ON THE COHOMOLOGY OF FREE LOOP SPACES AND HOMOTOPY FIXED POINTS

DAISUKE KISHIMOTO (JOINT WITH AKIRA KONO)

Reference

- D. Kishimoto and A. Kono, On the cohomology of free and twisted loop spaces, J. Pure Appl. Algebra 214 (2010), no. 5, 646-653.
- K. Kuribayashi, Module derivations and the adjoint action of a finite loop space, J. Math. Kyoto Univ. 39 (1999), 67-85.

Spaces and maps will be pointed.

Part 1. Free loop spaces

1. Motivation

Aim : Give an explicit description of $H^{*}(L X)$.
The most popular way to compute $H^{*}(L X)$ is the Eilenberg-Moore spectral sequence of a homotopy pullback

Good points are that things are purely algebraic and $\exists \mathrm{helpful}$ tools. Bad points are that the extensions are too hard and results are less geometric.
Our policy : Don't use spectral sequences.

2. Free cohomology suspension

The coefficient of the cohomology will be a ring R. Let X be a simply connected space. Observation on ΩX : The cohomology suspension $\sigma(x)$ of $x \in \bar{H}^{n}(X)$, equivalently $x: X \rightarrow$ $K(R, n)$, is

$$
\Omega x: \Omega X \rightarrow \Omega K(R, n)=K(R, n-1) .
$$

\exists commutative diagram

where $\bar{\omega}(t, \ell)=\ell(t)$ is the evaluation map. Then

$$
\bar{\omega}^{*}(x)=s \otimes \sigma(x)
$$

for the dual $s \in H^{1}\left(S^{1}\right)$ of the Hurewicz image of $\left[1_{S^{1}}\right] \in \pi_{1}\left(S^{1}\right)$.
Let $\hat{\omega}: S^{1} \times L X \rightarrow X$ be the evaluation $\hat{\omega}(t, \ell)=\ell(t)$.
Definition . The free cohomology suspension

$$
\hat{\sigma}: \bar{H}^{*}(X) \rightarrow H^{*-1}(L X)
$$

is defined as

$$
\hat{\omega}^{*}(x)=s \otimes \hat{\sigma}(x)+1 \otimes x
$$

where we regard $H^{*}(X) \subset H^{*}(L X)$ by the evaluation $L X \rightarrow X$ at the basepoint of S^{1}.
Remark. Kuribayashi called $\hat{\sigma}$ a module derivation and used it to solve the extension of the above Eilenberg-Moore spectral sequence.

Proposition . (1) For $f: X \rightarrow Y$,

$$
L f^{*} \circ \hat{\sigma}=\hat{\sigma} \circ f^{*} .
$$

(2) For the inclusion $i: \Omega X \rightarrow L X$,

$$
i^{*} \circ \hat{\sigma}=\sigma .
$$

(3) $\hat{\sigma}$ is a derivation.
(4) $\hat{\sigma}$ commutes with Steenrod operations.

Proof. (1) follows from naturality of $\hat{\omega}$. We get (2) by the above observation on ΩX. For $x, y \in \bar{H}^{*}(X)$,

$$
\begin{aligned}
\hat{\omega}(x y) & =s \otimes \hat{\sigma}(x y)+1 \otimes x y \\
& =\hat{\omega}^{*}(x) \hat{\omega}^{*}(y)=(s \otimes \hat{\sigma}(x)+1 \otimes x)(s \otimes \hat{\sigma}(y)+1 \otimes y) \\
& =s \otimes\left(\hat{\sigma}(x) y+(-1)^{|x|} x \hat{\sigma}(y)\right)+1 \otimes x y,
\end{aligned}
$$

implying (3). For any Steenrod operation α, we have $\alpha(s)=0$, and then for a Steenrod operation α, we have

$$
\begin{aligned}
\alpha\left(\hat{\omega}^{*}(x)\right) & =s \otimes \alpha(\hat{\sigma}(x))+1 \otimes \alpha(x) \\
& =\hat{\omega}^{*}(\alpha(x))=s \otimes \hat{\sigma}(\alpha(x))+1 \otimes \alpha(x),
\end{aligned}
$$

implying (4).
Theorem.If $H^{*}(X)=R\left[X_{1}, \ldots, x_{n}\right]$, then

$$
H^{*}(L X)=R\left[x_{1}, \ldots, x_{n}\right] \otimes \Delta\left(\hat{\sigma}\left(x_{1}\right), \ldots, \hat{\sigma}\left(x_{n}\right)\right) .
$$

Proof. By the Borel transgression theorem, we have

$$
H^{*}(\Omega X)=\Delta\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right) .
$$

Then since $\hat{\sigma}$ restricts to σ, the result follows from the Leray-Hirsch theorem applied to a fiber sequence $\Omega X \rightarrow L X \rightarrow X$.

3. Example calculation

Let us calculate $H^{*}\left(L B G_{2} ; \mathbb{Z} / 2\right)$.
Data : $H^{*}\left(B G_{2}\right)=\mathbb{Z} / 2\left[x_{4}, x_{6}, x_{7}\right],\left|x_{i}\right|=i$.

	x_{4}	x_{6}	x_{7}
Sq^{1}	0	x_{7}	0
Sq^{2}	x_{6}	0	0
Sq^{4}	x_{4}^{2}	$x_{4} x_{6}$	$x_{4} x_{7}$

Theorem . For $\hat{x}_{i}=\hat{\sigma}\left(x_{i}\right)$,

$$
H^{*}\left(L B G_{2}\right)=\mathbb{Z} / 2\left[x_{4}, x_{6}, x_{7}, \hat{x}_{3}, \hat{x}_{5}\right] /\left(\hat{x}_{5}^{2}+\hat{x}_{3} x_{7}+x_{4} \hat{x}_{3}^{2}, \hat{x}_{3}^{4}+\hat{x}_{5} x_{7}+x_{6} \hat{x}_{3}^{2}\right) .
$$

Proof. By the above theorem,

$$
H^{*}\left(L B G_{2}\right)=\mathbb{Z} / 2\left[x_{4}, x_{6}, x_{7}\right] \otimes \Delta\left(\hat{x}_{3}, \hat{x}_{5}, \hat{x}_{6}\right)
$$

Then our task is to compute \hat{x}_{i}^{2}. By the Adem relation,

$$
\mathrm{Sq}^{3}=\mathrm{Sq}^{1} \mathrm{Sq}^{2}, \quad \mathrm{Sq}^{5}=\mathrm{Sq}^{4} \mathrm{Sq}^{1}+\mathrm{Sq}^{2} \mathrm{Sq}^{1} \mathrm{Sq}^{1}, \quad \mathrm{Sq}^{6}=\mathrm{Sq}^{5} \mathrm{Sq}^{1}+\mathrm{Sq}^{2} \mathrm{Sq}^{4},
$$

and thus

$$
\begin{aligned}
& \hat{x}_{3}^{2}=\mathrm{Sq}^{3} \hat{x}_{3}=\hat{\sigma}\left(\mathrm{Sq}^{3} x_{4}\right)=\hat{\sigma}\left(x_{7}\right)=\hat{x}_{6}, \\
& \hat{x}_{5}^{2}=\mathrm{Sq}^{5} \hat{x}_{5}=\hat{\sigma}\left(\mathrm{Sq}^{5} x_{6}\right)=\hat{\sigma}\left(x_{4} x_{7}\right)=\hat{x}_{3} x_{7}+x_{4} \hat{x}_{6}, \\
& \hat{x}_{6}^{2}=\mathrm{Sq}^{6} \hat{x}_{6}=\hat{\sigma}\left(\mathrm{Sq}^{6} x_{7}\right)=\hat{\sigma}\left(x_{6} x_{7}\right)=\hat{x}_{5} x_{7}+x_{6} \hat{x}_{6} .
\end{aligned}
$$

4. Invariant theory

There is a close relationship between the polynomial invariants of reflection groups and the cohomology of Lie groups as follows. Let V be a vector space over a field \mathbb{k} of dimension n. If $V=\left\langle x_{1}, \ldots, x_{n}\right\rangle$, we put

$$
\mathbb{k}[V]=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]
$$

which is independent of a choice of x_{1}, \ldots, x_{n}. Note that a group action on V extends canonically to $\mathbb{k}[V]$.

Theorem ((a small part of) Shephard-Todd). If W is a finite group generated by reflections on V and char $\mathbb{k} \nmid|W|$, then

$$
\mathbb{k}[V]^{W}=\mathbb{k}\left[q_{1}, \ldots, q_{n}\right]
$$

for some $q_{1}, \ldots, q_{n} \in \mathbb{k}[V]$.

Let G be a compact, connected Lie group with the Weyl group $W(G)$. Then $W(G)$ is generated by reflections on $H^{2}(B T ; \mathbb{k})$. Then if char $\mathbb{k} \nmid|W(G)|$, there is a natural isomorphism

$$
H^{*}(B G ; \mathbb{k}) \xrightarrow{\cong} H^{*}(B T ; \mathbb{k})^{W(G)} .
$$

In fact, the above holds if $H_{*}(G ; \mathbb{Z})$ has no p-torsion, where $p=$ char \mathbb{k}.
The Shephard-Todd theorem is generalized to polynomial tensor exterior algebras as follow. Fix an isomorphism $f: V \stackrel{\cong}{\rightrightarrows} \widehat{V}$. Then a group action on V is translated to \widehat{V} through f and extended to the group action on $\mathbb{k}[V] \otimes \Lambda(\widehat{V})$. We also have a derivation

$$
\bar{f}: \mathbb{k}[V] \rightarrow \mathbb{k}[V] \otimes \Lambda(\widehat{V})
$$

extending f.
Theorem (Solomon). If W is a finite group generated by reflections on V and char $\mathbb{k} \nmid|W|$, then

$$
(\mathbb{k}[V] \otimes \Lambda(\widehat{V}))^{W}=\mathbb{k}\left[q_{1}, \ldots, q_{n}\right] \otimes \Lambda\left(\bar{f}\left(q_{1}\right), \ldots, \bar{f}\left(q_{n}\right)\right),
$$

where $\mathbb{k}[V]^{W}=\mathbb{k}\left[q_{1}, \ldots, q_{n}\right]$.
This generalization of the Shephard-Todd theorem applies to free loop spaces of the classifying spaces of Lie groups.

Theorem. Let G be a compact, connected Lie group. If char $\mathbb{k} \nmid|W(G)|$, there is a natural isomorphism

$$
H^{*}(L B G ; \mathbb{k}) \xlongequal{\cong} H^{*}(L B T ; \mathbb{k})^{W(G)} .
$$

Proof. In Solomon's theorem, we put $V=H^{2}(B T)$ and $f=\hat{\sigma}$. Then the result follows.
Remark. We don't have the above isomorphism if char $\mathbb{k}\left||W(G)|\right.$ but $H_{*}(G ; \mathbb{Z})$ is torsion free. For example, put $G=\operatorname{Sp}(1)$. Then $H^{2}(B T)=\langle t\rangle$ and $W(\mathrm{Sp}(1))$ is generated by a reflection τ with $\tau(t)=-t$. Then we have $H^{*}(B \operatorname{Sp}(1) ; \mathbb{Z} / 2)=\mathbb{Z} / 2[q]$ such that q pulls back to t^{2} in $H^{*}(B T ; \mathbb{Z} / 2)$. Thus since $\hat{\sigma}\left(t^{2}\right)=0, H^{*}(L B S p(1) ; \mathbb{Z} / 2) \rightarrow H^{*}(L B T ; \mathbb{Z} / 2)^{W(\operatorname{Sp}(1))}$ is not injective.

Part 2. Homotopy fixed points

5. Review of the free cohomology suspension

Let X be a simply connected space, and let $\hat{\omega}: S^{1} \times L X \rightarrow X$ be the evaluation $\hat{\omega}(t, \ell)=\ell(t)$. Er have defined the free cohomology suspension $\hat{\sigma}: \bar{H}^{*}(X) \rightarrow H^{*-1}(L X)$ as

$$
\hat{\omega}^{*}(x)=s \otimes \hat{\sigma}(x)+1 \otimes x
$$

where s is the dual of the Hurewicz image of $\left[1_{S^{1}}\right] \in \pi_{1}\left(S^{1}\right)$, and we have seen the following properties.
(1) For the inclusion $i: \Omega X \rightarrow L X$,

$$
i^{*} \circ \hat{\sigma}=\sigma .
$$

(2) $\hat{\sigma}$ is a derivation.
(3) $\hat{\sigma}$ commutes with Steenrod operations.

6. Homotopy fixed points

The homotopy fixed points of a self-map $\phi: X \rightarrow X$ is defined as the homotopy pullback

Namely,

$$
X^{\mathrm{h} \phi}=\{\ell:[0,1] \rightarrow X \mid \ell(1)=\phi(\ell(0))\} .
$$

Aim : Describe $H^{*}\left(X^{\mathrm{h} \phi}\right)$ without spectral sequences.
To this end, we would like to generalize the free cohomology suspension. But $X^{\mathrm{h} \phi}$ includes non-closed paths, we don't have the evaluation $S^{1} \times X^{\mathrm{h} \phi} \rightarrow X$. So we force to close elements of $X^{\mathrm{h} \phi}$.

7. Mapping torus

Definition. The mapping torus of $\phi: X \rightarrow X$ is defined as

$$
M_{\phi}=[0,1] \times X /(0, x) \sim(1, \phi(x)) .
$$

Since ϕ is pointed, we may regard $S^{1}=\left\{\left(t, x_{0}\right) \in M_{\phi}\right\} \subset M_{\phi}$ for the basepoint x_{0} of X. Let $\iota: X \rightarrow M_{\phi}$ be the inclusion $\iota(x)=(1, x)$.

Proposition. for a self-map $\psi: Y \rightarrow Y$ and a map $f: X \rightarrow Y$ satisfying $\psi \circ f \simeq f \circ \phi$, there is a natural map $M(f): M_{\phi} \rightarrow M_{\psi}$.

Consider the Mayer-Vietoris exact sequence for the covering

$$
M_{\phi}=\left\{(t, x) \in M_{\phi} \left\lvert\, 0 \leq t \leq \frac{1}{4}\right. \text { or } \frac{3}{4} \leq t \leq 1\right\} \cup\left\{(t, x) \in M_{\phi} \left\lvert\, \frac{1}{4} \leq t \leq \frac{3}{4}\right.\right\}
$$

Then we get an exact sequence

$$
\cdots \rightarrow H^{*}\left(M_{\phi}\right) \xrightarrow{\iota^{*}} H^{*}(X) \xrightarrow{\phi^{*}-1} H^{*}(X) \rightarrow H^{*+1}\left(M_{\phi}\right) \rightarrow \cdots .
$$

Let \mathcal{A}_{p}^{\prime} be the subalgebra of \mathcal{A}_{p} generated by \mathcal{P}^{i} for p odd and $\mathrm{Sq}^{2 i}$ for $p=2$.
Proposition. Let $R=\mathbb{Z} / p$. If $H^{\text {odd }}(X)=0$ and $\phi^{*}=1$, then $\iota^{*}: H^{*}\left(M_{\phi}\right) \rightarrow H^{*}(X)$ has a section as \mathcal{A}_{p}^{\prime}-modules.

8. Twisted cohomology suspension

Define a map $\delta: X^{\mathrm{h} \phi} \rightarrow L M_{\phi}$ as

$$
\delta(\ell)=[t \mapsto(t, \ell(t))] .
$$

Every element of $X^{\mathrm{h} \phi}$, possibly non-closed, is closed by δ.
Definition . The twisted cohomology suspension

$$
\hat{\sigma}_{\phi}: \bar{H}^{*}\left(M_{\phi}\right) \rightarrow H^{*-1}\left(X^{\mathrm{h} \phi}\right)
$$

is defined as the composite

$$
\bar{H}^{*}\left(M_{\phi}\right) \xrightarrow{\hat{\sigma}} H^{*-1}\left(L M_{\phi}\right) \xrightarrow{\delta^{*}} H^{*-1}\left(X^{\mathrm{h} \phi}\right) .
$$

Proposition. (1) For the inclusion $i: \Omega X \rightarrow X^{\mathrm{h} \phi}$ and the projection $q: M_{\phi} \rightarrow M_{\phi} / S^{1}$,

$$
i^{*} \circ \hat{\sigma}_{\phi} \circ q^{*}=\sigma \circ \iota^{*} \circ q^{*} .
$$

(2) For $\psi: Y \rightarrow Y$ and $f: X \rightarrow Y$ with $f \circ \phi \simeq \psi \circ f$,

$$
\bar{f}^{*} \circ \hat{\sigma}_{\phi}=\hat{\sigma}_{\psi} \circ M(f)^{*}
$$

where $\bar{f}: X^{\mathrm{h} \phi} \rightarrow Y^{\mathrm{h} \psi}$ is the induced map.
(3) Let $\omega: X^{\mathrm{h} \phi} \rightarrow X$ be the evaluation at 0 . For $\omega_{\phi}=\iota \circ \phi \circ \omega$,

$$
\hat{\sigma}_{\phi}(x y)=\hat{\sigma}_{\phi}(x) \omega_{\phi}^{*}(y)+(-1)^{|x|} \omega_{\phi}^{*}(x) \hat{\sigma}_{\phi}(y) .
$$

(4) $\hat{\sigma}_{\phi}$ commutes with Steenrod operations.

Proof. Define $h:[0,1] \times S^{1} \times \Omega X \rightarrow M_{\phi} / S^{1}$ as

$$
h(s, t, \ell)= \begin{cases}(2 s t, \ell((1-s) t)) & 0 \leq t \leq \frac{1}{2} \\ (\min \{2 s t, 1\}, \ell((1+s) t-s)) & \frac{1}{2} \leq t \leq 1\end{cases}
$$

Using this homotopy, we get a homotopy commutative diagram

Then (1) and (2) follows.
\exists commutative diagram

Then

$$
(\hat{\omega} \circ(1 \times \delta))^{*}(x)=s \otimes \hat{\sigma}_{\phi}(x)+1 \otimes \omega_{\phi}^{*}(x),
$$

implying (3) and (4).
Theorem. If $H^{*}(X)=R\left[x_{1}, \ldots, x_{n}\right]$ and \exists section α of $\iota^{*}: H^{*}\left(M_{\phi}\right) \rightarrow H^{*}(X)$, then

$$
H^{*}\left(X^{\mathrm{h} \phi}\right) \cong R\left[\omega_{\phi}^{*}\left(x_{1}\right), \ldots, \omega_{\phi}^{*}\left(x_{n}\right)\right] \otimes \Delta\left(\hat{\sigma}_{\phi}\left(\alpha\left(x_{1}\right)\right), \ldots, \hat{\sigma}_{\phi}\left(\alpha\left(x_{n}\right)\right)\right) .
$$

Moreover, if α respects $\mathcal{A}_{p}^{\prime}\left(\right.$ resp. $\left.\mathcal{A}_{p}\right)$, the above identification is over \mathcal{A}_{p}^{\prime} (resp. \mathcal{A}_{p}).

9. Applications

Let G be a connected Lie group and let $\phi^{q}: B G_{p} \rightarrow B G_{p}$ be the unstable Adams operation for a prime power q with $p \nmid q$. Let $G(q)$ be the Chevalley group of type G over a field \mathbb{F}_{q}. Then we have

$$
B G(q)_{p} \simeq B G_{p}^{\mathrm{h} \phi^{q}}
$$

Theorem. If $H^{*}(G ; \mathbb{Z})$ has no p-torsion and $q \equiv 1 \bmod p$, then

$$
H^{*}(G(q) ; \mathbb{Z} / p) \cong H^{*}(L B G ; \mathbb{Z} / p)
$$

as \mathcal{A}_{p}^{\prime}-modules. Moreover, if $q \equiv 1 \bmod p^{2}$, the above congruence is over \mathcal{A}_{p}.
Proof. If $H^{*}(G ; \mathbb{Z})$ has no p-torsion, $H^{\text {odd }}(B G ; \mathbb{Z} / p)=0$, implying the first assertion. The second assertion follows analogously.

For an odd prime power q, let us next calculate $H^{*}\left(G_{2}(q) ; \mathbb{Z} / 2\right)$. We construct a section of $\iota^{*}: H^{*}\left(M_{\phi^{q}}\right) \rightarrow H^{*}\left(B G_{2}\right)$. Since $H^{4}\left(M_{\phi^{q}}\right) \cong \mathbb{Z} / 2$, we get $\bar{x}_{4} \in H^{4}\left(M_{\phi^{q}}\right)$ with $\iota^{*}\left(\bar{x}_{4}\right)=x_{4}$. Put

$$
\mathrm{Sq}^{2} \bar{x}_{4}=\bar{x}_{6}, \quad \mathrm{Sq}^{1} \bar{x}_{6}=\bar{x}_{7} .
$$

Then $\iota^{*}\left(\bar{x}_{i}\right)=x_{i}$ for $i=6,7$. We can now define a section α as

$$
\alpha\left(x_{i}\right)=\bar{x}_{i} \quad \text { for } i=4,6,7 .
$$

We show that α respects \mathcal{A}_{2}. Since $q^{2} \equiv 1 \bmod 4$, we have $\mathrm{Sq}^{1} \bar{x}_{4}=0$ by considering the integral cohomology, which implies

$$
\mathrm{Sq}^{2} \bar{x}_{6}=\mathrm{Sq}^{2} \mathrm{Sq}^{2} \bar{x}_{4}=\mathrm{Sq}^{3} \mathrm{Sq}^{1} \bar{x}_{4}=0, \quad \mathrm{Sq}^{2} \bar{x}_{7}=\mathrm{Sq}^{2} \mathrm{Sq}^{3} \bar{x}_{4}=\left(\mathrm{Sq}^{1} \mathrm{Sq}^{4}+\mathrm{Sq}^{4} \mathrm{Sq}^{1}\right) \bar{x}_{4}=0 .
$$

Since $H^{9}\left(B G_{2}\right)=0, \iota^{*}: H^{10}\left(M_{\phi^{q}}\right) \rightarrow H^{10}\left(B G_{2}\right)$ is monic, and then

$$
\mathrm{Sq}^{4} \bar{x}_{6}=\bar{x}_{4} \bar{x}_{6}, \quad \mathrm{Sq}^{4} \bar{x}_{7}=\mathrm{Sq}^{4} \mathrm{Sq}^{3} \bar{x}_{4}=\mathrm{Sq}^{1} \mathrm{Sq}^{4} \mathrm{Sq}^{2} \bar{x}_{4}=\mathrm{Sq}^{1} \mathrm{Sq}^{4} \bar{x}_{6}=\mathrm{Sq}^{1}\left(\bar{x}_{4} \bar{x}_{6}\right)=\bar{x}_{4} \bar{x}_{7}
$$

Thus we have seen that α respects \mathcal{A}_{2}.
Theorem . $H^{*}\left(G_{2}(q) ; \mathbb{Z} / 2\right) \cong H^{*}\left(L B G_{2} ; \mathbb{Z} / 2\right)$ over \mathcal{A}_{2}-algebras.

Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan E-mail address: kishi@math.kyoto-u.ac.jp

