 5 {3, 11} {3, 11}
(7)’ (G2, SU(2), 1) S11 {11} {3, 11}
(8) (G2, SO(3), 4) S11 {11} {3, 11}
(9) (G2, SO(3), 28) S11 {11} {3, 11}

Table 1

Here the value of the index of the inclusion j : U → G is regarded as the integer
i by which the induced map j∗ : H3(U ;Z) → H3(G;Z) = Z is multiplication; see
the proof of [28, Lemma 4]. The second column denotes the rational homotopy
type of G/U corresponding a triple (G,U, i). The homogeneous spaces G/U for the
cases (6)’ and (7)’ are diffeomorphic to those for the cases (1) and (2) with n = 3,
respectively. Moreover, the homogeneous spaces are not diffeomorphic each other
except for the cases (6)’ and (7)’.

The following table describes visible degrees of a simple Lie groupG in aut1(G/U)
for which G/U is of rank one and diffeomorphic to the sphere or the projective
space, where the second column denotes the diffeomorphism type of the homoge-
neous space G/U for the triple (G,U, i) and LP 2 is the Cayley plane.

(G,U, index) G/U vd(G,G/U) n(G)

(10) (SU(n+ 1), SU(n), 1) S2n+1 {2n+ 1} {3, ..., 2n+ 1}
(11) (SU(n+ 1), S(U(n)×U(1)), 1) CPn {3, ..., 2n+ 1} {3, ..., 2n+ 1}
(12) (SO(2n+ 1), SO(2n), 1) S2n {4n− 1} {3, ..., 4n− 1}
(13) (SO(9), SO(7), 1) S15 {15} {3, 7, 11, 15}
(14) (Spin(7), G2, 1) S7 {7} {3, 7, 11}
(15) (Sp(n), Sp(n− 1), 1) S4n−1 {4n− 1} {3, ..., 4n− 1}
(16) (Sp(n), Sp(n− 1)× S1, 1) CP 2n−1 {3, ..., 4n− 1} {3, ..., 4n− 1}
(17) (Sp(n), Sp(n− 1)×Sp(1), 1) HPn−1 {7, ..., 4n− 1} {3, ..., 4n− 1}
(18) (SO(2n), SO(2n− 1), 1) S2n−1 {2n− 1} {3, ..., 4n− 5, 2n− 1}
(19) (F4, Spin(9), 1) LP 2 {23} {3, 11, 15, 23}
(20) (G2, SU(3), 1) S6 {11} {3, 11}

Table 2

We here emphasize that Theorems 1.2 and 3.1 serve to determine explicitly the
sets of visible degrees in the above tables, see Section 9 for the detail. In particular,
the former half of Theorem 1.2, namely the Lannes functor argument, enables us
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to obtain the result in the case (6). Observe that for the cases (12) and (18) the
results follow from those in Example 1.4. We aware that in the above tables G
is rationally visible in aut1(G/U) if and only if G/U has the rational homotopy
type of the complex projective space. It should be mentioned that for the map
λ∗ : π∗(F4)⊗Q → π∗(aut1(LP 2))⊗Q, the restriction (λ∗)15 is not injective though
the vector space π15(aut1(LP 2)) ⊗ Q and π15(F4) ⊗ Q are non-trivial; see Section
9.

Let X be a space and HH,X the monoid of all homotopy equivalences that act
trivially on the rational homology of X. The result [16, Proposition 4.8] asserts
that if X is generalized flag manifold U(m) /U(m1)× · · · × U(ml) , then the map
BψSU(m) : BSU(m) → BHH,X arising from the left translations is injective on the
rational homotopy. Let ι : aut1(X) → HH,X be the inclusion. Since BψSU(m) =
Bι ◦ BλSU(m),X , the result [16, Proposition 4.8] yields Theorem 1.5. Theorem 1.7
below guarantees that the converse also holds; that is, the result due to Kedra and
McDuff is deduced from Theorem 1.5; see Section 7.

Before describing Theorem 1.7, we recall an F0-space, which is a simply-connected
finite complex with finite-dimensional rational homotopy and trivial rational coho-
mology in odd degree. For example, a homogeneous space G/T for which G is a
connected Lie group and T is a maximal torus of G is an F0-space.

Theorem 1.7. Let X be an F0-space or a space having the rational homotopy type
of the product of odd dimensional spheres and G a connected topological group which
acts on X. Then (BλG,X)∗ : H∗(BG) → H∗(Baut1(X)) is injective if and only if
so is (Bψ)∗ : H∗(BG) → H∗(BHH,X). Here ψ : G→ HH,X denotes the morphism
of monoids induced by the action of G on X.

As is seen in Remark 7.1, the induced map (Bψ)∗ : Hj(BG) → Hj(BHH,G/U )
is injective for each triple (G,U, i) in Tables 1 and 2 if j ∈ vd(G,G/U).

We now direct our attention to generators of the cohomology of the classifying
space Baut1(X) for a cohomologically symplectic manifold X.

Let (M,a) be a 2m-dimensional cohomologically symplectic (c-symplectic) man-
ifold; that is, a is a class in H2(M) such that am ̸= 0; see [18]. Let Ha denote the
group of diffeomorphisms of M that fix a. Kedra and McDuff defined in [16, Sec-
tion 3] cohomology classes, which are called the µ-classes, of the classifying space
of BHa provided H1(M) = 0. These classes are generalization of the characteristic
classes of the classifying space of the group of Hamiltonian symplectomorphisms
due to Reznikov [29] and Januszkiewicz and Kedra [15]. By the same way, we can
define characteristic classes µk of Baut1(M) for 2 ≤ k ≤ m + 1. The class µk is
also called the kth µ-class; see Section 8 for the explicit definition of such classes.

If the cohomology algebra H∗(M) is generated by a single element, then genera-
tors of H∗(Baut1(M)) are determined algebraically by means of the function space
model due to Brown and Szczarba [4] and due to Haefliger [12]. Then we can relate
such generators to the µ-classes.

Theorem 1.8. Let (M,a) be a nilpotent connected c-symplectic manifold whose
cohomology is isomorphic to Q[a]/(am+1). Then, as an algebra,

H∗(Baut1(M)) ∼= Q[µ2, ..., µm+1],

where degµk = 2k.
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We here give a computational example. Consider the real Grassmannian mani-
fold M of the form SO(2m+ 1)/SO(2)× SO(2m− 1) and the map λSO(2m+1),M :
SO(2m + 1) → M arising from the left translation of SO(2m + 1) on M . Since
H∗(M) ∼= Q[χ]/(χ2m) as an algebra, it follows from Theorem 1.8 that

H∗(Baut1(M)) ∼= Q[µ2, µ3, µ4, ..., µ2m].

Observe that χ ∈ H2(M) is the element which comes from the Euler class χ ∈
H2(BSO(2)) via the induced map

j∗ : H∗(B(SO(2)× SO(2m− 1)) ∼= Q[χ, p′1, ..., p
′
m−1] → H∗(M),

where j is the fibre inclusion of the fibration M
j→ B(SO(2) × SO(2m − 1)

Bi→
BSO(2m+1). Recall that the rational cohomology of BSO(2m+1) is a polynomial
algebra generated by Pontrjagin classes; that is, H∗(BSO(2m+1)) ∼= Q[p1, ..., pm],
where deg pi = 4i. We relate the Pontrjagin classes to the µ-classes with the map
induced by λSO(2m+1),M . More precisely, we have

Proposition 1.9. (BλSO(2m+1),M )∗(µ2i) ≡ pi modulo decomposable elements.

The proof of Proposition 1.9 also allows us to deduce that the image of the kth
µ-class by the induced map

(BλSU(m+1),CPm)∗ : H∗(Baut1(CPm)) → H∗(BSU(m+ 1))

coincides with the kth Chern class up to sign modulo decomposable elements; see
also the proof of [16, Proposition 1.7].

We now provide an overview of the rest of the paper. In Section 2, we recall
briefly a model for the evaluation map of a function space from [17], [5] and [14].
In Section 3, a rational model for the map λG,M mentioned above is constructed.
Section 4 is devoted to the study of a model for the left translation of a Lie group
on a homogeneous space. In Section 5, we prove Theorem 1.2. Theorem 1.5 is
proved in Section 6. In Section 7, we prove Theorem 1.7. In Section 8, following
Kedra-McDuff, we first define the coupling class and µ-classes. By considering the
Eilenberg-Moore spectral sequence converging to the cohomology of the total space
of the universalM -fibration, Theorem 1.8 and Proposition 1.9 is proved. The results
on visible degrees in Tables 1 and 2 are verified in Section 9. In Appendix, Section
10, the group cohomology of Diff1(M) for an appropriate homogeneous space M is
discussed. By using Theorem 1.2, we find non-trivial classes in the cohomology.

2. Preliminaries

The tool for the study of the rational visibility problem is a rational model for
the evaluation map ev : aut1(M) ×M → M , which is described in terms of the
rational model due to Brown and Szczarba [4]. For the convenience of the reader
and to make notation more precise, we recall from [5] and [17] the model for the
evaluation map. We shall use the same terminology as in [3] and [8].

Throughout the paper, for an augmented algebra A, we write QA for the space
A/A ·A of indecomposable elements, where A denotes the augmentation ideal. For
a DGA (A, d), let d0 denote the linear part of the differential.

In what follows, we assume that a space is nilpotent and has the homotopy type
of a connected CW complex with rational homology of finite type unless otherwise
explicitly stated. We denote by XQ the localization of a nilpotent space X.
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Let APL be the simplicial commutative cochain algebra of polynomial differen-
tial forms with coefficients in Q; see [3] and [8, Section 10]. Let A and ∆S be the
category of DGA’s and that of simplicial sets, respectively. Let DGA(A,B) and
Simpl(K,L) denote the hom-sets of the categories A and ∆S, respectively. Follow-
ing Bousfield and Gugenheim [3], we define functors ∆ : A → ∆S and Ω : ∆S → A
by ∆(A) = DGA(A,APL) and by Ω(K) = Simpl(K,APL).

Let (B, dB) be a connected, locally finite DGA and B∗ denote the differential
graded coalgebra defined by Bq = Hom(B−q,Q) for q ≤ 0 together with the co-
product D and the differential dB∗ which are dual to the multiplication of B and
to the differential dB , respectively. We denote by I the ideal of the free algebra
∧(∧V ⊗B∗) generated by 1⊗ 1∗ − 1 and all elements of the form

a1a2 ⊗ β −
∑
i

(−1)|a2||β
′
i|(a1 ⊗ β′

i)(a2 ⊗ β′′
i ),

where a1, a2 ∈ ∧V , β ∈ B∗ and D(β) =
∑
i β

′
i ⊗ β′′

i . Observe that ∧(∧V ⊗B∗) is a
DGA with the differential d := dA⊗1±1⊗dB∗. The result [4, Theorem 3.5] implies
that the composite ρ : ∧(V ⊗B∗) ↪→ ∧(∧V ⊗B∗) → ∧(∧V ⊗B∗)/I is an isomorphism
of graded algebras. Moreover, it follows that [4, Theorem 3.3] that dI ⊂ I. Thus
(∧(V ⊗B∗), δ = ρ−1dρ) is a DGA. Observe that, for an element v ∈ V and a cycle
e ∈ B∗, if d(v) = v1 · · · vm with vi ∈ V and D(m−1)(ej) =

∑
j ej1 ⊗ · · · ⊗ ejm , then

(2.1) δ(v ⊗ e) =
∑
j ±(v1 ⊗ ej1) · · · (vm ⊗ ejm).

Here the sign is determined by the Koszul rule; that is, ab = (−1)deg a deg bba in
a graded algebra. Let F be the ideal of E := ∧(V ⊗ B∗) generated by ⊕i<0E

i

and δ(E−1). Then E/F is a free algebra and (E/F, δ) is a Sullivan algebra (not
necessarily connected), see the proofs of [4, Theorem 6.1] and of [5, Proposition 19].

Remark 2.1. The result [4, Corollary 3.4] implies that there exists a natural iso-
morphism DGA(∧(∧V ⊗ B∗)/I, C) ∼= DGA(∧V,B ⊗ C) for any DGA C. Then
∧(∧V ⊗B∗)/I is regarded as the Lannes division functor (∧V :B) by definition.

The singular simplicial set of a topological space U is denoted by ∆U and let
|X| be the geometrical realization of a simplicial set X. By definition, APL(U) the
DGA of polynomial differential forms on U is given by APL(U) = Ω∆U . Given
spaces X and Y , we denote by F(X,Y ) the space of continuous maps from X to
Y . The connected component of F(X,Y ) containing a map f : X → Y is denoted
by F(X,Y ; f).

Let α : A = (∧V, d) ≃→ APL(Y ) = Ω∆Y be a Sullivan model (not necessarily

minimal) for Y and β : (B, d)
≃→ APL(X) a Sullivan model for X for which B is

connected and locally finite. For the function space F(X,Y ) which is considerd
below, we assume that

(2.2) dim⊕q≥0H
q(X;Q) <∞ or dim⊕i≥2πi(Y )⊗Q <∞.

Then the proof of [17, Proposition 4.3] enables us to deduce the following lemma;
see also [5].

Lemma 2.2. (i) Let {bj} and {bj∗} be a basis of B and its dual basis of B∗,
respectively and π̃ : ∧(A ⊗ B∗) → (∧(A ⊗ B∗)/I)

/
F denote the projection. Define
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a map m(ev) : A→ (∧(A⊗B∗)/I)
/
F ⊗B by

m(ev)(x) =
∑
j

(−1)τ(|bj |)π̃(x⊗ bj∗)⊗ bj ,

for x ∈ A, where τ(n) = [(n+ 1)/2], the greatest integer in (n+ 1)/2. Then m(ev)
is a well-defined DGA map.
(ii) There exists a commutative diagram

F(XQ, YQ)×XQ
ev // YQ

|∆(E/F )| × |∆(B)|
Θ×1

OO

|∆m(ev)|
// |∆(A)|

in which Θ is the homotopy equivalence described in [4, Sections 2 and 3]; see also
[17, (3.1)].

We next recall a Sullivan model for a connected component of a function space.
Choose a basis {a′k, b′k, c′j}k,j for B∗ so that dB∗(a

′
k) = b′k, dB∗(c

′
j) = 0 and c′0 = 1.

Moreover we take a basis {vi}i≥1 for V such that deg vi ≤ deg vi+1 and d(vi+1) ∈
∧Vi, where Vi is the subvector space spanned by the elements v1, ..., vi. The result
[4, Lemma 5.1] ensures that there exist free algebra generators wij , uik and vik such
that

(2.3) wi0 = vi ⊗ 1 and wij = vi ⊗ c′j + xij , where xij ∈ ∧(Vi−1 ⊗B∗),
(2.4) δwij is in ∧({wsl; s < i}),
(2.5) uik = vi ⊗ a′k and δuik = vik.

We then have a inclusion

(2.6) γ : E := (∧(wij), δ) ↪→ (∧(V ⊗B∗), δ),

which is a homotopy equivalence with a retract

(2.7) r : (∧(V ⊗B∗), δ) → E;

see [4, Lemma 5.2] for more details. Let q be a Sullivan representative for a map
f : X → Y ; that is, q fits into the homotopy commutative diagram

∧W ≃ // APL(X)

∧V

q

OO

≃
// APL(Y ).

APL(f)

OO

Moreover we define a 0-simplex ũ ∈ ∆(∧(∧V ⊗B∗)/I)0 by

(2.8) ũ(a⊗ b) = (−1)τ(|a|)b(q(a)),

where a ∈ ∧V and b ∈ B∗. Put u = ∆(γ)ũ. Let Mu be the ideal of E generated by
the set {η | deg η < 0} ∪ {δη | deg η = 0} ∪ {η − u(η) | deg η = 0}. Then the result
[4, Theorem 6.1] asserts that (E/Mu, δ) is a model for a connected component of
the function space of the form F(X,Y ). The proof of [17, Proposition 4.3] and [14,
Remark 3.4] allow us to deduce the following proposition; see also [5].

Proposition 2.3. With the same notation as in Lemma 2.2, we define a map
m(ev) : A = (∧V, d) → (E/Mu, δ)⊗B by

m(ev)(x) =
∑
j

(−1)τ(|bj |)π ◦ r(x⊗ bj∗)⊗ bj ,
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for x ∈ A, where π : E → E/Mu denotes the natural projection. Then m(ev) is
a model for the evaluation map ev : F(X,Y ; f) × X → Y ; that is, there exists a
homotopy commutative diagram

APL(Y )
APL(ev) // APL(F(X,Y ; f)×X)

APL(F(X,Y ; f))⊗APL(X)

≃
OO

A

≃α

OO

m(ev)
// (E/Mu, δ)⊗B,

≃ ξ⊗β
OO

in which ξ : (E/Mu, δ)
≃→ APL(F(X,Y ; f)) is the Sullivan model for F(X,Y ; f)

due to Brown and Szczarba [4].

We call the DGA (E/Mu, δ) the Brown-Szczarba model for the function space
F(X,Y ; f).

Example 2.4. Let M be a space whose rational cohomology is isomorphic to the
truncated algebra Q[x]/(xm), where deg x = l. Recall the model (E/Mu, δ) for
aut1(M) mentioned in [14, Example 3.6]. Since the minimal model for M has the
form (∧(x, y), d) with dy = xm, it follows that

E/Mu = ∧(x⊗ 1∗, y ⊗ (xs)∗; 0 ≤ s ≤ m− 1)

with δ(x⊗1∗) = 0 and δ(y⊗(xs)∗) = (−1)s
(
m
s

)
(x⊗1∗)

m−s, where deg x⊗1∗ = l

and deg(y⊗ (xs)∗) = lm− ls−1. Then the rational model m(ev) for the evaluation
map ev : aut1(M)×M →M is given by m(ev)(x) = (x⊗ 1∗)⊗ 1 + 1⊗ x and

m(ev)(y) =

m−1∑
s=0

(−1)s(y ⊗ (xs)∗)⊗ xs + 1⊗ y.

Remark 2.5. We here describe variants of the function space model due to Brown
and Szczarba model.
(i) Let ∧Ṽ ≃→ APL(Y ) be a Sullivan model (not necessarily minimal) and B

≃→
APL(X) a Sullivan model of finite type. We recall the homotopy equivalence γ :

E → Ẽ = ∧(∧V ⊗ B∗)/I mentioned in (2.6). Let ũ ∈ ∆(Ẽ)0 be a 0-simplex
and u a 0-simplexes of E defined by composing ũ with the quasi-isomorphism

γ. Then the induced map γ : E/Mu → Ẽ/Mũ is a quasi-isomorphism. In fact
the results [4, Theorem 6.1] and [5, Proposition 19] imply that the projections

onto the quotient DGA’s E/Mu and Ẽ/Mũ induce homotopy equivalences ∆(p) :

∆(E/Mu) → ∆(E)u and ∆(p̃) : ∆(Ẽ/Mũ) → ∆(Ẽ)ũ, respectively. Then we have a
commutative diagram

π∗(|∆(E/Mu)|)
|∆(p)|

∼=
// π∗(|∆(E)|, |u|)

π∗(|∆(Ẽ/Mũ)|) |∆(p̃)|

∼= //

|∆(γ)|∗

OO

π∗(|∆(Ẽ)|, |ũ|)

|∆(γ)|∗

OO

Since γ is a homotopy equivalence, it follows that |∆(γ)|∗ is an isomorphism and
hence so is |∆(γ)|∗. This yields that |∆(γ)| is homotopy equivalence. By virtue
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of the Sullivan-de Rham equivalence Theorem [3, 9.4], we see that γ is a quasi-
isomorphism.

As in Lemma 2.2, we define the DGA map m̃(ev) : (∧V, d) → Ẽ/F̃ ⊗ B and let

m(ev) : (∧V, d) → Ẽ/Mũ ⊗ B be the DGA defined by m(ev) = π ⊗ 1 ◦ m̃(ev). We
then have a homotopy commutative diagram

E/Mu ⊗B

γ⊗1≃
��

∧V
m(ev) 33gggggggg

m(ev)
++VVVV

VVVV

Ẽ/Mũ ⊗B.

In fact the homotopy between idẼ and γ ◦ r defined in [4, Lemma 5.2] induces a

homotopy between idẼ/F̃ and γ ◦ r : Ẽ/F̃ → E/F → Ẽ/F̃ . It is immediate that

r ◦ γ = idE/F . Let m(ev)′ : ∧V → E/F ⊗B be the DGA defined as in Proposition
2.3. Then it follows that

γ ⊗ 1 ◦m(ev) = γ ⊗ 1 ◦ π ⊗ 1 ◦m(ev)′

= π ⊗ 1 ◦ γ ⊗ 1 ◦ r ⊗ 1 ◦ m̃(ev)

≃ π ⊗ 1 ◦ m̃(ev) = m(ev).

(ii) In the case where X is formal, we have a more tractable model for F(X,Y ; f).
Suppose that X is a formal space with a minimal model (B, dB) = (∧W ′, d). Then
there exists a quasi-isomorphism k : (∧W ′, d) → H∗(B) which is surjective; see
[7, Theorem 4.1]. With the notation mentioned above, let {ej}j be a basis for the
homology H(B∗) of the differential graded coalgebra B∗ = (∧W ′)∗ and {vi}i a
basis for V . Then it follows from the proof of [4, Theorem 1.9] that the subalgebra
Q{vi ⊗ ej} is closed for the differential δ and that the inclusion Q{vi ⊗ ej} →
∧(W ⊗B∗) = Ẽ gives rise to a homotopy equivalence

γ : E′ := (∧(vi ⊗ ej), δ) → (∧(W ⊗B∗), δ) = Ẽ.

In fact, the elements wij in (2.3) can be chosen so that wi0 = vi⊗1∗ and wij = vi⊗ej
for j ≥ 1. Moreover we see that there exists a retraction r : ∧(W ⊗B∗) → E′ which
is the homotopy inverse of γ. Thus Proposition 2.3 remains true after replacing E
by E′. Here the 0-simplex ũ ∈ ∆(∧(W ⊗ B∗))0 needed in the construction of the
model for F(X,Y ; f) has the same form as in (2.8).

Observe that aut1(X) is nothing but the function space F(X,X; idM ). More-
over, for a manifold M , the function space aut1(M) satisfies the assumption (2.2).
Thus we have explicit models for aut1(X) and the evaluation map according to
the procedure in this section. With the models, we construct a model for the map
λG,M mentioned in Introduction in the next section.

3. A rational model for the map λ induced by left translation

Let M be a space admitting an action of Lie group G on the left. We define
the map λ : G → aut1(M) by λ(g)(x) = gx. The subjective in this section is to
construct an algebraic model for the map

in ◦ λ : G→ aut1(M) → F(M,M),
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where in : aut1(M) → F(M,M) denotes the inclusion. To this end we use a model
for the evaluation map

ev : F(X,Y )×X → Y

defined by ev(f)(x) = f(x) for f ∈ F(X,Y ) and x ∈ X, which is considered in [17]
and [5].

Let G be a connected Lie group, U a closed subgroup of G and K a closed
subgroup which contains U . Let (∧VG, d) and (∧W,d) denote a minimal model
for G and a Sullivan model for the homogeneous space G/U , respectively. Let
λ : G → F(G/U,G/K) be the adjoint of the composite of the left translation
G × G/U → G/U and projection p : G/U → G/K. Observe that the map λ
coincides with the composite

p∗ ◦ in ◦ λG,G/U : G→ aut1(G/U) → F(G/U,G/U) → F(G/U,G/K).

We shall construct a model for λ by using a Sullivan representative

ζ ′ : ∧W → ∧VG ⊗ ∧W ′

for the composite G × G/U → G/K of the left translation G × G/U → G/U and
the projection p : G/U → G/K. Let A, B and C be DGA’s. Recall from [4, Section

3] the bijection Ψ : (A⊗B∗, C)DG
∼=→ (A,C ⊗B)DG defined by

Ψ(w)(a) =
∑
j

(−1)τ(|bj |)w(a⊗ bj∗)⊗ bj .

Consider the case where A = (∧W,d), B = (∧W ′, d) and C = (∧VG, d). Moreover
define a map µ̃ : ∧(A⊗B∗) → ∧VG by

(3.1) µ̃(y ⊗ bj∗) = (−1)τ(|bj |)⟨ζ ′(y), bj∗⟩,

where ⟨ , bj∗⟩ : ∧VG ⊗ ∧W ′ → ∧VG is a map defined by ⟨x ⊗ a, bj∗⟩ = x · ⟨a, bj∗⟩.
Then we see that Ψ(µ̃) = ζ ′. Hence it follows from [4, Theorem 3.3] that

µ̃ : Ẽ := ∧(A⊗B∗)/I → ∧VG
is a well-defined DGA map. We define an augmentation ũ : Ẽ → Q by ũ = ε ◦ µ̃,
where ε : ∧VG → Q is the augmentation. It is readily seen that that µ̃(Mũ) = 0.

Thus we see that µ̃ induces a DGA map ˜̃µ : Ẽ/Mũ → ∧VG. We have an exact
criterion for rational visibility.

Theorem 3.1. Let {xi}i be a basis for the image of the induced map

H∗(Q(˜̃µ)) : H∗(Q(Ẽ/Mũ), δ0) → H∗(Q(∧VG), d0) = VG.

Then there exists a map ρ : ×sj=1S
deg xi → G such that the map

(λQ ◦ ρQ)∗ : π∗((×sj=1S
deg xi)Q) → π∗(F(G/U, (G/K)Q), e ◦ p)

is injective. Moreover λQ : πi(GQ) → πi(F(G/U, (G/K)Q), e ◦ p) is injective if and

only if Hi(Q(˜̃µ)) is surjective.

In order to prove Theorem 3.1, we first observe that the diagram

(3.2) ∧VG ⊗ ∧W ′ (∧(A⊗B∗)/I)/F ⊗ ∧W ′µ̃⊗1oo

∧W
ζ′

ggNNNNNNN m(ev)

55jjjjjjjjjjj
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is commutative. Thus Lemma 2.2 enables us to obtain a commutative diagram
(3.3)

|∆ ∧ VG| × |∆ ∧W ′|

|∆ζ′|=actionQ **VVV
VVVV

VVVV
(Θ◦|∆µ̃|)×1 // F((G/U)Q, (G/K)Q)× (G/U)Q

evssggggg
ggggg

ggg

|∆ ∧W | = (G/K)Q.

Observe that the assumption (2.2) is satisfied in the case where we here consider.
Since the restriction |∆ζ ′||∗×|∆∧W | is homotopic to pQ, it follows from the com-

mutativity of the diagram (3.3) that pQ ≃ Θ ◦ |∆µ̃|(∗). This implies that Θ ◦ |∆µ̃|
maps GQ into the function space F((G/U)Q, (G/K)Q; pQ). The result [13, Theorem
3.11] asserts that e♯ : F(G/U, (G/K); p) → F(G/U, (G/K)Q; e ◦ p) is a localization.
We then have the localization λQ : GQ → F(G/U, (G/K)Q; e ◦ p). Observe that λQ
fits into the homotopy commutative diagram

GQ
λQ // F(G/U, (G/K)Q; e ◦ p)

G

e

OO

λ
// F(G/U, (G/K); p),

e♯

OO

where e denotes the localization map.

Lemma 3.2. Let λQ : GQ → F(G/U, (G/K)Q; e ◦ p) be the localized map of λ
mentioned above and e♯ : F((G/U)Q, (G/K)Q; pQ) → F((G/U), (G/K)Q; e ◦ p) the
map induced by the localization e : (G/U) → (G/U)Q. Then

e♯ ◦Θ ◦ |∆µ̃| ≃ λQ : GQ → F((G/U), (G/K)Q; e ◦ p).

Proof. Consider the commutative diagram

(3.4) [G×G/U,G/K]

e∗
��

θ

≈
// [G,F(G/U,G/K)]

(e♯)∗
��

[G×G/U, (G/K)Q]
θ

≈
// [G,F(G/U, (G/K)Q)]

[GQ × (G/U)Q, (G/K)Q]

(e×e)∗ ≈
OO

θ

≈ ++WWWW
WWWWW

WWWWW
W

[GQ,F(G/U, (G/K)Q]

e∗
OO

[GQ,F((G/U)Q, (G/K)Q)]

(e♯)∗≈
OO

in which θ is the adjoint map and e stands for the localization map. It follows
from the diagram (3.3) that θ(actionQ) = Θ ◦ |∆µ̃|. Moreover we have θ(action) =
e♯ ◦ λ = λK ◦ e. Thus the commutativity of the diagram (3.4) implies that e∗([e♯ ◦
Θ ◦ |∆µ̃|]) = e∗([λQ]) in [G,F(G/U, (G/K)Q)]. Since G is connected, it follows
that (e♯) ◦ Θ ◦ |∆µ̃| ◦ e ≃ λQ ◦ e : G → F(G/U, (G/K)Q; e ◦ p). The fact that
e♯ : F(G/U, (G/K); p) → F(G/U, (G/K)Q; e ◦ p) is the localization yields that the
induced map e∗ : [GQ,F(G/U, (G/K)Q; e ◦ p)] → [G,F(G/U, (G/K)Q; e ◦ p)] is
bijective. This completes the proof. �

Before proving Theorem 3.1, we recall some maps. For a simplicial set K, there
exists a natural homotopy equivalence ξK : K → ∆|K|, which is defined by ξK(σ) =
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tσ : ∆n → {σ} × ∆ → |K|. This gives rise to a quasi-isomorphism ξA : Ω∆A
≃→

Ω∆|∆A|. Moreover, we can define a bijection η : DGA(A,ΩK)
∼=→ Simp(K,∆A)

by η : ϕ 7→ f ; f(σ)(a) = ϕ(a)(σ), where a ∈ A and σ ∈ K. We observe that
η−1(id) : A → Ω∆A is a quasi-isomorphism if A is a connected Sullivan algebra;
see [3, 10.1. Theorem].

Proof of Theorem 3.1. Let p : Ẽ → Ẽ/Mu be the projection. With the same
notation as above, we then have a commutative diagram
(3.5)

|∆(∧(W ⊗B∗)/F )|
Θ

≃
// F((G/U)Q, (G/K)Q)

|∆(∧VG)|
|∆(˜̃µ)| //

|∆(µ̃)|
66nnnnnnnnnnn

|∆(Ẽ/Mu)|

OO |∆p|
OO

|∆p|
≃ // |(∆Ẽ)u|

Θ

≃ // F((G/U)Q, (G/K)Q; Θ([(0, u)])),
?�

OO

where [(1, u)] ∈ |∆Ẽ| is the element whose representative is (1, u) ∈ ∆0 × (∆Ẽ)0.
Lemma 3.2 yields that

(3.6) e♯ ◦Θ ◦ |∆p| ◦ |∆˜̃µ| ≃ e♯ ◦Θ ◦ |∆µ̃| ≃ λQ.

Thus we see that e♯ maps F((G/U)Q, (G/K)Q; Θ([(1, u)])) to F((G/U)Q, (G/K)Q; e
♯◦

Θ([(1, u)])), which is the connected component containing Im(λQ). This implies
that F((G/U)Q, (G/K)Q; e

♯ ◦Θ([(1, u)])) = F((G/U)Q, (G/K)Q; e ◦ p). Therefore,
by the naturality of maps η and ξA, we have a diagram

(3.7) APL(GQ) APL(F(G/U, (G/K)Q; e ◦ p))
APL(λQ)oo

((e♯))∗

��
APL(F((G/U)Q, (G/K)Q; Θ([(1, u)])))

Θ∗
��

APL(|∆ ∧ VG|) APL(|∆(Ẽ/Mũ)|) = Ω∆(Ẽ/Mũ)
|∆˜̃µ|∗oo

∧VG

≃t′:=(ξ∧VG
)η−1(id)

OO

Ẽ/Mũ

≃ ξẼ/Mũ
η−1(id)=:t

OO

˜̃µoo

in which the upper square is homotopy commutative and the lower square is strictly

commutative. Lifting Lemma allows us to obtain a DGA map φ : Ẽ/Mũ →
APL(F(G/U, (G/K)Q)) such that Θ∗◦((e♯)∗)∗◦φ ≃ t and hence APL(λQ)◦φ ≃ t′◦µ̃.

Given a space X, let u : A → APL(X) be a DGA map from a Sullivan algebra

A. Let [f ] be an element of πn(X) and ι : (∧Z, d) ≃→ APL(S
n) the minimal model.

By taking a Sullivan representative f̃ : A→ ∧Z with respect to u, namely a DGA

map satisfying the condition that ι◦ f̃ ≃ APL(f)◦u, we define a map νu : πn(X) →
Hom(HnQ(A),Q) by νu([f ]) = HnQ(f̃) : HnQ(A) → HnQ(∧Z) = Q. By virtue
of [3, 6.4 Proposition], in particular, we have a commutative diagram

πn(GQ)
λQ //

νt′ ∼=
��

πn(F(G/U, (G/K)Q); e ◦ p)
νφ∼= ��

Hom((VG)
n,Q)

HQ(˜̃µ)∗ // Hom(HnQ(Ẽ/Mũ),Q).
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in which νt′and νφ are an isomorphism; see [3, 8.13 Proposition]. There exists an
element [fi] ⊗ q in π∗(G) ⊗ Q which corresponds to the dual element x∗i via the

isomorphism π∗(G) ⊗ Q ∼= π∗(GQ)
νt′→ Hom((VG)

n,Q) for any i = 1, ..., s. The
required map ρ : ×sj=1S

deg xi → G is defined by the composite of the map ×sj=1fi
and the product ×sj=1G→ G. �

4. A model for the left translation

In order to prove Theorems 1.2 and 1.5, a more explicit model for the map
λG,M : G → aut1(M) is required. To this end, we refine the model of the left
translation described in the proof of Theorem 3.1.

We first observe that the cohomology H∗(BU ;Q) is isomorphic to a polyno-
mial algebra with finite generators, say H∗(BU ;Q) ∼= Q[h1, ..., hl]. We consider a
commutative diagram of fibrations

G

i ��

G

��
G/U G×U EU≃

hoo //

π ��

EG
π
��

BU
Bι

// BG

in which h : G×U EU → G/U is a homotopy equivalence defined by h([g, e]) = [g].
This diagram yields a Sullivan model (∧W,d) forG/U which has the form (∧W,d) =
(∧(h1, ..., hl, x1, ..., xk), d) with dxj = (Bι)∗cj ; see [8, Proposition 15.16] for the
details. Moreover we have a model (∧VG, d) for G of the form (∧(x1, ...., xk), 0).
Since h ◦ i is nothing but the projection π : G → G/U , it follows that the natural
projection ρ : (∧(h1, ..., hl, x1, ..., xk), d) → (∧(x1, ...., xk), 0) is a Sullivan model for
the map π.

Let β : G × (G ×U EU ) → G ×U EG be the action of G on G ×U EU . Then
the left translation tr : G × G/U → G/U coincides with β up to the homotopy
equivalence h : (G ×U EU ) → G/U mentioned above. Thus in order to obtain
a model for the linear action, it suffices to construct a model for β. Recall the

fibration G → G ×U EU
π→ BU and the universal fibration G → EG

π→ BG. We
here consider a commutative diagram

(4.1) G× (G×U EU )β
ttiiiii

i
π′

��

1×f // G× EG

π′

��

α

wwooo
oo

G×U EU
f //

π

��

EG

π

��
BU

Bι
//

=

sshhhhh
hhhh

hh BG

=vvnnnn
nn

BU
Bι

// BG

in which π′ and π′ are fibrations with the same fibre G × G and the restrictions
α|fibre : G×G→ G and β|fibre : G× (G×U EU ) → (G×U EU ) are the multiplication

on G and the action of G, respectively. Let i : (∧VBG, 0) � ∧(ṼBU , d) be a Sullivan
model for Bι. In particular, we can choose such a model so that

∧ṼBU = ∧(c1, ...., cm)⊗ ∧(h1, ..., hl)⊗ ∧(τ1, ..., τm)
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and d(τi) = Bι(ci) − ci. By the construction of a model for pullback fibration
mentioned in [8, page 205], we obtain a diagram

(4.2) ∧Z ∧W ′v′oo

∧V
β̃ 66llllll ∧V ′voo

α̃ 55kkkkkk

∧ṼBU

u′
OO

∧VBGooioo

OO

∧ṼBU

= 77oooo
u

OO

∧VBGoo
i

oo
=

66mmmmm

OO

in which vertical arrows are Sullivan models for the fibrations in the diagram (4.1).
Observe that squares are commutative except for the top square. Let Ψ : ∧Z →
APL(G× (G×U EU )) be the Sullivan model with which Sullivan representatives in
(4.2) are constructed. The argument in [8, page 205] allows us to choose homotopies,

which makes maps v, β̃, v′ and α̃ Sullivan representatives for the corresponding
maps, so that all of them are relative with respect to ∧VBG. This implies that
Ψ ◦ β ◦ v ≃ Ψ ◦ v′ ◦ α̃ rel ∧VBG. By virtue of Lifting lemma [8, Proposition 14.6],

we have a homotopy H : β̃ ◦ v ≃ v′ ◦ α̃ rel ∧VBG. Thus we have a homotopy
commutative diagram

∧V ′ ⊗∧VBG
∧ṼBU

u·v //

α̃⊗1
��

∧V

β̃

��
∧W ′ ⊗∧VBG

∧ṼBU
u′·v′

// ∧Z

in which horizontal arrows are quasi-isomorphisms; see [8, (15.9) page 204]. In fact

the homotopy K : ∧ṼBU ⊗∧VBG
∧V ′ → ∧W ⊗ ∧(t, dt) is given by K = (β̃ ◦ u) ·H.

Observe that β̃ ◦ u = u′. Thus we have a model α̃ ⊗ 1 for β̃ and hence for the left
translation.

The model α̃ ⊗ 1 can be replaced by more tractable one. In fact, recalling

the model (ṼBU , d) for BU mentioned above, it is readily seen that the map s :

∧ṼBU → ∧VBU = ∧(h1, ..., hl), which is defined by s(ci) = (Bι)∗(ci), s(hi) = hi and
s(τj) = 0, is a quasi-isomorphism and is compatible with ∧VBG-action. Observe
that the Sullivan representative for Bι : BU → BG is also denoted by (Bι)∗. Thus
we have a commutative diagram

∧V ′ ⊗∧VBG ∧VBU

ζ:=α̃⊗1

��

∧V ′ ⊗∧VBG ∧ṼBU

α̃⊗1
��

1⊗soo

∧W ′ ⊗∧VBG
∧VBU ∧W ′ ⊗∧VBG

∧ṼBU
1⊗s
oo

in which the DGA maps 1⊗s are quasi-isomorphisms. As usual, the Lifting lemma
enables us to deduce the following lemma.

Lemma 4.1. The DGA map ζ := α̃ ⊗ 1 is a Sullivan representative for the left
translation tr : G×G/U → G/U .

In order to construct a model for tr more explicitly, we proceed to construct that
for α.
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Lemma 4.2. There exists a Sullivan representative ψ for α such that a diagram

∧(x1, ..., xl)⊗ ∧VBG

ψ

��

= ∧V ′

∧VBG
22

i1 22ffffffffffff
,,

i2
,,XXXXX

XXXXXX
X

∧(x1, ..., xl)⊗ ∧(x1, ..., xl)⊗ ∧VBG = ∧W ′

is commutative and ψ(xi) = xi ⊗ 1 ⊗ 1 + 1 ⊗ xi ⊗ 1 +
∑
nXn ⊗ X ′

nCn for some
monomials Xn ∈ ∧(x1, ..., xl), X ′

n ∈ ∧+(x1, ..., xl) and monomials Cn ∈ ∧+VBG.
Here i1 and i2 denote Sullivan models for p and p′, respectively.

Proof. We first observe that d(xi⊗1) = 0 and d(1⊗xi) = ci ∈ ∧(c1, ..., cl) = ∧VBG
in ∧W ′. It follows from [8, 15.9] that there exists a DGA map ψ which makes the
diagram commutative. We write

ψ(xi) = xi ⊗ 1⊗ 1 + 1⊗ xi ⊗ 1 +
∑
n

Xn ⊗X ′
nCn +

∑
n

X̃n ⊗ X̃ ′
n +

∑
n

X ′′
n ⊗ C ′′

n

with monomial bases, where Xn, X
′′
n ∈ ∧(x1, ..., xl)⊗1⊗1, X ′

n ∈ 1⊗∧+(x1, ..., xl)⊗
1, X̃n ⊗ X̃ ′

n ∈ ∧(x1, ..., xl) ⊗ ∧(x1, ..., xl) ⊗ 1 and Cn, C
′′
n ∈ ∧+VBG. The map

∧(x1, ..., xl) → ∧(x1, ..., xl) ⊗ ∧(x1, ..., xl) induced by ψ is a Sullivan representa-

tive for the product of G. This allows us to conclude that X̃n and X̃ ′
n are in

∧+(x1, ..., xl). Since ψ is a DGA map, it follows that

dxi = ψ(dxi) = dxi +
∑
n

Xn ⊗ d(X ′
n)Cn +

∑
n

X̃n ⊗ d(X̃ ′
n).

This implies that
∑
nXn ⊗ d(X ′

n)Cn = 0 and
∑
n X̃n ⊗ d(X̃ ′

n) = 0. Since the
map d : ∧+(x1, ..., xl) → ∧(x1, ..., xl) ⊗ ∧VBG is a monomorphism, it follows that∑
n X̃n ⊗ X̃ ′

n = 0. We write C ′′
n = cknin C̃n, where kn ≥ 1. Define a homotopy

H : ∧(x1, ..., xl)⊗ ∧VBG → ∧(x1, ..., xl)⊗ ∧(x1, ..., xl)⊗ ∧VBG ⊗ ∧(t, dt)
by H(ci) = ci ⊗ 1 and

H(xi) = xi ⊗ 1⊗ 1 + 1⊗ xi ⊗ 1 +
∑
n

Xn ⊗X ′
nCn

−
∑
n

X ′′
n ⊗ xin ⊗ ckn−1

in
C̃n ⊗ dt+

∑
n

X ′′
n ⊗ 1⊗ cknin C̃n ⊗ t.

Put ψ̃ = (ε0 ⊗ 1) ◦ ψ. We see that ψ̃ ≃ ψ rel ∧VBG. This completes the proof. �

5. Proof of Theorem 1.2

We prove Theorem 1.2 by means of the model for the left translation described
in the previous section.

Proof of Theorem 1.2. We adapt Theorem 3.1. We recall the Sullivan model (∧W,d)
for G/U mentioned in Section 4. Observe that (∧W,d) has the form

(∧W,d) = (∧(h1, ..., hl, x1, ..., xk), d)
with dxj = (Bι)∗cj .

Let l : (H∗(BU), 0) → (∧W,d) be the inclusion and

k : (∧W,d) // (∧(h1, ..., hl)/(dx1, ..., dxl), 0) // // (H∗(G/U), 0)
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the DGA map defined by k(hi) = (−1)τ(|hi|)hi and k(xi) = 0. Recall the DGA

Ẽ = ∧(∧W ⊗ (∧W )∗)/I and the DGA map µ̃ : Ẽ → ∧VG mentioned in Section 3,
where we use the model ζ : ∧W → ∧VG ⊗ ∧W for the action G × G/U → G/U
constructed in Lemmas 4.1 and 4.2 in order to define µ̃; see (3.1). Consider the
composite

θ : (H∗(BU) :H∗(G/U)) = ∧(H∗(BU)⊗H∗(G/U))/I

l⊗1−−−−→∧ (∧W ⊗H∗(G/U))/I
1⊗k♯−−−−→∧ (∧W ⊗ (∧W )∗)/I = Ẽ.

Let ũ : Ẽ → Q be an augmentation defined by ũ = ε ◦ µ̃, where ε : ∧VG → Q is the
augmentation. Then we that θ(Mu) ⊂Mũ. In fact, since i∗(hi) = (−1)τ(|hi|)k◦l(hi)
and ⟨hi, k♯b∗⟩ = ⟨ζhi, b∗⟩ for hi ∈ H∗(BU), it follows that

θ(hi ⊗ b∗ − u(hi ⊗ b∗)) = hi ⊗ k♯b∗ − ⟨i∗hi, b∗⟩
= hi ⊗ k♯b∗ − (−1)τ(|h|)⟨khi, b∗⟩
= hi ⊗ k♯b∗ − (−1)τ(|h|)⟨ζhi, b∗⟩
= hi ⊗ k♯b∗ − ũ(hi ⊗ k♯b∗).

Consider an element z := xit ⊗ 1∗ − (−1)τ(|ut∗|)xjt ⊗ k♯(ut∗) ∈ Q(Ẽ/Mũ). For

any α ∈ ∧W , ⟨α, d♯k♯ut∗⟩ = ⟨kdα, ut∗⟩ = 0. Therefore we see that, in Q(Ẽ/Mũ),

δ0(z) = dxit⊗1∗−(−1)τ(|ut∗|)dxjt⊗k♯(ut∗) = θ((Bι)∗(cit)⊗1∗−(Bι)∗(cjt)⊗ut∗) = 0.

The last equality follows from the assumption that (Bι)∗(cit) ⊗ 1∗ ≡ (Bι)∗(cjt) ⊗
ut∗ modulo decomposable elements in (H∗(BU) : H∗(G/U))/Mu. By using the
notation in Lemma 4.2, we see that

H∗Q(˜̃µ)(z) = ⟨ζxit , 1∗⟩ − ⟨ζxjt , k♯ut∗⟩

= ⟨xjt ⊗ 1, 1∗⟩ − ⟨
∑

Xn ⊗X ′
nCn, k

♯ut∗⟩

= xti −
∑

Xn⟨k(X ′
n)Cn, ut∗⟩ = xit .

Observe that k(X ′
n) = 0. By virtue of Theorem 3.1, we have the result. �

Remark 5.1. As for the latter half of Theorem 3.1, namely, in the case where
(Bι)∗(ci1), ..., (Bι)∗(cis) are decomposable, we have a very simple proof of the
assertion. In fact, the composite of the evaluation map ev0 : aut1(G/U) → G/U
and the map λ : G → aut1(G/U) is nothing but the projection π : G → G/U .
We consider the model η : (∧W,d) → (∧VG, 0) for π mentioned in the proof of
Theorem 1.2. Then we see thatHQ(ρ)(xit) = xit for the mapHQ(ρ) : HQ(∧W ) →
HQ(∧VG) = VG. Observe that xit ∈ HQ(∧W ) since (Bι)∗(cit) is decomposable.
The same argument as the proof of Theorem 3.1 enables us to conclude that there

is a map ρ : ×st=1S
deg cit−1 → G such that π∗ ◦ ρ∗ : π∗(×st=1S

deg cit−1

Q ) → π∗(GQ)
is injective. Thus λ∗ ◦ ρ∗ is injective in the rational homotopy.

Remark 5.2. In the proof of Theorem 1.2, we construct a model for G of the form
(∧(x1, ...., xk), 0). By virtue of [8, Proposition 15.13], we can choose the elements

xj so that σ∗(cj) = xj , where σ∗ : H∗(BG)
π∗

// H∗(EG, G) H∗(G)
δ
∼=

oo denotes

the cohomology suspension.
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In the rest of this section, we describe a suitable model for F(G/U, (G/K)Q; e◦p)
for proving Theorems 1.5 and 1.6.

Let G be a connected Lie group, U a connected maximal rank subgroup and
K another connected maximal rank subgroup which contains U . We recall from
Section 2 a Sullivan model for the connected component F(G/U, (G/K)Q; e ◦ p)
containing the composite e ◦ p of the function space F(G/U, (G/K)Q), where e :
G/K → (G/K)Q is the localization map.

Let ι1 : K → G and ι2 : U → K be the inclusions and put ι = ι1 ◦ ι2.
Let φU : (∧W ′, d)

≃→ Ω∆(G/U) and φK : (∧W̃ , d)
≃→ Ω∆(G/K) be the Sul-

livan models for G/U and G/K, respectively, mentioned in the proof of Theo-
rem 1.2; that is, (∧W ′, d) = (∧(h1, ..., hl, x1, ..., xk), d) with d(xi) = (Bι)∗(ci) and

(∧W̃ , d) = (∧(e1, ..., es, x1, ..., xk), d) with d(xi) = (Bι1)
∗(ci). By applying Lifting

Lemma to the commutative diagram

∧VBK
(Bι2)

∗
//

��

��

∧VBU // // ∧W ′

φU

��
∧W̃

φK

// Ω∆(G/K)
Ω∆(p)

// Ω∆(G/U),

we have a diagram

(5.1) H∗(G/U) ∧W ′
≃

//k

≃
oo Ω∆(G/U)

H∗(G/K)

p∗

OO

∧W̃ ≃ //

φ

OO

l

≃oo Ω∆(G/K)

Ω∆(p)

OO

in which the right square is homotopy commutative and the left that is strictly
commutative. In particular, k(xi) = 0, l(xi) = 0 and φ(ei) = (Bι2)

∗ei.

Let w : ∧W → ∧W̃ be a minimal model for (∧W̃ , d) and k♯ : (H∗(G/U))♯ →
(∧W ′)♯ the dual to the map k.

As in Remark 2.5(ii), we construct the DGA E′ by using (∧W ′, d) = (B, dB)
and (∧W,d). Then we have a sequence of quasi-isomorphisms

E′ γ:=1⊗k♯

≃
// ∧(∧W ⊗ (∧W ′)∗)/I

w⊗1

≃
// ∧(∧W̃ ⊗ (∧W ′)∗)/I = Ẽ.

Moreover, we choose a model ζ ′ for the action G × G/U
tr→ G/U

p→ G/K defined

by the composite ζ ′ : ∧W̃ ζ→ ∧VG ⊗ ∧W̃ 1⊗φ→ ∧VG ⊗ ∧W ′, where ζ is the Sullivan
representative for the left translation tr mentioned in Lemmas 4.1 and 4.2. Then
the map ζ ′ deduces a model

(5.2) ˜̃µ : E′/Mu → ∧VG

for λ : G→ F(G/U, (G/K)Q; e ◦ p) as in Theorem 3.1. Observe that

(5.3) µ̃(vi ⊗ ej) = (−1)τ(|ej |)⟨(1⊗ φ)ζw(vi), k
♯ej⟩ and u = ε ◦ µ̃,

where ε : ∧VG → Q denotes the augmentation. In the next section, we shall prove

Theorem 1.5 by using the model ˜̃µ : E′/Mu → ∧VG.
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6. Proof of Theorem 1.5

Let G and U be the Lie group U(m + k) and a maximal rank subgroup of the
form U(m1) × · · · × U(ms) × U(k), respectively. Without loss of generality, we
can assume that m1 ≥ · · · ≥ ms ≥ k. Let K be the subgroup U(m) × U(k)
of U , where m = m1 + · · · + ms. Then the Leray-Serre spectral sequence with
coefficients in the rational field for the fibration p : G/U → G/K with fibre K/U
collapses at the E2-term because the cohomologies of G/K and of K/U are algebras
generated by elements with even degree. Therefore it follows that the induced map
p∗ : H∗(G/K) → H∗(G/U) is a monomorphism. In order to prove Theorem 1.5,
we apply Theorem 3.1 to the function space F(G/U,G/K, p).

Let P = {S1, ..., Sn} be a family consisting of subsets of the finite ordered set
{1, ..., s} which satisfies the condition that x < y whenever x ∈ Si and y ∈ Si+1.
Define ♯lP to be the number of elements of the set {Sj ∈ P | |Sj | = l}. Let k
be a fixed integer. We call such the family P a (i1, ..., ik)-type block partition of

{1, ..., s} if ♯lP = il for 1 ≤ l ≤ k. Let Q
(s)
i1,...,ik

denote the number of (i1, ..., ik)-type

block partitions of {1, ..., s}.
We construct a minimal model explicitly for the homogeneous space U(m +

k)/U(m)× U(k). Assume that m ≥ k. As in the proof of Theorem 1.2, we have a
Sullivan model for U(m+ k)/U(m)× U(k) of the form

(∧W̃ , d) = (∧(τ1, ...., τm+k, c1, ..., ck, c
′
1, ..., c

′
m), d)

with dτl =
∑
i+j=l c

′
icj .

Lemma 6.1. There exists a sequence of quasi-isomorphisms

∧W̃ ∧W(1)
≃oo · · ·≃oo ∧W(s)

≃oo · · ·≃oo ∧W(m)
≃oo

in which, for any s, (∧W(s), d(s)) is a DGA of the form

∧W(s) = ∧(τs+1, ...., τm+k, c1, ..., ck, c
′
s+1, ..., c

′
m) with

d(s)τl = c′l + c′l−1c1 + · · ·+ c′s+1cl−(s+1)

+
∑

i1+2i2+···+kik=s

(−1)i1+···+ikQ
(s)
i1,...,ik

ci11 · · · cikk cl−s

+
∑

i1+2i2+···+kik=s−1

(−1)i1+···+ikQ
(s−1)
i1,...,ik

ci11 · · · cikk cl−(s−1)

+ · · ·+ (−c1)cl−1 + cl

for s+ 1 ≤ l ≤ m+ k, where ci = 0 for i < 0 or i > k.

Proof. We shall prove this lemma by induction on the integer s. We first observe

that dτ2 = c′2−c1c1+c2 in ∧W(1) because Q
(1)
i1

= 1. Define a map φ : ∧W(1) → ∧W̃
by φ(ci) = ci, φ(c

′
j) = c′j and φ(τ2) = τ2 − τ1c1. Since dτ1 = c′1 + c1 in ∧W , it

follows that φ is a well-defined quasi-isomorphism. Suppose that (∧W(s), d(s)) in
the lemma can be constructed for some s ≤ m− 1. In particular, we have

d(s)τs+1 = c′s+1 +
∑

0≤j≤s

∑
i1+2i2+···+kik=j

(−1)i1+···+ikQ
(j)
i1,...,ik

ci11 · · ·+ cikk cs+1−j .

Claim 1.

Q
(s+1)
i1,...,ik

= Q
(s)
i1−1,i2,...,ik

+Q
(s−1)
i1,i2−1,...,ik

+ · · ·+Q
(s+1−k)
i1,...,ik−1.
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Claim 1 implies that

d(s)τs+1 = c′s+1 −
∑

i1+2i2+···+kik=s+1

(−1)i1+···+ikQ
(s+1)
i1,...,ik

ci11 · · · cikk .

We define d(s+1)τl+1 in ∧W(s+1) by replacing the factor c′s+1 which appears in
d(s)τl+1 with c′s+1 − d(s)τs+1, namely,

d(s+1)τl+1 = c′l+1 + c′lc1 + · · ·+ c′s+2c(l+1)−(s+2)

+
∑

i1+2i2+···+kik=s+1

(−1)i1+···+ikQ
(s+1)
i1,...,ik

ci11 · · · cikk cl−s

+ · · ·+ (−c1)cl + cl+1.

Moreover define a map φ : ∧W(s+1) → ∧W(s) by φ(ci) = ci, φ(c
′
j) = c′j and

φ(τl+1) = τl+1 − τs+1cl+1−(s+1). It is readily seen that φ is a well-defined DGA
map. The usual spectral sequence argument enables us to deduce that φ is a quasi-
isomorphism. This finishes the proof. �
Proof of Claim 1. Let {Pl} denote the family of all (i1, ..., ik)-type block partitions

of {1, ..., s + 1}. We write Pl = {S(l)
1 , ..., S

(l)
n(l)}. Then {Pl} is represented as the

disjoint union of the families of (i1, ..., ik)-type block partitions whose last sets S
(l)
n(l)

consist of j elements, namely, {Pl} = ⨿1≤j≤k{Pl | |Sn(l)| = j}. It follows that∣∣∣{Pl | |Sn(l)| = j}
∣∣∣ = Q

(s+1−j)
i1,...,ij−1,ij−1,ij+1,...,ik

.

We have the result. �
Recall the minimal model (∧W(m), d) for G/K in Lemma 6.1. We see that

deg dτm+1 = deg cm1 c1 = 2(m+1) and that dα = 0 for any element α with degα ≤
2m + 1. This yields that cm1 ̸= 0 in H∗(G/K;Q). As mentioned before Lemma
6.1, the induced map p∗ : H∗(G/K) → H∗(G/U) is injective. Therefore we have
(p∗c1)

s ̸= 0 for s ≤ m.

Let ˜̃µ : Ẽ/Mu → ∧VG be the model for the map λ : G→ F(G/U, (G/K)Q; e ◦ p)
mentioned in the previous section; see (5.2) and (5.3). The following four lemmas
are keys to proving Theorem 1.5. The proofs are deferred to the end of this section.

Lemma 6.2. δ0(τm+(m−s+1) ⊗ ((p∗c1)
m)∗) = (−1)mcm−s+1 if m ̸= s.

Lemma 6.3. ˜̃µ(τm+(m−s+1) ⊗ ((p∗c1)
m)∗) = 0 if m ̸= s.

Lemma 6.4. δ0(τm+1 ⊗ ((p∗c1)
s)∗) = (−1)sscm−s+1.

Lemma 6.5. ˜̃µ(τm+1 ⊗ ((p∗c1)
s)∗) = τm−s+1.

Proof of Theorem 1.5. By virtue of Lemmas 6.2, 6.3, 6.4 and 6.5, we have

δ0((−1)mτm+(m−s+1) ⊗ ((p∗c1)
m)∗ −

(−1)s

s
τm+1 ⊗ ((p∗c1)

s)∗)

= (−1)m(−1)mcm−s+1 −
(−1)s

s
(−1)sscm+s−1 = 0 and

˜̃µ((−1)mτm+(m−s+1) ⊗ ((p∗c1)
m)∗ −

(−1)s

s
τm+1 ⊗ ((p∗c1)

s)∗)

= − (−1)s

s
τm−s+1,
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where s ≤ m− 1. Theorem 3.1 implies that

(λQ)i : πi(GQ) → πi(F(G/U, (G/K)Q, e ◦ p))

is injective for i = deg τ1, ...,deg τm. Since dτl =
∑
i+j c

′
icj in (∧W ), it follows that

dτl is decomposable for l ≥M +1. Therefore Theorem 1.2 yields that (λQ)i is also
injective for i = deg τm+1, ...,deg τm+k.

The latter half of Theorem 1.5 is obtained by comparing the dimension of rational
homotopy groups. In fact, it follows from the rational model for aut1(CPm−1)
mentioned in Example 2.4 that

π∗(aut1(CPm−1)⊗Q)♯ ∼= H∗(Q(Ẽ/Mu), δ0)
∼= Q{y ⊗ 1∗, y ⊗ (x1)∗, ..., y ⊗ (xm−2)∗}.

This implies that dimπi(aut1(CPm−1)) ⊗ Q = 1 = dimπi(SU(m)) ⊗ Q for i =
3, ..., 2m− 1. The result follows from the first assertion. This completes the proof.

�
We conclude this section with proofs of Lemmas 6.2, 6.3, 6.4 and 6.5.

Proof of Lemma 6.2. We regard the free algebra ∧(c1, ..., cl) as a primitively gener-
ated Hopf algebra. Observe that (csi )∗ = 1

s! ((ci)∗)
s. Recall the 0-simplex u in ∆E′

mentioned in (5.3). We have u(cj ⊗ (p∗c1)∗) = 0 if j ̸= 1 and

u(c1 ⊗ (p∗c1)∗) = (−1)τ(|p
∗(c1)|)k♯(p∗(c1)∗)(φ ◦ w(c1))

= (−1)((p∗(c1)∗)k ◦ φ ◦ w(c1) = (−1)((p∗(c1)∗)p
∗c1) = −1.

For the map k and q, see the diagram (5.1) and the ensuing paragraph. Thus it
follows that

δ0(τm+(m−s+1) ⊗ ((p∗c1)
m)∗)

= cm1 cm−s+1 ·D(m)(p∗cm1 )∗ = cm1 cm−s+1 ·
1

m!
D(m)(p∗c1)

m
∗

=
1

m!
cm1 cm−s+1 ·

(
(p∗c1)∗ ⊗ 1⊗ · · · ⊗ 1 + 1⊗ (p∗c1)∗ ⊗ 1⊗ · · · ⊗ 1

+ · · ·+ 1⊗ · · · ⊗ 1⊗ (p∗c1)∗

)m
=

1

m!
cm1 cm−s+1 · (· · ·+m!(p∗c1)∗ ⊗ · · · ⊗ (p∗c1)∗ ⊗ 1 + · · · )

= u(c1 ⊗ (p∗c1)∗) · · ·u(c1 ⊗ (p∗c1)∗)cm−s+1 = (−1)mcm−s+1.

�

Proof of Lemma 6.3. Recall the quasi-isomorphism φs+1 : ∧W(s+1) → ∧W(s) in
the proof of Lemma 6.1 which is defined by φ(τl+1) = τs+1 − τl+1cl+1−(s+1). Let w

denote the composite φ1 ◦ · · · ◦ φm : ∧W = ∧W(m) → ∧W̃ . It is readily seen that
w(τm+(m−s+1)) does not have the element cm1 as a factor if s ̸= m. Hence using the
DGA map ζ ′ in Lemma 4.1, we have˜̃µ(τm+(m−s+1)⊗((p∗c1)

m)∗) = (−1)τ(|p
∗cm1 |)⟨(1⊗φ)ζw(τm+(m−s+1)), k

♯(p∗cm1 )∗⟩ = 0.

See (5.1) for the notations. Observe that H∗(G/K) ∼= H∗(∧W ) ∼= Q[c1, ..., ck] for
∗ ≤ 2m. This completes the proof. �
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Proof of Lemma 6.4. From Lemma 6.1, we see that in ∧W(m),

dτm+1 =
∑

i1+2i2+···+kik=m

(−1)i1+···+ikQ
(m)
i1,...,ik

ci11 · · · cikk c1

+
∑

i1+2i2+···+kik=m−1

(−1)i1+···+ikQ
(m−1)
i1,...,ik

ci11 · · · cikk c2

+ · · ·+
∑

i1+2i2+···+kik=l

(−1)i1+···+ikQ
(l)
i1,...,ik

ci11 · · · cikk cm−l+1

+ · · ·
Suppose that ci11 · · · cikk cm−l+1 ⊗ ((p∗c1)

s)∗ ̸= 0 in Q(Ẽ/Mu), where i1 + 2i2 +
· · · kik = l. Then we have
(1) l = m and ci11 · · · cikk = cs−1

1 cm−s+1 or

(2) l ̸= m, l = s and ci11 · · · cikk = cs1.

It follows that (−1)i1+···+ikQ
(m)
i1,...,ik

cs−1
1 cm−s+1c1 = (−1)s−1+1(s − 1)cs1cm−s+1 if

(i1, ..., ik) = (s− 1, 0, ..., 0, 1, 0, ..., 0) with im−s+1 = 1 and that Q
(s)
i1,...,ik

cs1cm−s+1 =

(−1)s · 1 · cs1cm−s+1 if (i1, ..., ik) = (s, 0, ..., 0). This fact allows us to conclude that
δ0(τm+1 ⊗ ((p∗c1)

s)∗) = (−1)s(s− 1)cm−s+1 + (−1)scm−s+1 = (−1)sscm−s+1. We
have the result. �
Proof of Lemma 6.5. In order to compute ˜̃µ, we determine ⟨(1⊗φ)ζw(τm+1), k

♯(p∗cs1)∗⟩.
With the the same notation as in the proof of Lemma 6.3, we have w(τm+1) =
· · ·+ (−1)sτm−s+1c

s
1 + · · · . Lemmas 4.1 and 4.2 imply that

ζ(τm−s+1c
s
1) = ψ ⊗ 1(τm−s+1 ⊗ cs1)

= (τm−s+1 ⊗ 1⊗ 1 + 1⊗ τm−s+1 ⊗ 1 +
∑
n

Xn ⊗X ′
nCn)c

s
1.

Thus it follows that˜̃µ(τm+1 ⊗ ((p∗c1)
s)∗) = (−1)τ(|p

∗cs1|)⟨(1⊗ φ)ζw(τm+1), k
♯(p∗cs1)∗⟩

= (−1)s+s⟨(1⊗ φ)ζ(τm−s+1c
s
1), k

♯(p∗cs1)∗⟩
= τm−s+1⟨φ(cs1), k♯(p∗cs1)∗⟩+ ⟨φ(τm−s+1c

s
1), k

♯(p∗cs1)∗⟩
+
∑
n

Xn⟨φ(X ′
nCnc

s
1), k

♯(p∗cs1)∗⟩

= τm−s+1⟨kφ(cs1), (p∗cs1)∗⟩+ ⟨kφ(τm−s+1c
s
1), (p

∗cs1)∗⟩
+
∑
n

Xn⟨kφ(X ′
nCnc

s
1), (p

∗cs1)∗⟩

= τm−s+1.

The last equality is extracted from the commutativity of the diagram (5.1). This
completes the proof. �

7. Proof of Theorem 1.7.

This section is devoted to proving Theorem 1.7. The inclusion ι : aut1(X) →
HH,X induces the map Bι : Baut1(X) → BHH,X withBι◦BλG,X = Bψ. Therefore
if Bψ is injective on homology, then so is BλG,X .

We shall prove the “only if” part by using the general categorical construction
of a classifying space due to May [19, Section 12] and by applying a part of the
argument in the proof of [20, Theorem 3.2] to our case.
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We here recall briefly the notion of a O-graph; see [20, page 68] for more detail.
Let O be a discrete topological space. Define a O-graph to be a space A together
with maps S : A → O and T : A → O. The space O itself is regarded as O-graph
with arrows S and T the identity map. Let OGr be the category of O-graphs whose
morphisms are maps h : A → A′ compatible with maps S and T . Observe that the
pullback construction with respect to S and T makes OGr a monoidal category. In
fact, for O-graphs A and A′, A2A′ is defined by {(a, a′) ∈ A×A′|Sa = Ta′}. Let
X and Y be a left O-graph and a right O-graph, respectively; that is, X is a space
with a map T : X → O and the space Y admits only a map S : Y → O.

Let M be a monoid in OGr the category of O-graphs and B(Y,M,X ) denote
the two-sided bar construction in the sense of May [19, Section 12], which is the
geometric realization of the simplicial space B∗ with Bj = Y2M2j2X . We regard
a topological monoid G as that in OGr with O = {x} the space of a point. Then the
classifying space BG we consider here is regarded as the bar construction B(x,G, x).

Proof of the “only if” part of Theorem 1.7. Let ι′ : HH,X → F(X,X) be the
inclusion and e∗ : F(X,X) → F(X,XQ) the map induced by the localization
e : X → XQ. Since X is an F0-space or a space having the rational homotopy
type of the product of odd dimensional spheres by assumption, it follows from
[2, 3.6 Corollary] and [8, Proposition 32.16] that the natural map [X,XQ] →
Hom(H∗(XQ;Q), H∗(X;Q)) is bijective. We see that e ◦ φ ≃ e for any φ ∈
HH,X Therefore the composite e∗ ◦ ι′ factors through the connected component
F(X,XQ; e) of F(X,XQ). We have a commutative diagram

HH,X e∗◦ι′
**VVVV

VV

F(X,XQ; e) aut1(XQ)
e∗

≃
oo

aut1(X) e∗

44hhhhh
ι

OO

in which the induced map e∗ is a homotopy equivalence.
Define O to be the discrete space with two points x and y. Let M be the

monoid inOGr defined byM(x, x) = aut1(X),M(y, y) = aut1(XQ) andM(x, y) =
F(X,XQ; e) with M(y, x) empty. Arrows S, T : M(a, b) → O are defined by
S(z) = a and T (z) = b for z ∈ M(a, b). Moreover we define another monoid M′

in OGr by M′(x, x) = HH,X , M′(y, y) = aut1(XQ), M′(x, y) = F(X,XQ; e) and
M′(y, x) = ϕ with arrows defined immediately as mentioned above.

The inclusions i : aut1(X) → M, j : aut1(XQ) → M, i′ : HH,X → M′ and
j′ : aut1(XQ) → M′ induce the maps between classifying spaces which fit into the
commutative diagram

(7.1) BHH,X
Bi′ // B(O,M′,O)

BG

Bψ 66lllll

BλG,X

((RRR
RR Baut1(XQ),

≃
Bj′jjVVVV

≃
Bj

tthhhh

Baut1(X)
Bi

//

Bι

OO

B(O,M,O)

Bι̃

OO

where ι̃ : M → M′ is the morphism of monoids in OGr induced by the inclusion
ι : aut1(X) → HH,X . The proof of [20, Theorem 3.2] enables us to conclude
that maps Bj and Bj′ are homotopy equivalences. The map Ω((Bj)−1 ◦ (Bi))
coincides with the composite (e∗)−1 ◦ e∗ : aut1(X) → F(X,XQ; e) → aut1(XQ) up
to weak equivalence; see [20, Theorem 3.2(i)]. Moreover the map e∗ : aut1(X) →
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F(X,XQ; e) is a localization; see [13]. These facts yield that π∗(ΩBi) ⊗ Q is an
isomorphism and hence so is π∗(Bi)⊗Q. Thus the localized map (Bi)Q is a weak
equivalence. This implies that (Bi)∗ : H∗(Baut1(X);Q) → H∗(B(O,M,O);Q)
is an isomorphism. The commutative diagram (7.1) enables us to conclude that
H∗(Bψ;Q) is injective if so is H∗(BλG,X ;Q). This completes the proof. �

As we pointed out in the introduction, [16, Proposition 4.8] follows from The-
orems 1.5 and 1.7. In fact, suppose that M is the flag manifold U(m)/U(m1) ×
· · · × U(ml) and G = SU(m). Then as is seen in Remark 7.1 below (λG,M )∗ :
π∗(BG)⊗Q → π∗(Baut1(M))⊗Q is injective if and only if (BλG,M )∗ : H∗(BG) →
H∗(Baut1(M)) is surjective.

Remark 7.1. Suppose that M is a homogeneous space of the form G/H for which
rank G = rank H. The main theorem in [31] due to Shiga and Tezuka implies
that π2i(aut1(M)) ⊗ Q = 0 for any i. Thus H∗(Baut1(M);Q) is a polynomial
algebra generated by the graded vector space (sV )♯, where (sV )l = πl−1(aut1(M)).
Therefore the dual map to the Hurewicz homomorphism Ξ♯ : H∗(Baut1(M);Q) →
Hom(π∗(Baut1(M)),Q) induces an isomorphism on the vector space of indecom-
posable elements; see [8, page 173] for example. Thus the commutative diagram

H∗(BG;Q)

Ξ♯

��

H∗(Baut1(M);Q)
(BλG,M )∗oo

Ξ♯

��
Hom(π∗(BG),Q) Hom(π∗(Baut1(M)),Q)

((BλG,M )∗)
♯

oo

yields that the map (BλG,M )∗ is surjective if G is rationally visible in aut1(M).

8. A function space model description of the Kedra-McDuff
µ-classes

In this section, H∗(−) denotes the cohomology with coefficients in rational field
unless otherwise explicitly mentioned. In order to define µ-classes due to Kedra
and McDuff, we first recall the coupling class.

Let M be a k-dimensional manifold. Consider the Leray-Serre spectral sequence

{Er, dr} for a fibration M
i→ E

π→ B for which π1(B) act trivially on Hk(M) = Q.
Let {F pH∗}p≥0 denote the filtration of {Er, dr}. Then the integration along the
fibre (the cohomology push forward) π! : Hp+k(E) → Hp(B) is defined by the
composite

Hp+k(E;Q) = F 0Hp+k = F pHp+k � Ep,q∞ � · · · � Ep,q2
∼= Hp(B;Hk(M ;Q))

∼= ��
Hp(B;Q).

Let (M,a) be a 2m-dimensional c-symplectic manifold and G denote the monoid Ha

or aut1(M). LetM
i→MG

π→ BG be the universalM -fibration; see [19, Proposition
7.9]. Proposition 8.1 below follows from the proofs of [15, Proposition 2.4.2] and
[16, Proposition 3.1].

Proposition 8.1. Suppose that H1(M) = 0, then the element a ∈ H2(M) is
extendable to an element a ∈ H2(MG). Moreover, there exists a unique element
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ã ∈ H2(MG) that restricts to a ∈ H2(M) and such that π!(ãm+1) = 0. In fact the
element ã has the form

ã = a− 1

n+ 1
π∗π!(am+1).

The class ω̃ in Proposition 8.1 is called the coupling class.

Definition 8.2. [16, Section 3.1] [15, Section 2.4] [29] We define µk ∈ H2k(BG),
which is called kth µ-class, by

µk := π!(ãm+k),

where ã is the coupling class.

Remark 8.3. Let (Ha)1 be the identity component of the group Ha of diffeomor-
phisms which fix the class a. The naturality of the integration along the fibre
implies that the kth Kedra-McDuff µ-class of B(Ha)1 is extendable to the class µk
in H2k(Baut1(M)).

In order to prove Theorem 1.8, we first introduce a spectral sequence. Let
C∗(X) denote the normalized chain complex of a space X. By definition, the
total space Maut1(M) of the universal M -fibration is regarded as the realization
|B∗(∗, aut1(M),M)| of the geometric bar construction B∗(∗, aut1(M),M), which
is a simplicial topological space with Bi(∗, aut1(M),M) = ∗ × aut1(M)×i ×M ;
see [19, Proposition 7.9]. The result [19, Theorem 13.9] allows us to obtain natural
quasi-isomorphisms which connect with C∗(|B(∗, aut1(M),M)|) and the algebraic
bar construction of the form B(C∗(∗), C∗(aut1(M)), C∗(M)) for which

B(C∗(∗), C∗(aut1(M)), C∗(M))k = ⊕i+j=k(C∗(∗)⊗ C∗(aut1(M))⊗i ⊗ C∗(M))j .

Moreover the Eilenberg-Zilber map gives rise to a quasi-isomorphism from the bar
complex to the total complex TotalC∗(B∗(∗, aut1(M),M)). Observe that

totalC∗(B∗(∗, aut1(M),M))k = ⊕i+j=kCjBi(∗, aut1(M),M).

In consequence, by virtue of [8, Corollary 10.10], we have natural quasi-isomorphisms
which connect C∗(Maut1(M)) = C∗(|B∗(∗, aut1(M),M)|) with the total complex of

a double complex B = {Bi,j , di, δj} of the form

Bi,j =
(
APL(aut1(M)×i ×M)

)j
.

In particular, d0 : B0,∗ → B1,∗ is regarded as the map

(pr2)
∗ − ev∗ : APL(M) → APL(aut1(M)×M),

where the maps pr2 and ev form aut1(M)×M →M toM are the second projection
and the evaluation map, respectively.

We define a double complex C = {Ci,j , di, δj} by truncating the double complex
{Bi,j} for i ≥ 2; that is, Ci,j = Bi,j for i ≤ 0, 1 and Ci,j = 0 for i ≥ 2.

Let {Er, dr} be the Eilenberg-Moore spectral sequence converging toH∗(Maut1(M))
with

E∗,∗
2

∼= Cotor∗,∗H∗(aut1(M))(Q,H
∗(M))

as an algebra. Observe that this spectral sequence is constructed with the double

complex B. The double complex C gives rise to a spectral sequence {Ẽr, d̃r} con-
verging to H∗(Total(C)) . Moreover, we see that the projection q : B → C induces
the morphism of the spectral sequences

{qr} : {Er, dr} → {Ẽr, d̃r}
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and the morphism q̂ : H∗(Maut1(M)) → H∗(Total(C)) of algebras.

Lemma 8.4. For any α ∈ H∗(Maut1(M)), q̂(α) = 0 if and only if α ∈ F 2H∗.
Here {F pH∗}p≥0 denotes the filtration of H∗(Maut1(M)) associated with the spectral
sequence {Er, dr}.

Proof. By construction, we see that q2 : Ep,∗2 → Ẽp,∗2 is bijective for p = 0 and

injective for p = 1. Since the truncated spectral sequence {Ẽr, d̃r} collapses at the
E1-term, it follows that the map qp,∗r for 3 ≤ r ≤ ∞ and p ≤ 2 is injective. This
completes the proof. �

Let (∧V, d) ≃→ APL(M) be a minimal model for M . Recall from Proposition 2.3
the DGA map m(ev) which is a model for the evaluation map. Observe that, in
the construction of the Brown-Szczarba model E/Mu, the identity map of ∧V is
chosen as a Sullivan representative for the identity map of M ; see (2.8). Then we
have a commutative diagram

APL(M)
d0 // APL(aut1(M)×M)

APL(aut1(M)×M)⊗ ∧(t, dt)
ε0 ≃

OO

ε1 ≃
��

APL(aut1(M)×M)

∧V

≃α

OO

(pr2)
∗◦α−H

88qqqqqqqqqqqqqqqqqqqq

s−m(ev)
//

s−(r⊗1)◦m(ev) ++VVVV
VVVV

VVVV
VVVV E/Mu ⊗ ∧V

≃
OO

r⊗1 ≃
��

∧Z ⊗ ∧V,

where H : ∧V → APL(aut1(M) ×M) ⊗ ∧(t, dt) denotes the homotopy between
the model m(ev) for the evaluation map ev and the induced map APL(ev) up to
quasi-isomorphisms, r : (E/Mu, δ) → (∧Z, δ) is a retraction to a minimal model
(∧Z, δ) for aut1(M) and s stands for the inclusion into the second factor.

Let D be the double complex associated with the DGA map

s− (r ⊗ 1) ◦m(ev) : (∧V, d∧V ) → (∧Z, δ)⊗ (∧V, d∧V ).

The usual spectral sequence argument allows us to conclude that H∗(totalC) ∼=
H∗(totalD) as an algebra. By using this identification, we shall prove Theorem 1.8.

Proof of Theorem 1.8. We take a minimal model of the form (∧V, d) = (∧(y, a), d)
with d(y) = am+1. Recall from Example 2.4 the model (E/Mu, δ); that is,

E/Mu = ∧(a⊗ 1∗, y ⊗ (as)∗; 0 ≤ s ≤ m),

δ(a ⊗ 1∗) = 0 and δ(y ⊗ (as)∗) = (−1)s
(
m+ 1
s

)
(a ⊗ 1∗)

m+1−s. Therefore we

can define a retraction

r : E/Mu
≃→ (∧Z, d) =

(
∧ (y ⊗ 1∗, y ⊗ (a)∗, ..., y ⊗ (am−1)∗), 0

)
by r(a⊗ 1∗) = 0 = r(y ⊗ (am)∗). Thus we have

H∗(aut1(M)) ∼= ∧(y ⊗ 1∗, y ⊗ (a)∗, ..., y ⊗ (am−1)∗).
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This yields that, in the Leray-Serre spectral sequence for the universal fibration

aut1(M) → Eaut1(M)
π′

→ Baut1(M), the element y ⊗ (am−i)∗ is transgressive for
1 ≤ i ≤ m. In fact we have a commutative diagram

π∗(aut1(M))♯
δ♯

∼=
// π∗+1(Eaut1(M), aut1(M))♯ π∗+1(Baut1(M))♯

π′
∗
♯

∼=
oo

H∗(aut1(M))
δ
∼=

//

h♯
G

OO

H∗+1(Eaut1(M), aut1(M))

(−1)∗+1h♯

OO

H∗+1(Baut1(M)),

(−1)∗+1h♯
BG

OO

π′∗
oo

where hG, h and hBG denote the duals to Hurewicz maps. Since H∗(aut1(M))
and H∗(Baut1(M)) are exterior algebra and a polynomial algebra, respectively, it
follows that hG and hBG are isomorphisms on subvector spaces of indecomposable
elements. Thus we see that the element y ⊗ (am−i)∗ is transgressive because the
map δ−1π∗ is the transgression by definition. Hence the element y ⊗ (am−i)∗ is
primitive for 1 ≤ i ≤ m; see [25, Section 7 (2.27)].

Let {Êr, d̂r} be the Eilenberg-Moore spectral sequence converging to the coho-

mology H∗(Baut1(M)) with Ê∗,∗
2

∼= Cotor∗,∗H∗(aut1(M))(Q,Q). Since the element

y ⊗ (am−i)∗ is primitive for 1 ≤ i ≤ m, it follows that

Ê∗,∗
2 = Q

[
[y ⊗ 1∗], [y ⊗ (a)∗], ..., [y ⊗ (am−1)∗]

]
,

where bideg [y ⊗ (am−i)∗] = (1, 2i+ 1). This implies that, as algebras,

H∗(Baut1(M)) ∼= Total(Ê∗,∗
2 ) ∼= Q

[
[y ⊗ 1∗], [y ⊗ (a)∗], ..., [y ⊗ (am−1)∗]

]
.

Recall the Eilenberg-Moore spectral sequence {Er, dr} converging toH∗(Maut1(M)).
We see that

E∗,∗
2

∼= Cotor∗,∗H∗(aut1(M))(Q,H
∗(M))

∼= Q
[
[y ⊗ 1∗], ..., [y ⊗ (am−1)∗]

]
⊗Q[[ ]a]/

(
([ ]a)m+1

)
as algebras. For dimensional reasons, we see that the spectral sequence {Er, dr}
collapses at the E2-term. Let M

i→ Maut1(M)
π→ Baut1(M) be the universal

M -fibration. The naturality of the spectral sequence enables us to conclude that
π∗([y ⊗ (am−i)∗]) = [y ⊗ (am−i)∗] in H∗(Maut1(M)). In the total complex D, we
have

(d∧V ± (s− (r ⊗ 1) ◦m(ev)))y = d∧V (y) + (−1)deg y(s− (r ⊗ 1) ◦m(ev))(y)

= ([ ]a)m+1 +

m∑
i=1

(−1)m−i[y ⊗ (am−i)∗]⊗ am−i.

This implies that q̂
(
([ ]a)m+1 +

∑m
i=1(−1)m−i[y ⊗ (am−i)∗] ⊗ ([ ]a)m−i) = 0 in

H∗(Total(C)). Therefore it follows form Lemma 8.4 that

([ ]a)m+1 ≡
m∑
i=1

(−1)m−i+1[y ⊗ (am−i)∗]⊗ ([ ]a)m−i

modulo the ideal generated by π∗(H+(Baut1(M)))·π∗(H+(Baut1(M))) inH
∗(Maut1(M)).

Since π!(([ ]a)m+1) = 0, we can choose the element ([ ]a) as the coupling class ã
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mentioned in Proposition 8.1. By definition, for 2 ≤ k ≤ m+ 1, we see that

µk = π!(ãm+k) = π!(ãm+1 · ãk−1)

= π!
(
(
m∑
i=1

(−1)m−i+1[y ⊗ (am−i)∗] ã
m−i) · ãk−1

)
= π!(· · ·+ (−1)m−k[y ⊗ (am−k+1)∗] ã

m + · · · )
= (−1)m−k[y ⊗ (am−k+1)∗]

modulo decomposable elements. We have the result. �

Remark 8.5. Let M be a c-symplectic manifold of the form (CPm×CPn, a1 + a2).
We see that the subalgebra of H∗(Baut1(M)) generated by µ-classes is proper. To
see this, we choose minimal models (∧(y1, a1), dy1 = am+1

1 ) and (∧(y2, a2), dy2 =
an+1
1 ) for CPm and CPn. Suppose that m ≥ n. Then the same argument as in [14,

Example 3.6] allows us to conclude that aut1(M) admits a minimal model of the
form

∧(y1 ⊗ 1∗, y1 ⊗ (a1)∗, ..., y1 ⊗ (am−1
1 )∗, y2 ⊗ 1∗, y2 ⊗ (a2)∗, ..., y2 ⊗ (an−1

2 )∗,

y1 ⊗ (an−i2 )∗, y2 ⊗ (am−j
2 )∗; 0 ≤ i ≤ n− 1,m− n ≤ j ≤ m− 1)

with the trivial differential. This yields that

H2(Baut1(M)) ∼=
{

Q{[y2 ⊗ (an1 )∗]} if m > n
Q{[y1 ⊗ (am2 )∗], [y2 ⊗ (an1 )∗]} if m = n

Thus any µ-class does not detect an element in H2(Baut1(M)) since the degrees
of the µ-classes are greater than 4.

In order to give topological description to algebraic generators of Baut1(M)
which come from the Brown-Szczarba model, we need other construction of charac-
teristic classes, for example the similar way to that of the Miller-Morita-Mumford
classes; see [16, page 147]. The consideration in this direction is not pursued in this
paper.

Proof of Proposition 1.9. It is well-known that (Bι)∗(pi) = (−1)i(χ2p′i−1 + p′i) for
the induced map (Bι)∗ : H∗(BSO(2m+1)) → H∗(B(SO(2)×SO(2m−1)), where
p′i is the ith Pontrjagin class in H∗(B(SO(2m− 1)) ∼= Q[p′1, ..., p

′
m−1]; see [25].

As in the proof of Theorem 1.2, we can construct a Sullivan model (∧W,d) for
the Grassmannian manifold M := SO(2m + 1)/SO(2) × SO(2m − 1) by using
the induced map (Bι)∗. It follows that ∧W = ∧(χ, p′1, ..., p′m−1, τ2, τ4, ..., τ2m) and

d(τ2i) = (−1)i(χ2p′i−1 + p′i) for 1 ≤ i ≤ m. We see that there exists a quasi-

isomorphism w : (∧(χ, τ2m), dτ2m = −χ2m) → (∧W,d) such that w(χ) = χ and

w(τ2m) = χ2(m−1)τ2 + · · ·+ χ2τ2(m−1) + τ2m.

In view of the model for λG,M in (5.2), it follows from Lemma 4.2 that

Q(˜̃µ)(τ2m ⊗ (χ2l)∗)) = (−1)τ(|χ
2l|)⟨ζ ′ ◦ w(τ2m), (χ2l)∗⟩

= ⟨χ2(m−1)τ2 + · · ·+ χ2τ2(m−1) + τ2m, (χ
2l)∗⟩

= τ2(m−l).

This implies that SO(2m + 1) is rationally visible in M with respect to the map
λSO(2m+1),M . Thus the naturality of the Eilenberg-Moore spectral sequence allows
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us to deduce that (BλSO(2m+1),M )∗([τ2m ⊗ (χ2l)∗]) = [τ2(m−l)]. The description of
the µ-classes in the proof of Theorem 1.8 yields that (BλSO(2m+1),M )∗(µ2(m−l)) ≡
(BλSO(2m+1),M )∗([τ2m ⊗ (χ2l)∗]) modulo decomposable elements. It follows form
Remark 5.2 that σ∗(pm−l) = τ2(m−l). By virtue of [11, Corollary 3.12], we have
σ∗([τ2(m−l)]) = τ2(m−l). In the case where G = SO(2m + 1), the cohomology
suspension σ∗ is injective on the vector subvector space of indecomposable elements.
This yields that [τ2(m−l)] = pm−l. We have the result. �

9. The sets vd(G,G/U) of visible degrees in Tables 1 and 2

In this section, we deal with the visible degrees described in Tables 1 and 2 in
Introduction.

For the cases (1) and (16), we have the results from the proof of Proposition
1.9. For the case where the homogeneous space G/U has the rational homotopy
type of the sphere, the assertion on the visible degrees follow from the latter half of
Theorem 1.2. In fact, the argument in Example 1.4 does work well to obtain such
results. The details are left to the reader. The results for (11) and for (17) follow
from Theorems 1.5 and 1.6, respectively. We are left to verify the visible degrees
for the cases (5), (6), (6)’ and (19).

(19). Let ι : Spin(9) → F4 be the inclusion map. Without loss of generality, we
can assume that the induce map

(Bι)∗ : H∗(BF4;Q) = Q[y4, y12, y16, y24] → H∗(BSpin(9);Q) = Q[y4, y8, y12, y16]

satisfies the condition that (Bι)∗(yi) = yi for i = 4, 12, 16 and (Bι)∗(y24) = y38 ,
where deg yi = i. This fact follows from a usual argument with the Eilenberg-Moore

spectral sequence for the fibration LP 2 → BSpin(9)
Bι→ BF4. By virtue of Lemmas

4.1 and 4.2, we see that there exists a model for the linear action F4×LP 2 → LP 2

of the form

ζ : (∧(x′23)⊗ ∧(y8), d) → (∧(x3, x11, x15, x23)⊗ ∧(x′23 ⊗ ∧(y8), d′)

with ζ(x′23) = x23 ⊗ 1 ⊗ 1 + 1 ⊗ x′23 ⊗ 1, where d(x′23) = y38 , d
′(xj) = 0 for

j = 3, 11, 15, 23. In fact, for dimensional reasons, we write ζ(x′23) = 1 ⊗ x′23 ⊗
1+ x23 ⊗ 1⊗ 1+ cx15 ⊗ 1⊗ y8 with a rational number c. By definition, we see that
ζ = ψ ⊗ 1, where ψ denotes the DGA map in Lemma 4.2. Since the image of each
element of degree less than 24 by (Bι)∗ does not have the element y8 as a factor,
it follows that c = 0. Observe that ∧VBF4-action on ∧VBSpin(9) is induced by the
map (Bι)∗. The dual to the map (λ∗)i : πi(F4) ⊗ Q → πi(aut1(F4/Spin(9))) ⊗ Q
is regarded as the induced map

H(Q(˜̃µ)) : H∗(Q(Ẽ/Mu), δ0) → VG = Q{x3, x11, x15, x23}

in Theorem 3.1. We see that

Q(Ẽ/Mu) = Q{y8 ⊗ 1∗, x
′
23 ⊗ 1∗, x

′
23 ⊗ (y8)∗, x

′
23 ⊗ (y28)∗},

δ0(x
′
23 ⊗ (y28)∗) = 3y8 ⊗ 1∗, δ0(x

′
23 ⊗ 1∗) = δ0(x

′
23 ⊗ (y18)∗) = 0; see Example 2.4.

Moreover the direct computation with (3.1) shows that Q(˜̃µ)(x′23⊗1∗) = ±x23 and

Q(˜̃µ)(x′23 ⊗ (y8)∗) = 0. This implies that vd(F4,LP 2) = {23}.
(5). The inclusion ι : SO(4) → G2 induces the ring homomorphism

(Bι)∗ : H∗(BG2) ∼= Q[y4, y12] → H∗(BSO(4)) ∼= Q[p1, χ],
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where deg p1 = 4 and degχ = 4. It is immediate that (Bι)∗(y12) is decomposable
for dimensional reasons. Form Example 2.4, we see that π∗(aut1(HP 2)) ∼= Q{y ⊗
1∗, y⊗(x1)∗}, where deg y⊗1∗ = 11 and deg y⊗(x1)∗ = 7. It follows from Theorem
1.2 that vd(G2, G2/SO(4)) = {11}.

(6). Let T 2 be the standard maximal torus of U(2). We assume that G2 ⊃
U(2) ⊃ T 2 without loss of generality. Then the inclusion W (G2) ⊃ W (U(2)) of
Weyl groups gives the inclusions

Q[t1, t2]
W (G2) // // Q[t1, t2]

W (U(2)) // // Q[t1, t2]

H∗(BG2)

∼=
OO

H∗(BU(2))

∼=
OO

H∗(BT 2).

∼=
OO

The result [32, page 212, Example 3] implies that there exist generators y4, y12 of
H(BG2) such that H(BG2) ∼= Q[y4, y12] and y4 = t21− t1t2+ t22, y12 = (t1t

2
2− t21t2)2

in Q[t1, t2]
W (G2). Since the Chern classes c1, c2 ∈ H∗(BU(2)) are regarded as t1+t2

and t1t2, respectively in Q[t1, t2]
W (U(2)), it follows that

(Bι)∗(y4) = c21 − 3c2 and (Bι)∗(y12) = c21c
2
2 − 4c32,

where ι : U(2) → G2 is the inclusion. Put c̃2 = −1
3c

2
1 + c2. Then we see that

(Bι)∗(−1
3y4) = c̃2 and

(Bι)∗(y12) = − 1

27
c61 −

2

3
c41c̃2 − 3c21c̃

2
2 − 4c̃32.

By the direct computation implies that

(Bι)∗(−1

3
y4)⊗ 1∗ − (Bι)∗(y12)⊗ (−3

2
)(c41)∗

= c̃2 ⊗ 1∗ +
3

2

(
− 1

27
c61 −

2

3
c41c̃2 − 3c21c̃

2
2 − 4c̃32

)
⊗ (c41)∗

≡ c̃2 ⊗ 1∗ − c̃2 ⊗ 1∗ ≡ 0

modulo decomposable elements in (H∗(BU(2)) : H∗(G2/U(2)))/Mu. It is im-
mediate that (Bι)∗(y12) is decomposable. By virtue of Theorem 1.2, we have
vd(G2, G2/U(2)) = {3, 11}. The same argument works well to obtain the result
for the case (6)’.

Acknowledgments. I am particularly grateful to Kojin Abe, Kohhei Yamaguchi and
Masaki Kameko for valuable comments on this work and to Hiroo Shiga for drawing
my attention to this subject. I thank the anonymous referee for showing me a very
simple proof of the latter half of Theorem 1.2, which is described in Remark 5.1.

10. Appendix. Extensions of characteristic classes

For a space X, let Xδ denote the space with the discrete topology whose un-
derlying set is the same as that of X. Let M be a homogeneous space admitting
an action of a connected Lie group G. In this section, we consider cohomology
classes of B(Diff1(M))δ as well as those of B(aut1(M))δ, which detect familiar
characteristic classes via the induced map

(Bλ)∗ : H∗(B(Diff1(M))δ;Q) → H∗(BGδ;Q).
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Let G be a real semi-simple connected Lie group with finitely many components
and h : G→ GC the complexification of G. One has a commutative diagram

H∗(BGC)
h∗

// H∗(BG)
j∗ // H∗(BGδ)

H∗(Baut1(G/U))
Bλ∗

44iiiiiiiiiiii
// H∗(BDiff1(G/U))

OO

// H∗(B(Diff1(G/U))δ) ,

OO

where j : Gδ → G stands for the natural map. The result [22, THEOREM 2] asserts
that the kernel of j∗ is equal to the ideal generated by the positive dimensional
elements in Imh∗.

As an example, we consider the case where G = SL(2m;R) and U is a maximal
rank subgroup of SO(2m) with (QH∗(BU ;Q))2m = 0, for example U is a maximal
torus of SO(2m). Then Milnor’s result mentioned above allows us to conclude that
the Euler class χ of H∗(BSL(2m;R)) survives in H∗(B(Gδ)); see [24]. Moreover
Theorem 1.2 yields that (Bλ)∗ : Hi(Baut1(G/U)) → Hi(BG) is surjective for
i = 2m; see also Remark 7.1. Thus the class χ ∈ H∗(B(G)δ) is extendable to
an element χ̃ of H∗(B(Diff1(G/U))δ). This implies that the rational cohomology
algebra H∗(B(Diff1(G/U))δ) contains the polynomial algebra Q[χ̃] generated by
the extended element χ̃. In particular, it follows that

H2mi(B(Diff1(G/U))δ)) ̸= 0

for i ≥ 0.

Remark 10.1. The result [22, Corollary] yields that the induced homomorphism
(Bj)∗ : H∗(BG;Z) → H∗(BGδ;Z) is injective. Thus the same argument as above
does work well to find nontrivial elements in the cohomology H∗(B(Diff1(G/U))δ))
for an appropriate subgroup U of G if H∗(BG;Z) is torsion free.

References

[1] P. L. Antonelli, D. Burghelea and P. J. Kahl, The non-finite homotopy type of some diffeo-
morphism groups, Topology 11(1972), 1-49.

[2] M. Arkowitz and G. Lupton, On finiteness of subgroups of self-homotopy equivalences, Con-

temp. Math. 181(1995), 1-25.
[3] A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy

type, Memoirs of AMS 179(1976).
[4] E. H. Brown Jr and R. H. Szczarba, On the rational homotopy type of function spaces, Trans.

Amer. Math. Soc. 349(1997), 4931-4951.
[5] U. Buijs and A. Murillo, Basic constructions in rational homotopy theory of function spaces,

Ann. Inst. Fourier (Grenoble) 56(2006), 815-838.
[6] F. T. Farrell and W. C. Hsiang, On the rational homotopy groups of the diffeomorhism groups

of discs, spheres and aspherical manifolds, Proceedings of Symposia in Pure Math. 32(1978),
325-337.

[7] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds,
Invent. Math. 29(1975), 245-274.

[8] Y. Félix, S. Halperin and J. -C. Thomas, Rational Homotopy Theory, Graduate Texts in
Mathematics 205, Springer-Verlag.

[9] Y. Félix and J. -C. Thomas, The monoid of self-homotopy equivalences of some homogeneous
spaces, Exposiotiones Math. 12, 305-322.

[10] Gottlieb, D. H.: On fibre spaces and the evaluation map, Ann. of Math. (2)87(1968), 42-55.
[11] V. K. A. M. Gugenheim and J. P. May, On the theory and applications of differential torsion

products, Mem. Amer. Math. Soc. 142, 1974.

[12] A. Haefliger, Rational homotopy of space of sections of a nilpotent bundle, Trans. Amer.
Math. Soc. 273(1982), 609-620.



32 KATSUHIKO KURIBAYASHI

[13] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North

Holland Mathematics Studies 15, North Holland, New York, 1975.
[14] Y. Hirato, K. Kuribayashi and N. Oda, A function space model approach to the rational

evaluation subgroups, Math. Z. 258(2008), 521-555.
[15] T. Januszkiewicz and J. Kedra, Characteristic classes of smooth fibrations, preprint (2002)

arXiv:math/0209288v1.
[16] J. Kedra and D. McDuff, Homotopy properties of Hamiltonian group actions, Geometry &

Topology, 9(2005), 121-162.
[17] K. Kuribayashi, A rational model for the evaluation map, Georgian Mathematical Journal

13(2006), 127-141.
[18] G. Lupton and J. Oprea, Cohomologically symplectic space: Toral actions and the Gottlieb

group, Trans. Amer. Math. Soc. 347(1995), 261-288.
[19] J.P.May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 155, 1975.

[20] J.P.May, Fiberwise localization and completion, Trans. Amer. Math. Soc. 258(1980), 127-146.
[21] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford Mathematical

Monographs, Clarendon Press, Oxford, 1995.
[22] J. Milnor, On the homology of Lie groups made discrete, Comment. Math. Helvetici 58(1983),

72-85.
[23] J. Milnor and J. -C. Moore, On the structure of Hopf algebras. Ann. of Math. 81 (1965),

211-264.

[24] J. Milnor and J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76.
Princeton University Press, Princeton, 1974.

[25] M. Mimura and H. Toda, Topology of Lie groups. II. Translations of Mathematical Mono-
graphs, 91. American Mathematical Society, Providence, RI, 1991.

[26] D. Notbohm and L. Smith, Fake Lie groups and maximal tori. III, Math. Ann 290(1991),
629-642.

[27] D. Notbohm and L. Smith, Rational Homotopy of the space of homotopy equivalences of a
flag manifold, Algebraic topology, Homotopy and Group Cohomology, Proceedings barcelona
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