ON THE COHOMOLOGY OF FREE LOOP SPACES AND HOMOTOPY FIXED POINTS

DAISUKE KISHIMOTO (JOINT WITH AKIRA KONO)

Reference

- D. Kishimoto and A. Kono, On the cohomology of free and twisted loop spaces, J. Pure Appl. Algebra **214** (2010), no. 5, 646-653.
- K. Kuribayashi, Module derivations and the adjoint action of a finite loop space, J. Math. Kyoto Univ. **39** (1999), 67-85.

Spaces and maps will be pointed.

Part 1. Free loop spaces

1. MOTIVATION

<u>**Aim**</u> : Give an explicit description of $H^*(LX)$.

The most popular way to compute $H^*(LX)$ is the Eilenberg-Moore spectral sequence of a homotopy pullback

Good points are that things are purely algebraic and \exists helpful tools. Bad points are that the extensions are too hard and results are less geometric.

Our policy : Don't use spectral sequences.

2. Free Cohomology suspension

The coefficient of the cohomology will be a ring R. Let X be a simply connected space. **Observation on** ΩX : The cohomology suspension $\sigma(x)$ of $x \in \overline{H}^n(X)$, equivalently $x : X \to K(R, n)$, is

$$\Omega x: \Omega X \to \Omega K(R, n) = K(R, n-1).$$

 \exists commutative diagram

$$\begin{split} \Sigma \Omega X & \xrightarrow{\bar{\omega}} X \xrightarrow{x} K(R,n) \\ & \downarrow^{\Sigma \Omega x} & & \parallel \\ \Sigma \Omega K(R,n) & \xrightarrow{\bar{\omega}} K(R,n), \end{split}$$

where $\bar{\omega}(t, \ell) = \ell(t)$ is the evaluation map. Then

$$\bar{\omega}^*(x) = s \otimes \sigma(x)$$

for the dual $s \in H^1(S^1)$ of the Hurewicz image of $[1_{S^1}] \in \pi_1(S^1)$.

Let $\hat{\omega}: S^1 \times LX \to X$ be the evaluation $\hat{\omega}(t, \ell) = \ell(t)$.

Definition. The free cohomology suspension

$$\hat{\sigma}: \overline{H}^*(X) \to H^{*-1}(LX)$$

is defined as

$$\hat{\omega}^*(x) = s \otimes \hat{\sigma}(x) + 1 \otimes x$$

where we regard $H^*(X) \subset H^*(LX)$ by the evaluation $LX \to X$ at the basepoint of S^1 .

Remark . Kuribayashi called $\hat{\sigma}$ a module derivation and used it to solve the extension of the above Eilenberg-Moore spectral sequence.

Proposition . (1) For $f: X \to Y$,

$$Lf^* \circ \hat{\sigma} = \hat{\sigma} \circ f^*.$$

(2) For the inclusion $i: \Omega X \to LX$,

$$i^* \circ \hat{\sigma} = \sigma.$$

- (3) $\hat{\sigma}$ is a derivation.
- (4) $\hat{\sigma}$ commutes with Steenrod operations.

Proof. (1) follows from naturality of $\hat{\omega}$. We get (2) by the above observation on ΩX . For $x, y \in \overline{H}^*(X)$,

$$\begin{split} \hat{\omega}(xy) &= s \otimes \hat{\sigma}(xy) + 1 \otimes xy \\ &= \hat{\omega}^*(x)\hat{\omega}^*(y) = (s \otimes \hat{\sigma}(x) + 1 \otimes x)(s \otimes \hat{\sigma}(y) + 1 \otimes y) \\ &= s \otimes (\hat{\sigma}(x)y + (-1)^{|x|}x\hat{\sigma}(y)) + 1 \otimes xy, \end{split}$$

implying (3). For any Steenrod operation α , we have $\alpha(s) = 0$, and then for a Steenrod operation α , we have

$$\begin{aligned} \alpha(\hat{\omega}^*(x)) &= s \otimes \alpha(\hat{\sigma}(x)) + 1 \otimes \alpha(x) \\ &= \hat{\omega}^*(\alpha(x)) = s \otimes \hat{\sigma}(\alpha(x)) + 1 \otimes \alpha(x), \end{aligned}$$

implying (4).

Theorem . If $H^*(X) = R[X_1, \dots, x_n]$, then $H^*(LX) = R[x_1, \dots, x_n] \otimes \Delta(\hat{\sigma}(x_1), \dots, \hat{\sigma}(x_n)).$ *Proof.* By the Borel transgression theorem, we have

$$H^*(\Omega X) = \Delta(\sigma(x_1), \dots, \sigma(x_n)).$$

Then since $\hat{\sigma}$ restricts to σ , the result follows from the Leray-Hirsch theorem applied to a fiber sequence $\Omega X \to L X \to X$.

3. Example calculation

Let us calculate $H^*(LBG_2; \mathbb{Z}/2)$. **Data** : $H^*(BG_2) = \mathbb{Z}/2[x_4, x_6, x_7], |x_i| = i$.

	x_4	x_6	x_7
Sq^1	0	x_7	0
	x_6	0	0
Sq^4	x_{4}^{2}	$x_4 x_6$	$x_4 x_7$

Theorem . For $\hat{x}_i = \hat{\sigma}(x_i)$,

$$H^*(LBG_2) = \mathbb{Z}/2[x_4, x_6, x_7, \hat{x}_3, \hat{x}_5]/(\hat{x}_5^2 + \hat{x}_3x_7 + x_4\hat{x}_3^2, \hat{x}_3^4 + \hat{x}_5x_7 + x_6\hat{x}_3^2).$$

Proof. By the above theorem,

$$H^*(LBG_2) = \mathbb{Z}/2[x_4, x_6, x_7] \otimes \Delta(\hat{x}_3, \hat{x}_5, \hat{x}_6)$$

Then our task is to compute \hat{x}_i^2 . By the Adem relation,

$$Sq^3 = Sq^1Sq^2, \quad Sq^5 = Sq^4Sq^1 + Sq^2Sq^1Sq^1, \quad Sq^6 = Sq^5Sq^1 + Sq^2Sq^4,$$

and thus

$$\hat{x}_3^2 = \mathrm{Sq}^3 \hat{x}_3 = \hat{\sigma}(\mathrm{Sq}^3 x_4) = \hat{\sigma}(x_7) = \hat{x}_6,$$

$$\hat{x}_5^2 = \mathrm{Sq}^5 \hat{x}_5 = \hat{\sigma}(\mathrm{Sq}^5 x_6) = \hat{\sigma}(x_4 x_7) = \hat{x}_3 x_7 + x_4 \hat{x}_6,$$

$$\hat{x}_6^2 = \mathrm{Sq}^6 \hat{x}_6 = \hat{\sigma}(\mathrm{Sq}^6 x_7) = \hat{\sigma}(x_6 x_7) = \hat{x}_5 x_7 + x_6 \hat{x}_6.$$

4. Invariant theory

There is a close relationship between the polynomial invariants of reflection groups and the cohomology of Lie groups as follows. Let V be a vector space over a field k of dimension n. If $V = \langle x_1, \ldots, x_n \rangle$, we put

$$\Bbbk[V] = \Bbbk[x_1, \dots, x_n]$$

which is independent of a choice of x_1, \ldots, x_n . Note that a group action on V extends canonically to $\Bbbk[V]$.

Theorem ((a small part of) Shephard-Todd). If W is a finite group generated by reflections on V and char $\Bbbk \nmid |W|$, then

$$\mathbb{k}[V]^W = \mathbb{k}[q_1, \dots, q_n]$$

for some $q_1, \ldots, q_n \in \mathbb{k}[V]$.

Let G be a compact, connected Lie group with the Weyl group W(G). Then W(G) is generated by reflections on $H^2(BT; \mathbb{k})$. Then if char $\mathbb{k} \nmid |W(G)|$, there is a natural isomorphism

$$H^*(BG; \Bbbk) \xrightarrow{\cong} H^*(BT; \Bbbk)^{W(G)}.$$

In fact, the above holds if $H_*(G;\mathbb{Z})$ has no p-torsion, where $p = \operatorname{char} \mathbb{k}$.

The Shephard-Todd theorem is generalized to polynomial tensor exterior algebras as follow. Fix an isomorphism $f: V \xrightarrow{\cong} \widehat{V}$. Then a group action on V is translated to \widehat{V} through f and extended to the group action on $\Bbbk[V] \otimes \Lambda(\widehat{V})$. We also have a derivation

$$\bar{f}: \Bbbk[V] \to \Bbbk[V] \otimes \Lambda(\widehat{V})$$

extending f.

Theorem (Solomon). If W is a finite group generated by reflections on V and char $\mathbb{k} \nmid |W|$, then

$$(\Bbbk[V] \otimes \Lambda(\widehat{V}))^W = \Bbbk[q_1, \dots, q_n] \otimes \Lambda(\overline{f}(q_1), \dots, \overline{f}(q_n)),$$

where $\mathbb{k}[V]^W = \mathbb{k}[q_1, \dots, q_n].$

This generalization of the Shephard-Todd theorem applies to free loop spaces of the classifying spaces of Lie groups.

Theorem . Let G be a compact, connected Lie group. If char $\mathbb{k} \nmid |W(G)|$, there is a natural isomorphism

$$H^*(LBG; \Bbbk) \xrightarrow{\cong} H^*(LBT; \Bbbk)^{W(G)}.$$

Proof. In Solomon's theorem, we put $V = H^2(BT)$ and $f = \hat{\sigma}$. Then the result follows.

Remark . We don't have the above isomorphism if char $\Bbbk \mid |W(G)|$ but $H_*(G;\mathbb{Z})$ is torsion free. For example, put $G = \operatorname{Sp}(1)$. Then $H^2(BT) = \langle t \rangle$ and $W(\operatorname{Sp}(1))$ is generated by a reflection τ with $\tau(t) = -t$. Then we have $H^*(B\operatorname{Sp}(1);\mathbb{Z}/2) = \mathbb{Z}/2[q]$ such that q pulls back to t^2 in $H^*(BT;\mathbb{Z}/2)$. Thus since $\hat{\sigma}(t^2) = 0$, $H^*(LB\operatorname{Sp}(1);\mathbb{Z}/2) \to H^*(LBT;\mathbb{Z}/2)^{W(\operatorname{Sp}(1))}$ is not injective.

Part 2. Homotopy fixed points

5. REVIEW OF THE FREE COHOMOLOGY SUSPENSION

Let X be a simply connected space, and let $\hat{\omega} : S^1 \times LX \to X$ be the evaluation $\hat{\omega}(t, \ell) = \ell(t)$. Er have defined the free cohomology suspension $\hat{\sigma} : \overline{H}^*(X) \to H^{*-1}(LX)$ as

$$\hat{\omega}^*(x) = s \otimes \hat{\sigma}(x) + 1 \otimes x,$$

where s is the dual of the Hurewicz image of $[1_{S^1}] \in \pi_1(S^1)$, and we have seen the following properties.

(1) For the inclusion $i: \Omega X \to LX$,

$$i^* \circ \hat{\sigma} = \sigma.$$

- (2) $\hat{\sigma}$ is a derivation.
- (3) $\hat{\sigma}$ commutes with Steenrod operations.

6. Homotopy fixed points

The homotopy fixed points of a self-map $\phi: X \to X$ is defined as the homotopy pullback

$$\begin{array}{c} X^{\mathrm{h}\phi} & \longrightarrow & X \\ & & \downarrow & \downarrow^{1 \times \Phi} \\ & X & \longrightarrow & X \times X. \end{array}$$

Namely,

$$X^{h\phi} = \{\ell : [0,1] \to X \mid \ell(1) = \phi(\ell(0))\}.$$

<u>**Aim**</u>: Describe $H^*(X^{h\phi})$ without spectral sequences.

To this end, we would like to generalize the free cohomology suspension. But $X^{h\phi}$ includes non-closed paths, we don't have the evaluation $S^1 \times X^{h\phi} \to X$. So we force to close elements of $X^{h\phi}$.

7. Mapping torus

Definition. The mapping torus of $\phi : X \to X$ is defined as

$$M_{\phi} = [0,1] \times X/(0,x) \sim (1,\phi(x))$$

Since ϕ is pointed, we may regard $S^1 = \{(t, x_0) \in M_{\phi}\} \subset M_{\phi}$ for the basepoint x_0 of X. Let $\iota : X \to M_{\phi}$ be the inclusion $\iota(x) = (1, x)$.

Proposition. for a self-map $\psi: Y \to Y$ and a map $f: X \to Y$ satisfying $\psi \circ f \simeq f \circ \phi$, there is a natural map $M(f): M_{\phi} \to M_{\psi}$.

Consider the Mayer-Vietoris exact sequence for the covering

$$M_{\phi} = \{(t,x) \in M_{\phi} \mid 0 \le t \le \frac{1}{4} \text{ or } \frac{3}{4} \le t \le 1\} \cup \{(t,x) \in M_{\phi} \mid \frac{1}{4} \le t \le \frac{3}{4}\}$$

Then we get an exact sequence

$$\cdots \to H^*(M_{\phi}) \xrightarrow{\iota^*} H^*(X) \xrightarrow{\phi^*-1} H^*(X) \to H^{*+1}(M_{\phi}) \to \cdots$$

Let \mathcal{A}'_p be the subalgebra of \mathcal{A}_p generated by \mathcal{P}^i for p odd and Sq^{2i} for p=2.

Proposition. Let $R = \mathbb{Z}/p$. If $H^{\text{odd}}(X) = 0$ and $\phi^* = 1$, then $\iota^* : H^*(M_{\phi}) \to H^*(X)$ has a section as \mathcal{A}'_p -modules.

8. Twisted cohomology suspension

Define a map $\delta: X^{\mathrm{h}\phi} \to LM_{\phi}$ as

$$\delta(\ell) = [t \mapsto (t, \ell(t))].$$

Every element of $X^{h\phi}$, possibly non-closed, is closed by δ .

Definition . The twisted cohomology suspension

$$\hat{\sigma}_{\phi} : \overline{H}^*(M_{\phi}) \to H^{*-1}(X^{\mathrm{h}\phi})$$

is defined as the composite

$$\overline{H}^*(M_{\phi}) \xrightarrow{\hat{\sigma}} H^{*-1}(LM_{\phi}) \xrightarrow{\delta^*} H^{*-1}(X^{\mathrm{h}\phi}).$$

Proposition. (1) For the inclusion $i: \Omega X \to X^{h\phi}$ and the projection $q: M_{\phi} \to M_{\phi}/S^1$,

$$i^*\circ\hat{\sigma}_{\phi}\circ q^*=\sigma\circ\iota^*\circ q^*.$$

(2) For $\psi: Y \to Y$ and $f: X \to Y$ with $f \circ \phi \simeq \psi \circ f$,

$$\bar{f}^* \circ \hat{\sigma}_\phi = \hat{\sigma}_\psi \circ M(f)^*$$

where $\bar{f}: X^{h\phi} \to Y^{h\psi}$ is the induced map.

(3) Let $\omega: X^{h\phi} \to X$ be the evaluation at 0. For $\omega_{\phi} = \iota \circ \phi \circ \omega$,

$$\hat{\sigma}_{\phi}(xy) = \hat{\sigma}_{\phi}(x)\omega_{\phi}^*(y) + (-1)^{|x|}\omega_{\phi}^*(x)\hat{\sigma}_{\phi}(y).$$

(4) $\hat{\sigma}_{\phi}$ commutes with Steenrod operations.

Proof. Define $h: [0,1] \times S^1 \times \Omega X \to M_{\phi}/S^1$ as

$$h(s,t,\ell) = \begin{cases} (2st,\ell((1-s)t)) & 0 \le t \le \frac{1}{2} \\ (\min\{2st,1\},\ell((1+s)t-s)) & \frac{1}{2} \le t \le 1. \end{cases}$$

Using this homotopy, we get a homotopy commutative diagram

Then (1) and (2) follows.

∃commutative diagram

Then

$$(\hat{\omega} \circ (1 \times \delta))^*(x) = s \otimes \hat{\sigma}_{\phi}(x) + 1 \otimes \omega_{\phi}^*(x),$$

implying (3) and (4).

Theorem . If $H^*(X) = R[x_1, \ldots, x_n]$ and $\exists section \ \alpha \ of \ \iota^* : H^*(M_{\phi}) \to H^*(X)$, then

$$H^*(X^{\mathbf{h}\phi}) \cong R[\omega_{\phi}^*(x_1), \dots, \omega_{\phi}^*(x_n)] \otimes \Delta(\hat{\sigma}_{\phi}(\alpha(x_1)), \dots, \hat{\sigma}_{\phi}(\alpha(x_n))).$$

Moreover, if α respects \mathcal{A}'_p (resp. \mathcal{A}_p), the above identification is over \mathcal{A}'_p (resp. \mathcal{A}_p).

9. Applications

Let G be a connected Lie group and let $\phi^q : BG_p \to BG_p$ be the unstable Adams operation for a prime power q with $p \nmid q$. Let G(q) be the Chevalley group of type G over a field \mathbb{F}_q . Then we have

$$BG(q)_p \simeq BG_p^{\mathbf{h}\phi^q}.$$

Theorem. If $H^*(G;\mathbb{Z})$ has no p-torsion and $q \equiv 1 \mod p$, then

$$H^*(G(q); \mathbb{Z}/p) \cong H^*(LBG; \mathbb{Z}/p)$$

as \mathcal{A}'_p -modules. Moreover, if $q \equiv 1 \mod p^2$, the above congruence is over \mathcal{A}_p .

Proof. If $H^*(G;\mathbb{Z})$ has no *p*-torsion, $H^{\text{odd}}(BG;\mathbb{Z}/p) = 0$, implying the first assertion. The second assertion follows analogously.

For an odd prime power q, let us next calculate $H^*(G_2(q); \mathbb{Z}/2)$. We construct a section of $\iota^* : H^*(M_{\phi^q}) \to H^*(BG_2)$. Since $H^4(M_{\phi^q}) \cong \mathbb{Z}/2$, we get $\bar{x}_4 \in H^4(M_{\phi^q})$ with $\iota^*(\bar{x}_4) = x_4$. Put

$$\operatorname{Sq}^2 \bar{x}_4 = \bar{x}_6, \quad \operatorname{Sq}^1 \bar{x}_6 = \bar{x}_7$$

Then $\iota^*(\bar{x}_i) = x_i$ for i = 6, 7. We can now define a section α as

$$\alpha(x_i) = \bar{x}_i \text{ for } i = 4, 6, 7.$$

We show that α respects \mathcal{A}_2 . Since $q^2 \equiv 1 \mod 4$, we have $\operatorname{Sq}^1 \bar{x}_4 = 0$ by considering the integral cohomology, which implies

 $Sq^{2}\bar{x}_{6} = Sq^{2}Sq^{2}\bar{x}_{4} = Sq^{3}Sq^{1}\bar{x}_{4} = 0, \quad Sq^{2}\bar{x}_{7} = Sq^{2}Sq^{3}\bar{x}_{4} = (Sq^{1}Sq^{4} + Sq^{4}Sq^{1})\bar{x}_{4} = 0.$ Since $H^{9}(BG_{2}) = 0, \, \iota^{*} : H^{10}(M_{\phi^{q}}) \to H^{10}(BG_{2})$ is monic, and then

 $Sq^{4}\bar{x}_{6} = \bar{x}_{4}\bar{x}_{6}, \quad Sq^{4}\bar{x}_{7} = Sq^{4}Sq^{3}\bar{x}_{4} = Sq^{1}Sq^{4}Sq^{2}\bar{x}_{4} = Sq^{1}Sq^{4}\bar{x}_{6} = Sq^{1}(\bar{x}_{4}\bar{x}_{6}) = \bar{x}_{4}\bar{x}_{7}.$

Thus we have seen that α respects \mathcal{A}_2 .

Theorem . $H^*(G_2(q); \mathbb{Z}/2) \cong H^*(LBG_2; \mathbb{Z}/2)$ over \mathcal{A}_2 -algebras.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KYOTO, 606-8502, JAPAN *E-mail address*: kishi@math.kyoto-u.ac.jp