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The main purpose of this talk is to talk about the recent joint work with M. Adamaszek
and A. Kozlowski [2]. We consider the inclusion of the space Alg(X,Y ) of algebraic
(regular) maps between real algebraic varieties in the space Map(X,Y ) of all continu-
ous maps. For a certain class of real algebraic varieties X and Y , which include real
projective spaces, it is known that Alg(X,Y ) is a dense subspace in Map(X,Y ). In this
talk, as the first step, for certain class of varieties X and Y , we explain that the inclusion
Alg(X,Y ) → Map(X,Y ) is also a homotopy equivalence. Next, we restrict the class of
varieties to real projective spaces. In this case, the space of algebraic maps has a ‘minimum
degree’ filtration by finite dimensional subspaces and it is natural to expect that the homo-
topy types of the terms of the filtration approximate closer and closer the homotopy type
of the space of continuous mappings as the degree increases. This type of the conjecture is
called as the Atiyah-Jones-Segal type conjecture or Gromov’s h-principle (cf. [1], [3], [4],
[7], [8], [9], [10], [11], [14], [15], [16], [17], [19]). We explain that this type result holds for
this case and we compute the lower bounds of this approximation degree of these spaces.
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