特性数の一般化と CW 複体の胞体構造について

宮内 敏行

 $S^q \cup_{\alpha} e^n \cup_{\beta} e^{q+n} \ (q \leq n+2)$ の胞体構造を持つ CW 複体を考えたとき,その整数係数のコホモロジー群の q 次元と n 次元の生成元のカップ積は q+n の生成元の整数倍になっており,特性数はその整数で与えられる。一方, e^{q+n} の接着写像 β に対して $j_*(\beta) \in \pi_{q+n-1}(S^q \cup_{\alpha} e^n, S^q)$ は $j_*(\beta) = m[\sigma, \iota_q]_r + \sigma \circ \rho \ (m$ は整数, $[\sigma, \iota_q]_r$ は e^n の特性写像 σ と S^q の恒等写像 ι_q の相対 Whitehead 積, $\rho \in \pi_{q+n-1}(CS^{n-1}, S^{n-1})$)という分解がある知られている。James によりこの m が特性数と一致することが示された。

本講演では $S^q \cup_\alpha e^n \cup_\beta e^{q+n+k}$ $(q \le n+2, k \ge 1)$ に拡張した場合を考える。このとき上記の整数 m に対応するのものはホモトピー群の元になり,一般コホモロジー論でのq 次元と n 次元の生成元のカップ積と q+n の生成元との関係がそのホモトピー群の元により表されることを示す。